首页 > 最新文献

Software Impacts最新文献

英文 中文
SignAPROS: An integrated hardware and software system for acquisition, processing, and analysis of bio-signals SignAPROS:用于采集、处理和分析生物信号的集成硬件和软件系统
IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2025-03-01 DOI: 10.1016/j.simpa.2025.100741
Alma Karen Bañuelos-Mezquitan, Carlos Said Silva-Chacon, Fernando Castro-Galán, Arturo Guzmán-Vázquez, Israel Román-Godínez, Ricardo A. Salido-Ruiz, Sulema Torres-Ramos
SignAPROS is a cost-effective hardware–software system for signal acquisition, featuring modules for database management, protocol configuration, and machine learning-based analysis. It supports up to four Electromyography bi-polar channels and various sensors to measure heart rate, temperature, inclination, and galvanic skin response.
The system has already been used in the implementation of a protocol aimed at capturing electrical signals from facial and neck muscles to detect mispronunciation in a second language supporting a master’s project.
With a user-friendly interface, SignAPROS enables users to conduct bio-signal acquisition, analyze data, and visualize results efficiently, making it a versatile and accessible tool for scientific studies.
SignAPROS是一种具有成本效益的信号采集硬件软件系统,具有数据库管理、协议配置和基于机器学习的分析模块。它支持多达四个肌电双极通道和各种传感器来测量心率,温度,倾斜度和皮肤电反应。该系统已经被用于一项协议的实施,该协议旨在捕捉面部和颈部肌肉的电信号,以检测第二语言的错误发音,从而支持一个硕士项目。具有用户友好的界面,SignAPROS使用户能够进行生物信号采集,分析数据,并有效地将结果可视化,使其成为科学研究的多功能和可访问的工具。
{"title":"SignAPROS: An integrated hardware and software system for acquisition, processing, and analysis of bio-signals","authors":"Alma Karen Bañuelos-Mezquitan,&nbsp;Carlos Said Silva-Chacon,&nbsp;Fernando Castro-Galán,&nbsp;Arturo Guzmán-Vázquez,&nbsp;Israel Román-Godínez,&nbsp;Ricardo A. Salido-Ruiz,&nbsp;Sulema Torres-Ramos","doi":"10.1016/j.simpa.2025.100741","DOIUrl":"10.1016/j.simpa.2025.100741","url":null,"abstract":"<div><div>SignAPROS is a cost-effective hardware–software system for signal acquisition, featuring modules for database management, protocol configuration, and machine learning-based analysis. It supports up to four Electromyography bi-polar channels and various sensors to measure heart rate, temperature, inclination, and galvanic skin response.</div><div>The system has already been used in the implementation of a protocol aimed at capturing electrical signals from facial and neck muscles to detect mispronunciation in a second language supporting a master’s project.</div><div>With a user-friendly interface, SignAPROS enables users to conduct bio-signal acquisition, analyze data, and visualize results efficiently, making it a versatile and accessible tool for scientific studies.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100741"},"PeriodicalIF":1.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143549883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VCoFWMVIFCM: An open-source code for viewpoint-based collaborative feature-weighted multi-view intuitionistic fuzzy clustering 基于视点的协同特征加权多视点直觉模糊聚类的开源代码
IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2025-03-01 DOI: 10.1016/j.simpa.2025.100743
Amin Golzari Oskouei , Negin Samadi , Asgarali Bouyer , Jafar Tanha
We present VCoFWMVIFCM, an open-source Python implementation of a multi-view fuzzy clustering algorithm based on Intuitionistic Fuzzy c-Means (IFCM). The method integrates adaptive view, feature, and sample weighting to account for varying importance and reduce outlier effects. Local neighborhood information enhances noise resistance, while a density-based initialization ensures stable centroid selection. These mechanisms collectively improve clustering robustness and accuracy for multi-view data. The modular implementation allows flexible execution and reproducibility, addressing real-world applications where multiple data perspectives exist. The code is publicly accessible on GitHub under the MIT license.
我们提出了VCoFWMVIFCM,一个基于直觉模糊c均值(IFCM)的多视图模糊聚类算法的开源Python实现。该方法集成了自适应视图、特征和样本加权,以考虑不同的重要性并减少异常值效应。局部邻域信息增强了抗噪声能力,而基于密度的初始化保证了质心选择的稳定性。这些机制共同提高了多视图数据的聚类鲁棒性和准确性。模块化实现允许灵活的执行和再现性,解决存在多个数据透视图的实际应用程序。在MIT许可下,代码可以在GitHub上公开访问。
{"title":"VCoFWMVIFCM: An open-source code for viewpoint-based collaborative feature-weighted multi-view intuitionistic fuzzy clustering","authors":"Amin Golzari Oskouei ,&nbsp;Negin Samadi ,&nbsp;Asgarali Bouyer ,&nbsp;Jafar Tanha","doi":"10.1016/j.simpa.2025.100743","DOIUrl":"10.1016/j.simpa.2025.100743","url":null,"abstract":"<div><div>We present VCoFWMVIFCM, an open-source Python implementation of a multi-view fuzzy clustering algorithm based on Intuitionistic Fuzzy c-Means (IFCM). The method integrates adaptive view, feature, and sample weighting to account for varying importance and reduce outlier effects. Local neighborhood information enhances noise resistance, while a density-based initialization ensures stable centroid selection. These mechanisms collectively improve clustering robustness and accuracy for multi-view data. The modular implementation allows flexible execution and reproducibility, addressing real-world applications where multiple data perspectives exist. The code is publicly accessible on GitHub under the MIT license.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100743"},"PeriodicalIF":1.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143580457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant diseases classification with Spectral Signature Taxonomy & Analysis Software (SSTAS) 基于光谱特征分类分析软件(SSTAS)的植物病害分类
IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2025-03-01 DOI: 10.1016/j.simpa.2025.100744
Hardik Jayswal, Hetvi Desai, Hasti Vakani, Mithil Mistry, Nilesh Dubey
This paper investigates a novel approach to plant disease classification, addressing cases where symptoms are not visually apparent. Traditional machine learning methods, reliant on observable symptoms, face challenges such as limited training data, high costs, and low interpretability. To overcome these limitations, a spectroscopy-based classification technique was developed. Experimental data, collected over 15 months at Anand Agriculture University, Gujarat, and Charotar University Space Research Centre, utilized spectral signatures (400–1000 nm) to detect mango diseases. The SSTAS Software, developed with a fine-tuned deep learning model, Deep-Spectro, demonstrated superior accuracy using an 80:20 training-to-testing ratio, surpassing existing models reported in prior research.
本文研究了植物病害分类的一种新方法,解决了症状不明显的情况。传统的机器学习方法依赖于可观察到的症状,面临着训练数据有限、成本高、可解释性低等挑战。为了克服这些限制,开发了一种基于光谱的分类技术。在古吉拉特邦阿南德农业大学和夏洛塔大学空间研究中心收集了15个多月的实验数据,利用光谱特征(400-1000 nm)检测芒果疾病。SSTAS软件采用微调深度学习模型deep - spectro开发,使用80:20的训练与测试比例显示出卓越的准确性,超过了先前研究报告的现有模型。
{"title":"Plant diseases classification with Spectral Signature Taxonomy & Analysis Software (SSTAS)","authors":"Hardik Jayswal,&nbsp;Hetvi Desai,&nbsp;Hasti Vakani,&nbsp;Mithil Mistry,&nbsp;Nilesh Dubey","doi":"10.1016/j.simpa.2025.100744","DOIUrl":"10.1016/j.simpa.2025.100744","url":null,"abstract":"<div><div>This paper investigates a novel approach to plant disease classification, addressing cases where symptoms are not visually apparent. Traditional machine learning methods, reliant on observable symptoms, face challenges such as limited training data, high costs, and low interpretability. To overcome these limitations, a spectroscopy-based classification technique was developed. Experimental data, collected over 15 months at Anand Agriculture University, Gujarat, and Charotar University Space Research Centre, utilized spectral signatures (400–1000 nm) to detect mango diseases. The SSTAS Software, developed with a fine-tuned deep learning model, Deep-Spectro, demonstrated superior accuracy using an 80:20 training-to-testing ratio, surpassing existing models reported in prior research.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100744"},"PeriodicalIF":1.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143563740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
hvarma: Autoregressive moving average model of microtremor H/V spectral ratio hvarma:微颤H/V谱比的自回归移动平均模型
IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2025-03-01 DOI: 10.1016/j.simpa.2025.100745
Aleix Seguí , Arantza Ugalde , Juan José Egozcue
hvarma is a Python software for estimating the horizontal-to-vertical (H/V) spectral ratio through seismic ambient vibration measurements. It employs a parametric approach to model the H/V transfer function using an AutoRegressive Moving Average (ARMA) filter. Compared to traditional methods, this technique enhances accuracy and reliability in spectral estimates, determining the ground fundamental resonance frequency with high spectral resolution, which is important for engineering geology projects. The program inverts to find optimal filter coefficients and computes coherence between horizontal and vertical components, generating H/V transfer function visualizations across both negative and positive frequencies. Results are saved as image and text files.
hvarma是一个Python软件,用于通过地震环境振动测量估计水平与垂直(H/V)频谱比。它采用参数化方法使用自回归移动平均(ARMA)滤波器对H/V传递函数建模。与传统方法相比,该技术提高了频谱估计的精度和可靠性,以高光谱分辨率确定了地面基共振频率,对工程地质工程具有重要意义。该程序通过反向查找最佳过滤系数,并计算水平和垂直分量之间的相干性,从而在负频率和正频率上生成H/V传递函数可视化。结果保存为图像和文本文件。
{"title":"hvarma: Autoregressive moving average model of microtremor H/V spectral ratio","authors":"Aleix Seguí ,&nbsp;Arantza Ugalde ,&nbsp;Juan José Egozcue","doi":"10.1016/j.simpa.2025.100745","DOIUrl":"10.1016/j.simpa.2025.100745","url":null,"abstract":"<div><div>hvarma is a Python software for estimating the horizontal-to-vertical (<em>H</em>/<em>V</em>) spectral ratio through seismic ambient vibration measurements. It employs a parametric approach to model the <em>H</em>/<em>V</em> transfer function using an AutoRegressive Moving Average (ARMA) filter. Compared to traditional methods, this technique enhances accuracy and reliability in spectral estimates, determining the ground fundamental resonance frequency with high spectral resolution, which is important for engineering geology projects. The program inverts to find optimal filter coefficients and computes coherence between horizontal and vertical components, generating <em>H</em>/<em>V</em> transfer function visualizations across both negative and positive frequencies. Results are saved as image and text files.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100745"},"PeriodicalIF":1.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143580377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KNNOR-Reg: A python package for oversampling in imbalanced regression 一个python包,用于不平衡回归中的过采样
IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2025-01-03 DOI: 10.1016/j.simpa.2024.100740
Samir Brahim Belhaouari , Ashhadul Islam , Khelil Kassoul , Ala Al-Fuqaha , Abdesselam Bouzerdoum
KNNOR-Reg is a Python package designed to address the challenge of imbalanced regression. While popular Python packages exist for tackling imbalanced classification, support for imbalanced regression remains limited. Imbalanced regression involves the underrepresentation of important ranges within a continuous target variable. KNNOR-Reg implements an oversampling technique that generates synthetic samples through interpolation between minority class samples and their nearest neighbors. The labels for synthetic samples are computed based on the inverse distance-weighted average of the nearest neighbors’ labels. KNNOR-Reg offers a user-friendly and extensible Python implementation for oversampling imbalanced regression data, aiming to reduce regressor bias and enhance model outcomes.
knor - reg是一个Python包,旨在解决不平衡回归的挑战。虽然存在用于处理不平衡分类的流行Python包,但对不平衡回归的支持仍然有限。不平衡回归涉及连续目标变量内重要范围的代表性不足。knor - reg实现了一种过采样技术,通过在少数类样本和它们最近的邻居之间插值来生成合成样本。合成样本的标签是基于最近邻居标签的逆距离加权平均值计算的。knor - reg提供了一个用户友好且可扩展的Python实现,用于对不平衡回归数据进行过采样,旨在减少回归偏差并增强模型结果。
{"title":"KNNOR-Reg: A python package for oversampling in imbalanced regression","authors":"Samir Brahim Belhaouari ,&nbsp;Ashhadul Islam ,&nbsp;Khelil Kassoul ,&nbsp;Ala Al-Fuqaha ,&nbsp;Abdesselam Bouzerdoum","doi":"10.1016/j.simpa.2024.100740","DOIUrl":"10.1016/j.simpa.2024.100740","url":null,"abstract":"<div><div>KNNOR-Reg is a Python package designed to address the challenge of imbalanced regression. While popular Python packages exist for tackling imbalanced classification, support for imbalanced regression remains limited. Imbalanced regression involves the underrepresentation of important ranges within a continuous target variable. KNNOR-Reg implements an oversampling technique that generates synthetic samples through interpolation between minority class samples and their nearest neighbors. The labels for synthetic samples are computed based on the inverse distance-weighted average of the nearest neighbors’ labels. KNNOR-Reg offers a user-friendly and extensible Python implementation for oversampling imbalanced regression data, aiming to reduce regressor bias and enhance model outcomes.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100740"},"PeriodicalIF":1.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143139899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
pff-oc: A space–time phase-field fracture optimal control framework pff-oc:时空相场断裂最优控制框架
IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2025-01-02 DOI: 10.1016/j.simpa.2024.100734
Denis Khimin, Marc Christian Steinbach, Thomas Wick
This codebase is developed to address optimal control problems in phase-field fracture, aiming to achieve a desired fracture pattern in brittle materials through the application of external forces. Built alongside our recent work (Khimin et al., 2022), this framework provides an efficient and precise approach for simulating space–time phase-field optimal control problems. In this setup, the fracture is controlled via Neumann boundary conditions, with the cost functional designed to minimize the difference between the actual and desired fracture states. The implementation relies on the open-source libraries DOpElib (Goll et al., 2017) and deal.II (Arndt et al. [1], [2])
这个代码库是为了解决相场断裂的最优控制问题而开发的,旨在通过施加外力来实现脆性材料的理想断裂模式。该框架与我们最近的工作(Khimin et al., 2022)一起构建,为模拟时空相场最优控制问题提供了一种有效而精确的方法。在这种设置中,裂缝是通过Neumann边界条件控制的,成本函数的设计是为了最小化实际和期望的裂缝状态之间的差异。实现依赖于开源库DOpElib (Goll et al., 2017)和deal。II (Arndt et al. [1], [2])
{"title":"pff-oc: A space–time phase-field fracture optimal control framework","authors":"Denis Khimin,&nbsp;Marc Christian Steinbach,&nbsp;Thomas Wick","doi":"10.1016/j.simpa.2024.100734","DOIUrl":"10.1016/j.simpa.2024.100734","url":null,"abstract":"<div><div>This codebase is developed to address optimal control problems in phase-field fracture, aiming to achieve a desired fracture pattern in brittle materials through the application of external forces. Built alongside our recent work (Khimin et al., 2022), this framework provides an efficient and precise approach for simulating space–time phase-field optimal control problems. In this setup, the fracture is controlled via Neumann boundary conditions, with the cost functional designed to minimize the difference between the actual and desired fracture states. The implementation relies on the open-source libraries DOpElib (Goll et al., 2017) and deal.II (Arndt et al. <span><span>[1]</span></span>, <span><span>[2]</span></span>)</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100734"},"PeriodicalIF":1.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143139898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic dataset generation system for vehicle detection 车辆检测合成数据集生成系统
IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-12-28 DOI: 10.1016/j.simpa.2024.100735
Mihaela Orić , Vlatko Galić , Filip Novoselnik
The success of machine learning models for object detection highly depends on the training data size and quality. Generating synthetic data speeds up the data acquisition process by removing the need for human annotation. Moreover, since annotation is done automatically, there is no room for human error. We present a pipeline that automatically generates and annotates aerial images of vehicles on roads. The pipeline is structured to allow easy adding of various new vehicles and is not limited to cars only. The resolution of the generated images and the level of detail can be modified by changing the output settings.
用于目标检测的机器学习模型的成功在很大程度上取决于训练数据的大小和质量。生成合成数据消除了人工注释的需要,从而加快了数据获取过程。此外,由于注释是自动完成的,因此没有人为错误的余地。我们提出了一个自动生成和标注道路上车辆的航拍图像的管道。该管道的结构允许轻松添加各种新车,而不仅仅局限于汽车。可以通过更改输出设置来修改生成图像的分辨率和细节级别。
{"title":"Synthetic dataset generation system for vehicle detection","authors":"Mihaela Orić ,&nbsp;Vlatko Galić ,&nbsp;Filip Novoselnik","doi":"10.1016/j.simpa.2024.100735","DOIUrl":"10.1016/j.simpa.2024.100735","url":null,"abstract":"<div><div>The success of machine learning models for object detection highly depends on the training data size and quality. Generating synthetic data speeds up the data acquisition process by removing the need for human annotation. Moreover, since annotation is done automatically, there is no room for human error. We present a pipeline that automatically generates and annotates aerial images of vehicles on roads. The pipeline is structured to allow easy adding of various new vehicles and is not limited to cars only. The resolution of the generated images and the level of detail can be modified by changing the output settings.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100735"},"PeriodicalIF":1.3,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DeepPack3D: A Python package for online 3D bin packing optimization by deep reinforcement learning and constructive heuristics DeepPack3D:一个Python包,通过深度强化学习和建设性启发式进行在线3D装箱优化
IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-12-27 DOI: 10.1016/j.simpa.2024.100732
Y.P. Tsang , D.Y. Mo , K.T. Chung , C.K.M. Lee
The rapid advancement of industrial robotic automation has increased the significance of online 3D bin packing optimization for applications, like palletization and container loading. Despite numerous learning-based methods emerging for informed decision-making in this process, the absence of a standardized benchmark makes it challenging to experience the process and validate new algorithms. To bridge this gap, we introduce DeepPack3D, a software package that integrates deep reinforcement learning and constructive heuristic approaches for online 3D bin packing optimization. DeepPack3D provides a foundation for benchmarking, allowing users to evaluate performance using customizable item lists and lookahead values, thereby facilitating consistent research advancements.
工业机器人自动化的快速发展,增加了在线3D装箱优化应用的重要性,如托盘和集装箱装载。尽管在此过程中出现了许多基于学习的方法来进行明智的决策,但由于缺乏标准化的基准,因此很难体验该过程并验证新算法。为了弥补这一差距,我们引入了DeepPack3D,这是一个集成了深度强化学习和建设性启发式方法的软件包,用于在线3D装箱优化。DeepPack3D为基准测试提供了基础,允许用户使用可定制的项目列表和前瞻性值来评估性能,从而促进一致的研究进展。
{"title":"DeepPack3D: A Python package for online 3D bin packing optimization by deep reinforcement learning and constructive heuristics","authors":"Y.P. Tsang ,&nbsp;D.Y. Mo ,&nbsp;K.T. Chung ,&nbsp;C.K.M. Lee","doi":"10.1016/j.simpa.2024.100732","DOIUrl":"10.1016/j.simpa.2024.100732","url":null,"abstract":"<div><div>The rapid advancement of industrial robotic automation has increased the significance of online 3D bin packing optimization for applications, like palletization and container loading. Despite numerous learning-based methods emerging for informed decision-making in this process, the absence of a standardized benchmark makes it challenging to experience the process and validate new algorithms. To bridge this gap, we introduce DeepPack3D, a software package that integrates deep reinforcement learning and constructive heuristic approaches for online 3D bin packing optimization. DeepPack3D provides a foundation for benchmarking, allowing users to evaluate performance using customizable item lists and lookahead values, thereby facilitating consistent research advancements.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100732"},"PeriodicalIF":1.3,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143139882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Web Application for exploratory data analysis and classification of Parkinson’s Disease patients using machine learning models on different datasets 在不同数据集上使用机器学习模型对帕金森病患者进行探索性数据分析和分类的Web应用程序
IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-12-27 DOI: 10.1016/j.simpa.2024.100737
Daniel Hilário da Silva , Leandro Rodrigues da Silva Souza , Caio Tonus Ribeiro , Simone Hilário da Silva Brasileiro , José Renato Munari Nardo , Adriano Alves Pereira , Adriano de Oliveira Andrade
Automated biomedical data analysis tools are crucial in research and clinical practice; however, they are not always accessible to everyone. This paper introduces a web-based system that facilitates exploratory data analysis and machine learning, focusing on identifying audio and video data patterns. This system applies to various biomedical contexts, such as the study of Parkinson’s disease. Developed using Python and the Streamlit framework, it offers an intuitive interface for data analysis, visualization, and automated classification. Its flexibility makes it a valuable resource for researchers and healthcare professionals, enabling meaningful insights and fostering advancements in biomedical research.
自动化生物医学数据分析工具在研究和临床实践中至关重要;然而,它们并不总是对每个人都开放。本文介绍了一个基于web的系统,该系统促进了探索性数据分析和机器学习,重点是识别音频和视频数据模式。该系统适用于各种生物医学背景,例如帕金森病的研究。它使用Python和Streamlit框架开发,为数据分析、可视化和自动分类提供了直观的界面。它的灵活性使其成为研究人员和医疗保健专业人员的宝贵资源,能够提供有意义的见解并促进生物医学研究的进步。
{"title":"A Web Application for exploratory data analysis and classification of Parkinson’s Disease patients using machine learning models on different datasets","authors":"Daniel Hilário da Silva ,&nbsp;Leandro Rodrigues da Silva Souza ,&nbsp;Caio Tonus Ribeiro ,&nbsp;Simone Hilário da Silva Brasileiro ,&nbsp;José Renato Munari Nardo ,&nbsp;Adriano Alves Pereira ,&nbsp;Adriano de Oliveira Andrade","doi":"10.1016/j.simpa.2024.100737","DOIUrl":"10.1016/j.simpa.2024.100737","url":null,"abstract":"<div><div>Automated biomedical data analysis tools are crucial in research and clinical practice; however, they are not always accessible to everyone. This paper introduces a web-based system that facilitates exploratory data analysis and machine learning, focusing on identifying audio and video data patterns. This system applies to various biomedical contexts, such as the study of Parkinson’s disease. Developed using Python and the Streamlit framework, it offers an intuitive interface for data analysis, visualization, and automated classification. Its flexibility makes it a valuable resource for researchers and healthcare professionals, enabling meaningful insights and fostering advancements in biomedical research.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100737"},"PeriodicalIF":1.3,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143139896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TeleCatch: An open-access software for visualizing, filtering and extracting Telegram messages data TeleCatch:用于可视化、过滤和提取电报信息数据的开放访问软件
IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-12-27 DOI: 10.1016/j.simpa.2024.100736
Giosuè Ruscica , Giulia Tucci , Bia Carneiro
Telegram’s growing role as a digital communication platform creates opportunities and challenges for analyzing public discourse. TeleCatch, an open-source tool, simplifies access to data from public Telegram groups and channels, requiring no programming skills. Built with FastAPI and Telethon, it enables collection management, rapid sampling, and retrieval of text and media, offering a privacy-focused, decentralized approach. TeleCatch has proven valuable in studies on human mobility and food security, supporting diverse research fields. Future updates will enhance search capabilities and visualization features, further expanding its applicability for digital communication and social media analysis.
Telegram作为数字通信平台的作用日益增强,为分析公共话语创造了机遇和挑战。TeleCatch是一个开源工具,它简化了从公共电报组和频道获取数据的过程,不需要编程技能。它使用FastAPI和Telethon构建,支持收集管理、快速采样以及文本和媒体的检索,提供了一种以隐私为中心的分散方法。事实证明,TeleCatch在人类流动性和粮食安全的研究中很有价值,支持了不同的研究领域。未来的更新将增强搜索功能和可视化功能,进一步扩展其在数字通信和社交媒体分析方面的适用性。
{"title":"TeleCatch: An open-access software for visualizing, filtering and extracting Telegram messages data","authors":"Giosuè Ruscica ,&nbsp;Giulia Tucci ,&nbsp;Bia Carneiro","doi":"10.1016/j.simpa.2024.100736","DOIUrl":"10.1016/j.simpa.2024.100736","url":null,"abstract":"<div><div>Telegram’s growing role as a digital communication platform creates opportunities and challenges for analyzing public discourse. TeleCatch, an open-source tool, simplifies access to data from public Telegram groups and channels, requiring no programming skills. Built with FastAPI and Telethon, it enables collection management, rapid sampling, and retrieval of text and media, offering a privacy-focused, decentralized approach. TeleCatch has proven valuable in studies on human mobility and food security, supporting diverse research fields. Future updates will enhance search capabilities and visualization features, further expanding its applicability for digital communication and social media analysis.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100736"},"PeriodicalIF":1.3,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143139897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Software Impacts
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1