Chemotherapy-induced peripheral neuropathy (CIPN) poses challenges like pain and numbness, necessitating innovative treatments due to current limitations. Conventional approaches, relying on pain relief medications and dose adjustments, fall short in addressing neurotoxicity, resulting in inadequate pain relief and undesired effects. Aconite root (AR), a medicinal herb withcenturies of use against various diseases, contains a compound named Aconine, which alleviates pain by blocking specific neural channels. However, AR also contains Aconitine, a toxic substance hydrolyzed into nontoxic Aconine through heating. Herein, hyaluronate-poly(lactic-co-glycolic acid) nanoparticles (HA-PLGA/AR NPs) encapsulating Aconine are fabricated, enabling controlled release, protection, and transdermal delivery, enhancing therapeutic outcomes. High-performance liquid chromatography identifies optimal Aconine content after 48 h of AR boiling, with minimal neural toxicity confirmed. Characterization via transmission electron microscopy, dynamic light scattering, and in vitro assays demonstrates superior drug release by HA-PLGA/AR NPs, establishing effective transdermal Aconine delivery. In an in vitro CIPN model with paclitaxel (PTX)-treated PC12 cells, HA-PLGA/AR NPs stimulate enhanced neurite growth, validating their localized analgesic impact on CIPN and suggesting potential symptom alleviation. Taken together, HA-PLGA/AR NPs offer a promising strategy for controlled transdermal Aconine delivery, potentially alleviating CIPN and addressing various neuropathies and diseases.
{"title":"Transdermal Delivery of Polymeric Nanoparticles Containing Aconite Root for the Treatment of Chemotherapy-Induced Peripheral Neuropathy","authors":"Tae Eon Park, Man-Suk Hwang, Ki Su Kim","doi":"10.1002/anbr.202400006","DOIUrl":"10.1002/anbr.202400006","url":null,"abstract":"<p>Chemotherapy-induced peripheral neuropathy (CIPN) poses challenges like pain and numbness, necessitating innovative treatments due to current limitations. Conventional approaches, relying on pain relief medications and dose adjustments, fall short in addressing neurotoxicity, resulting in inadequate pain relief and undesired effects. Aconite root (AR), a medicinal herb withcenturies of use against various diseases, contains a compound named Aconine, which alleviates pain by blocking specific neural channels. However, AR also contains Aconitine, a toxic substance hydrolyzed into nontoxic Aconine through heating. Herein, hyaluronate-poly(lactic<i>-co</i>-glycolic acid) nanoparticles (HA-PLGA/AR NPs) encapsulating Aconine are fabricated, enabling controlled release, protection, and transdermal delivery, enhancing therapeutic outcomes. High-performance liquid chromatography identifies optimal Aconine content after 48 h of AR boiling, with minimal neural toxicity confirmed. Characterization via transmission electron microscopy, dynamic light scattering, and in vitro assays demonstrates superior drug release by HA-PLGA/AR NPs, establishing effective transdermal Aconine delivery. In an in vitro CIPN model with paclitaxel (PTX)-treated PC12 cells, HA-PLGA/AR NPs stimulate enhanced neurite growth, validating their localized analgesic impact on CIPN and suggesting potential symptom alleviation. Taken together, HA-PLGA/AR NPs offer a promising strategy for controlled transdermal Aconine delivery, potentially alleviating CIPN and addressing various neuropathies and diseases.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140382872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hypoxia in malignant tumors is a major factor in inducing the failure of clinical cancer treatment. Although several strategies have been developed to relieve hypoxia, most are still in the preclinical research phase. Therefore, hyperbaric oxygen (HBO), an approved adjuvant therapy for alleviating hypoxia clinically, is an excellent choice for enhancing the efficacy of cancer treatment that is impeded by tumor hypoxia. In this minireview, recent advances in HBO-facilitated cancer treatment, including clinical applications and nanomedicine-mediated cancer therapy are introduced. At the end of this minireview, the potential challenges faced by HBO therapy before clinical use are discussed. It is hoped that this review will provide a reference for future clinical research on the application of HBO in cancer treatment.
{"title":"Hyperbaric Oxygen-Facilitated Cancer Treatment: A Minireview","authors":"Zi-Heng Li, Xinping Zhang, Fu-Gen Wu","doi":"10.1002/anbr.202300162","DOIUrl":"10.1002/anbr.202300162","url":null,"abstract":"<p>Hypoxia in malignant tumors is a major factor in inducing the failure of clinical cancer treatment. Although several strategies have been developed to relieve hypoxia, most are still in the preclinical research phase. Therefore, hyperbaric oxygen (HBO), an approved adjuvant therapy for alleviating hypoxia clinically, is an excellent choice for enhancing the efficacy of cancer treatment that is impeded by tumor hypoxia. In this minireview, recent advances in HBO-facilitated cancer treatment, including clinical applications and nanomedicine-mediated cancer therapy are introduced. At the end of this minireview, the potential challenges faced by HBO therapy before clinical use are discussed. It is hoped that this review will provide a reference for future clinical research on the application of HBO in cancer treatment.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300162","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140255459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protein-based therapeutics and vaccines play a pivotal role in the realm of biomedical science. Pulmonary administration offers several advantages including rapid adsorption, non-invasive, increased local drug concentration, and bypassed first-pass metabolism, thus holding great potential to address multiple unmet medical needs in lung-related diseases and vaccination. However, the limited success of inhaled proteins in clinical settings highlights the challenges associated with protein stability and the physiological barriers within the respiratory system. To overcome these hurdles, a variety of delivery systems including polymers, liposomes, cell-derived membranes, and inorganic materials are developed to improve the stability, mucus penetration, retention time, and bioavailability of proteins. With the outbreak of COVID-19, the pulmonary administration of proteins has drawn great attention. In this review, the design principle, preparation, biomedical application, progress in clinical translation, advantages, and disadvantages of each kind of delivery system are summarized, with an emphasis on carrier materials.
{"title":"Advances in Pulmonary Protein Delivery Systems","authors":"Yuanyuan Zhao, Shuai Liu, Xueguang Lu","doi":"10.1002/anbr.202300176","DOIUrl":"10.1002/anbr.202300176","url":null,"abstract":"<p>Protein-based therapeutics and vaccines play a pivotal role in the realm of biomedical science. Pulmonary administration offers several advantages including rapid adsorption, non-invasive, increased local drug concentration, and bypassed first-pass metabolism, thus holding great potential to address multiple unmet medical needs in lung-related diseases and vaccination. However, the limited success of inhaled proteins in clinical settings highlights the challenges associated with protein stability and the physiological barriers within the respiratory system. To overcome these hurdles, a variety of delivery systems including polymers, liposomes, cell-derived membranes, and inorganic materials are developed to improve the stability, mucus penetration, retention time, and bioavailability of proteins. With the outbreak of COVID-19, the pulmonary administration of proteins has drawn great attention. In this review, the design principle, preparation, biomedical application, progress in clinical translation, advantages, and disadvantages of each kind of delivery system are summarized, with an emphasis on carrier materials.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300176","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140257252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diogo Volpati, Pedro H. B. Aoki, Therese B. Johansson, Roberto Munita, Frida Ekstrand, Sabrina Ruhrmann, Karl Bacos, Charlotte Ling, Christelle N. Prinz
Molecular beacons (MBs) have been used on surfaces for detecting oligonucleotides. Attempts to use them intracellularly for monitoring mRNA content have been made, however, without any clear conclusion regarding the reliability of the method, mainly due to false positive signals. To reach an understanding of the intracellular fate of MBs, a critical question remains: how long after MB delivery and where in the cell does a false positive signal appear? To answer that question, the MB delivery method should allow for a time-stamped synchronized delivery of MBs to multiple cells, resulting in MBs being distributed in the cytosol immediately after delivery. Herein, nanostraws are used to inject MBs targeting insulin (Ins1) mRNA directly in the cytosol of clonal beta-cells, and the evolution of the MB fluorescence in time and space is monitored. The results show an MB translocation to the nucleus, where MBs are degraded or where they open nonspecifically, before the fluorophore alone is expelled back from the nucleus to the cytosol. The signal translocation to the nucleus and back to the cytosol is faster when scrambled MBs are used. The results shed light on the intracellular fate of MBs and highlight the short time scales before false positive signals become predominant.
{"title":"Monitoring the Intracellular Fate of Molecular Beacons: The Challenge of False Positive Signals","authors":"Diogo Volpati, Pedro H. B. Aoki, Therese B. Johansson, Roberto Munita, Frida Ekstrand, Sabrina Ruhrmann, Karl Bacos, Charlotte Ling, Christelle N. Prinz","doi":"10.1002/anbr.202300147","DOIUrl":"10.1002/anbr.202300147","url":null,"abstract":"<p>Molecular beacons (MBs) have been used on surfaces for detecting oligonucleotides. Attempts to use them intracellularly for monitoring mRNA content have been made, however, without any clear conclusion regarding the reliability of the method, mainly due to false positive signals. To reach an understanding of the intracellular fate of MBs, a critical question remains: how long after MB delivery and where in the cell does a false positive signal appear? To answer that question, the MB delivery method should allow for a time-stamped synchronized delivery of MBs to multiple cells, resulting in MBs being distributed in the cytosol immediately after delivery. Herein, nanostraws are used to inject MBs targeting insulin (<i>Ins1</i>) mRNA directly in the cytosol of clonal beta-cells, and the evolution of the MB fluorescence in time and space is monitored. The results show an MB translocation to the nucleus, where MBs are degraded or where they open nonspecifically, before the fluorophore alone is expelled back from the nucleus to the cytosol. The signal translocation to the nucleus and back to the cytosol is faster when scrambled MBs are used. The results shed light on the intracellular fate of MBs and highlight the short time scales before false positive signals become predominant.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300147","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140257390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}