首页 > 最新文献

Software Impacts最新文献

英文 中文
alPCA: An automatic software for the selection and combination of forecasts in monthly series alPCA:用于选择和组合月序列预测的自动软件
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-04-09 DOI: 10.1016/j.simpa.2024.100644
Carlos García-Aroca, Ma. Asunción Martínez-Mayoral, Javier Morales-Socuéllamos, José Vicente Segura-Heras

alPCA is a software coded in R and designed to automatically combine predictions from a collection of individual forecasting methods that integrate it. It employs three categories of weights derived from the PCA scores, and decision rules to determine the optimal combination of these methods. alPCA serves as an automated component within the artificial intelligence toolkit for monthly time series processing with the objective of obtaining the best forecast.

alPCA 是一款用 R 代码编写的软件,旨在自动合并来自一系列单独预测方法的预测结果,并将其整合在一起。alPCA 是人工智能工具包中的一个自动组件,用于月度时间序列处理,目的是获得最佳预测。
{"title":"alPCA: An automatic software for the selection and combination of forecasts in monthly series","authors":"Carlos García-Aroca,&nbsp;Ma. Asunción Martínez-Mayoral,&nbsp;Javier Morales-Socuéllamos,&nbsp;José Vicente Segura-Heras","doi":"10.1016/j.simpa.2024.100644","DOIUrl":"https://doi.org/10.1016/j.simpa.2024.100644","url":null,"abstract":"<div><p>alPCA is a software coded in R and designed to automatically combine predictions from a collection of individual forecasting methods that integrate it. It employs three categories of weights derived from the PCA scores, and decision rules to determine the optimal combination of these methods. alPCA serves as an automated component within the artificial intelligence toolkit for monthly time series processing with the objective of obtaining the best forecast.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100644"},"PeriodicalIF":2.1,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000320/pdfft?md5=7b465d8975048ac2c3a64c040483d585&pid=1-s2.0-S2665963824000320-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140543273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RAW-HF framework to monitor and allocate resources in real time for database management systems 实时监控和分配数据库管理系统资源的 RAW-HF 框架
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-04-08 DOI: 10.1016/j.simpa.2024.100643
Mayank Patel , Minal Bhise

Most websites and applications are hosted on a public or private cloud. In-house deployments also require dealing with system resources. Researchers have started considering resources utilized by application workloads to estimate and reduce application running costs. RAW-HF (Resource Availability & Workload aware Hybrid Framework) framework tries to analyze two types of resource utilization; (1) System Resource Utilization and (2) Resource Utilized by each Query task. The RAW-HF code tries to provide a lightweight solution to monitor & analyze the system and DBMS process resource utilization. It filters the required data in real time to find available resources and allocate query-specific resources based on their complexity by utilizing less than 2% CPU resources.

大多数网站和应用程序都托管在公共云或私有云上。内部部署也需要处理系统资源。研究人员已开始考虑应用程序工作负载所使用的资源,以估算和降低应用程序的运行成本。RAW-HF(Resource Availability & Workload aware Hybrid Framework)框架试图分析两种类型的资源利用率:(1)系统资源利用率和(2)每个查询任务所利用的资源。RAW-HF 代码试图提供一种轻量级解决方案来监控和分析系统及 DBMS 流程的资源利用率。它实时过滤所需数据,查找可用资源,并根据查询的复杂程度分配特定资源,占用的 CPU 资源不到 2%。
{"title":"RAW-HF framework to monitor and allocate resources in real time for database management systems","authors":"Mayank Patel ,&nbsp;Minal Bhise","doi":"10.1016/j.simpa.2024.100643","DOIUrl":"https://doi.org/10.1016/j.simpa.2024.100643","url":null,"abstract":"<div><p>Most websites and applications are hosted on a public or private cloud. In-house deployments also require dealing with system resources. Researchers have started considering resources utilized by application workloads to estimate and reduce application running costs. RAW-HF (Resource Availability &amp; Workload aware Hybrid Framework) framework tries to analyze two types of resource utilization; (1) System Resource Utilization and (2) Resource Utilized by each Query task. The RAW-HF code tries to provide a lightweight solution to monitor &amp; analyze the system and DBMS process resource utilization. It filters the required data in real time to find available resources and allocate query-specific resources based on their complexity by utilizing less than 2% CPU resources.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100643"},"PeriodicalIF":2.1,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000319/pdfft?md5=cf5181eea96c0c7d3f6ac66866a6077c&pid=1-s2.0-S2665963824000319-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140605813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OptDNN: Automatic deep neural networks optimizer for edge computing OptDNN:用于边缘计算的深度神经网络自动优化器
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-04-05 DOI: 10.1016/j.simpa.2024.100641
Luca Giovannesi, Gabriele Proietti Mattia, Roberto Beraldi

DNNs are widely used for complex tasks like image and signal processing, and they are in increasing demand for implementation on Internet of Things (IoT) devices. For these devices, optimizing DNN models is a necessary task. Generally, standard optimization approaches require specialists to manually fine-tune hyper-parameters to find a good trade-off between efficiency and accuracy. In this paper, we propose OptDNN, a software that employs innovative and automatic approaches to determine optimal hyper-parameters for pruning, clustering, and quantization. The models optimized by OptDNN have a smaller memory footprint, faster inference time, and a similar accuracy to the original models.

DNN 被广泛应用于图像和信号处理等复杂任务,在物联网(IoT)设备上的应用需求也日益增加。对于这些设备来说,优化 DNN 模型是一项必要的任务。一般来说,标准优化方法需要专家手动微调超参数,以便在效率和准确性之间找到良好的平衡。在本文中,我们提出了 OptDNN 软件,它采用创新的自动方法来确定剪枝、聚类和量化的最佳超参数。经过 OptDNN 优化的模型内存占用更小,推理时间更快,精度与原始模型相似。
{"title":"OptDNN: Automatic deep neural networks optimizer for edge computing","authors":"Luca Giovannesi,&nbsp;Gabriele Proietti Mattia,&nbsp;Roberto Beraldi","doi":"10.1016/j.simpa.2024.100641","DOIUrl":"https://doi.org/10.1016/j.simpa.2024.100641","url":null,"abstract":"<div><p>DNNs are widely used for complex tasks like image and signal processing, and they are in increasing demand for implementation on Internet of Things (IoT) devices. For these devices, optimizing DNN models is a necessary task. Generally, standard optimization approaches require specialists to manually fine-tune hyper-parameters to find a good trade-off between efficiency and accuracy. In this paper, we propose OptDNN, a software that employs innovative and automatic approaches to determine optimal hyper-parameters for pruning, clustering, and quantization. The models optimized by OptDNN have a smaller memory footprint, faster inference time, and a similar accuracy to the original models.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100641"},"PeriodicalIF":2.1,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000290/pdfft?md5=9408edc33cd6715a12afa1a8f06365fc&pid=1-s2.0-S2665963824000290-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140543982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
gtrendsAPI: An R wrapper for the Google Trends API gtrendsAPI:谷歌趋势应用程序接口的 R 封装程序
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-04-01 DOI: 10.1016/j.simpa.2024.100634
Ricardo A. Correia

Search engine data is a prime source of insights on information-seeking behaviour and such information is instrumental for the scientific study of human culture and behaviour. The gtrendsAPI R software package aims to facilitate programmatic access to data available from the Google Trends API. Here, I introduce the functions available through this software package and provide worked examples of how to use it. I also discuss some the potential research applications and caveats of this software and the data available through it.

搜索引擎数据是洞察信息搜索行为的主要来源,这些信息有助于对人类文化和行为进行科学研究。gtrendsAPI R 软件包旨在促进对谷歌趋势 API 数据的编程访问。在此,我将介绍该软件包的可用功能,并提供如何使用它的实例。我还将讨论该软件的一些潜在研究应用和注意事项,以及通过该软件获得的数据。
{"title":"gtrendsAPI: An R wrapper for the Google Trends API","authors":"Ricardo A. Correia","doi":"10.1016/j.simpa.2024.100634","DOIUrl":"https://doi.org/10.1016/j.simpa.2024.100634","url":null,"abstract":"<div><p>Search engine data is a prime source of insights on information-seeking behaviour and such information is instrumental for the scientific study of human culture and behaviour. The gtrendsAPI R software package aims to facilitate programmatic access to data available from the Google Trends API. Here, I introduce the functions available through this software package and provide worked examples of how to use it. I also discuss some the potential research applications and caveats of this software and the data available through it.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100634"},"PeriodicalIF":2.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000228/pdfft?md5=38103b321777d6eb8d5b2d3503237b9b&pid=1-s2.0-S2665963824000228-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140350987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NGPCA: Clustering of high-dimensional and non-stationary data streams NGPCA:高维非稳态数据流聚类
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-03-29 DOI: 10.1016/j.simpa.2024.100635
Nico Migenda , Ralf Möller , Wolfram Schenck

Neural Gas Principal Component Analysis (NGPCA) is an online clustering algorithm. An NGPCA model is a mixture of local PCA units and combines dimensionality reduction with vector quantization. Recently, NGPCA has been extended with an adaptive learning rate and an adaptive potential function for accurate and efficient clustering of high-dimensional and non-stationary data streams. The algorithm achieved highly competitive results on clustering benchmark datasets compared to the state of the art. Our implementation of the algorithm was developed in MATLAB and is available as open source. This code can be easily applied to the clustering of stationary and non-stationary data.

神经气体主成分分析(NGPCA)是一种在线聚类算法。NGPCA 模型是局部 PCA 单元的混合物,将降维与向量量化相结合。最近,NGPCA 通过自适应学习率和自适应势函数进行了扩展,可对高维和非稳态数据流进行精确高效的聚类。与现有技术相比,该算法在聚类基准数据集上取得了极具竞争力的结果。我们在 MATLAB 中开发了该算法的实现,并将其作为开放源代码提供。该代码可轻松应用于静态和非静态数据的聚类。
{"title":"NGPCA: Clustering of high-dimensional and non-stationary data streams","authors":"Nico Migenda ,&nbsp;Ralf Möller ,&nbsp;Wolfram Schenck","doi":"10.1016/j.simpa.2024.100635","DOIUrl":"https://doi.org/10.1016/j.simpa.2024.100635","url":null,"abstract":"<div><p>Neural Gas Principal Component Analysis (NGPCA) is an online clustering algorithm. An NGPCA model is a mixture of local PCA units and combines dimensionality reduction with vector quantization. Recently, NGPCA has been extended with an adaptive learning rate and an adaptive potential function for accurate and efficient clustering of high-dimensional and non-stationary data streams. The algorithm achieved highly competitive results on clustering benchmark datasets compared to the state of the art. Our implementation of the algorithm was developed in MATLAB and is available as open source. This code can be easily applied to the clustering of stationary and non-stationary data.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100635"},"PeriodicalIF":2.1,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266596382400023X/pdfft?md5=6784f267af3874ee2a02d381441cd5f4&pid=1-s2.0-S266596382400023X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140344005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RouteRecoverer: A tool to create routes and recover noisy license plate number data 路由恢复器用于创建路线和恢复噪声车牌号码数据的工具
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-03-28 DOI: 10.1016/j.simpa.2024.100636
Alberto Durán-López , Daniel Bolaños-Martinez , Luisa Delgado-Márquez , Maria Bermudez-Edo

License Plate Recognition (LPR) sensors often fail to detect vehicles or to identify all plate numbers correctly. This noise results in missing digits or an incomplete route of a vehicle, for example, missing one node (LPR camera) in the route. Addressing these issues, RouteRecoverer creates the route followed by a vehicle while efficiently recovering absent LPR plate digits, and filling gaps in routes. For example, when a vehicle is detected by LPR A and C, with the only route between them being B, our tool seamlessly retrieves the missing information, improving the data output.

车牌识别 (LPR) 传感器经常无法检测到车辆或正确识别所有车牌号码。这种噪音会导致数字缺失或车辆路线不完整,例如,路线中缺少一个节点(LPR 摄像头)。为解决这些问题,RouteRecoverer 在创建车辆行驶路线的同时,还能有效恢复缺失的 LPR 车牌号码,并填补路线中的空白。例如,当 LPR A 和 C 检测到一辆车,而它们之间的唯一路线是 B 时,我们的工具会无缝检索缺失的信息,从而改进数据输出。
{"title":"RouteRecoverer: A tool to create routes and recover noisy license plate number data","authors":"Alberto Durán-López ,&nbsp;Daniel Bolaños-Martinez ,&nbsp;Luisa Delgado-Márquez ,&nbsp;Maria Bermudez-Edo","doi":"10.1016/j.simpa.2024.100636","DOIUrl":"https://doi.org/10.1016/j.simpa.2024.100636","url":null,"abstract":"<div><p>License Plate Recognition (LPR) sensors often fail to detect vehicles or to identify all plate numbers correctly. This noise results in missing digits or an incomplete route of a vehicle, for example, missing one node (LPR camera) in the route. Addressing these issues, RouteRecoverer creates the route followed by a vehicle while efficiently recovering absent LPR plate digits, and filling gaps in routes. For example, when a vehicle is detected by LPR A and C, with the only route between them being B, our tool seamlessly retrieves the missing information, improving the data output.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100636"},"PeriodicalIF":2.1,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000241/pdfft?md5=e306abe4e84fdb1089a0d95afe7b85ce&pid=1-s2.0-S2665963824000241-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140344003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SPHMPS 1.0: A Smoothed-Particle-Hydrodynamics Multi-Physics Solver SPHMPS 1.0:平滑粒子流体力学多物理场求解器
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-03-28 DOI: 10.1016/j.simpa.2024.100640
Iman Farahbakhsh , Benyamin Barani Nia , Erkan Oterkus

SPHMPS 1.0, developed within a Lagrangian framework, offers a robust solution for modeling multi-structure collision problems involving large plastic deformation and inherent thermal effects. Utilizing its innovative algorithm, SPHMPS 1.0 emerges as a versatile tool for researchers in the field of fluid-rigid-elastic structure interactions. By providing a comprehensive framework tailored to address these complex phenomena, SPHMPS 1.0 facilitates reproducible, extendable, and efficient research endeavors. Implemented in Fortran, its flexible algorithm ensures adaptability to a wide range of applications requiring solutions for fluid-rigid-elastic structure interaction problems.

SPHMPS 1.0 在拉格朗日框架内开发,为涉及大塑性变形和固有热效应的多结构碰撞问题建模提供了强大的解决方案。利用其创新算法,SPHMPS 1.0 成为流体-刚性-弹性结构相互作用领域研究人员的多功能工具。SPHMPS 1.0 为解决这些复杂现象提供了一个量身定制的综合框架,从而促进了可重复、可扩展和高效的研究工作。SPHMPS 1.0 采用 Fortran 语言实现,其灵活的算法可确保适用于需要解决流体-刚体-弹性结构相互作用问题的各种应用。
{"title":"SPHMPS 1.0: A Smoothed-Particle-Hydrodynamics Multi-Physics Solver","authors":"Iman Farahbakhsh ,&nbsp;Benyamin Barani Nia ,&nbsp;Erkan Oterkus","doi":"10.1016/j.simpa.2024.100640","DOIUrl":"https://doi.org/10.1016/j.simpa.2024.100640","url":null,"abstract":"<div><p><span>SPHMPS 1.0</span>, developed within a Lagrangian framework, offers a robust solution for modeling multi-structure collision problems involving large plastic deformation and inherent thermal effects. Utilizing its innovative algorithm, <span>SPHMPS 1.0</span> emerges as a versatile tool for researchers in the field of fluid-rigid-elastic structure interactions. By providing a comprehensive framework tailored to address these complex phenomena, <span>SPHMPS 1.0</span> facilitates reproducible, extendable, and efficient research endeavors. Implemented in Fortran, its flexible algorithm ensures adaptability to a wide range of applications requiring solutions for fluid-rigid-elastic structure interaction problems.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100640"},"PeriodicalIF":2.1,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000289/pdfft?md5=ac912c805094a33ebeadeadf162d6861&pid=1-s2.0-S2665963824000289-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140344004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LATTIN: A Python-based tool for Lagrangian atmospheric moisture and heat tracking LATTIN:基于 Python 的拉格朗日大气湿热跟踪工具
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-03-28 DOI: 10.1016/j.simpa.2024.100638
Albenis Pérez-Alarcón , José C. Fernández-Alvarez , Raquel Nieto , Luis Gimeno

LATTIN is a Python-based tool for Lagrangian atmospheric moisture and heat tracking. It can read input data from the Lagrangian FLEXPART and FLEXPART-WRF models. Features include parallel reading of atmospheric parcel trajectories and user custom threshold criteria. It complements and improves existing tools by including several tracking approaches and also by its non-dependence on the horizontal resolution of the input or output grid. LATTIN provides a compact tool for Lagrangian atmospheric moisture and heat tracking, which will support a wide range of research to understand future changes in the hydrological cycle and extreme temperature events.

LATTIN 是一个基于 Python 的拉格朗日大气湿热跟踪工具。它可以读取拉格朗日 FLEXPART 和 FLEXPART-WRF 模式的输入数据。其功能包括并行读取大气包裹轨迹和用户自定义阈值标准。它包括多种跟踪方法,而且不依赖于输入或输出网格的水平分辨率,从而补充和改进了现有工具。LATTIN 为拉格朗日大气水汽和热量跟踪提供了一个紧凑的工具,它将支持广泛的研究,以了解未来水文循环和极端温度事件的变化。
{"title":"LATTIN: A Python-based tool for Lagrangian atmospheric moisture and heat tracking","authors":"Albenis Pérez-Alarcón ,&nbsp;José C. Fernández-Alvarez ,&nbsp;Raquel Nieto ,&nbsp;Luis Gimeno","doi":"10.1016/j.simpa.2024.100638","DOIUrl":"10.1016/j.simpa.2024.100638","url":null,"abstract":"<div><p>LATTIN is a Python-based tool for Lagrangian atmospheric moisture and heat tracking. It can read input data from the Lagrangian FLEXPART and FLEXPART-WRF models. Features include parallel reading of atmospheric parcel trajectories and user custom threshold criteria. It complements and improves existing tools by including several tracking approaches and also by its non-dependence on the horizontal resolution of the input or output grid. LATTIN provides a compact tool for Lagrangian atmospheric moisture and heat tracking, which will support a wide range of research to understand future changes in the hydrological cycle and extreme temperature events.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100638"},"PeriodicalIF":2.1,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000265/pdfft?md5=ae93a9af43608c43d7657b057f462988&pid=1-s2.0-S2665963824000265-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140404766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FinTDA: Python package for estimating market change through persistent homology diagrams FinTDA:通过持久同构图估算市场变化的 Python 软件包
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-03-28 DOI: 10.1016/j.simpa.2024.100637
Hugo Gobato Souto , Ismail Baris , Storm Koert Heuvel , Amir Moradi

This paper presents a user-friendly version of Persistent Homology (PH) graph code to model financial market structures and changes. By leveraging Topological Data Analysis (TDA), the code offers an effective approach for analyzing high-dimensional stock data, enabling the identification of persistent topological features indicative of market changes. The code’s potential applications in financial stability prediction, investment strategy development, and educational advancement are discussed. This contribution aims to facilitate the adoption of PH techniques in finance, promising significant implications for academic research and practical market analysis.

本文介绍了一种用户友好型持久同构(PH)图代码,用于模拟金融市场结构和变化。通过利用拓扑数据分析(TDA),该代码提供了一种分析高维股票数据的有效方法,能够识别表明市场变化的持久拓扑特征。本文讨论了该代码在金融稳定性预测、投资策略开发和教育进步方面的潜在应用。这项贡献旨在促进 PH 技术在金融领域的应用,有望对学术研究和实际市场分析产生重大影响。
{"title":"FinTDA: Python package for estimating market change through persistent homology diagrams","authors":"Hugo Gobato Souto ,&nbsp;Ismail Baris ,&nbsp;Storm Koert Heuvel ,&nbsp;Amir Moradi","doi":"10.1016/j.simpa.2024.100637","DOIUrl":"https://doi.org/10.1016/j.simpa.2024.100637","url":null,"abstract":"<div><p>This paper presents a user-friendly version of Persistent Homology (PH) graph code to model financial market structures and changes. By leveraging Topological Data Analysis (TDA), the code offers an effective approach for analyzing high-dimensional stock data, enabling the identification of persistent topological features indicative of market changes. The code’s potential applications in financial stability prediction, investment strategy development, and educational advancement are discussed. This contribution aims to facilitate the adoption of PH techniques in finance, promising significant implications for academic research and practical market analysis.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100637"},"PeriodicalIF":2.1,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000253/pdfft?md5=b5e5b1e3f98db2a5510af1445206fc0c&pid=1-s2.0-S2665963824000253-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140346819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wasserstein distance loss function for financial time series deep learning 用于金融时间序列深度学习的瓦瑟斯坦距离损失函数
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-03-27 DOI: 10.1016/j.simpa.2024.100639
Hugo Gobato Souto, Amir Moradi

This paper presents user-friendly code for the implementation of a loss function for neural network time series models that exploits the topological structures of financial data. By leveraging the recently-discovered presence of topological features present in financial time series data, the code offers a more effective approach for creating forecasting models for such data given the fact that it allows neural network models to not only learn temporal patterns of the data, but also topological patterns. This paper aims to facilitate the adoption of the loss function proposed by Souto and Moradi (2024a) in financial time series by practitioners and researchers.

本文介绍了利用金融数据拓扑结构为神经网络时间序列模型实现损失函数的用户友好型代码。通过利用最近发现的金融时间序列数据中存在的拓扑特征,该代码为创建此类数据的预测模型提供了一种更有效的方法,因为它允许神经网络模型不仅学习数据的时间模式,还学习拓扑模式。本文旨在促进从业人员和研究人员在金融时间序列中采用 Souto 和 Moradi(2024a)提出的损失函数。
{"title":"Wasserstein distance loss function for financial time series deep learning","authors":"Hugo Gobato Souto,&nbsp;Amir Moradi","doi":"10.1016/j.simpa.2024.100639","DOIUrl":"10.1016/j.simpa.2024.100639","url":null,"abstract":"<div><p>This paper presents user-friendly code for the implementation of a loss function for neural network time series models that exploits the topological structures of financial data. By leveraging the recently-discovered presence of topological features present in financial time series data, the code offers a more effective approach for creating forecasting models for such data given the fact that it allows neural network models to not only learn temporal patterns of the data, but also topological patterns. This paper aims to facilitate the adoption of the loss function proposed by Souto and Moradi (2024a) in financial time series by practitioners and researchers.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100639"},"PeriodicalIF":2.1,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000277/pdfft?md5=eb86aef4201b8909e13d426764a1aa6a&pid=1-s2.0-S2665963824000277-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140405601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Software Impacts
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1