Pub Date : 2024-11-04DOI: 10.1016/j.desal.2024.118271
Yang Wu , Jiayin Zhang , Weixing Xu , Bin Li , Wei Zhang , Zhentao Wang , Haojie Xu , Junfeng Wang , Jianming Pan , Kai Yu
The study of bulk nanobubbles (NBs) has long been an interest of the scientific community. Recent studies have highlighted the revolutionary role of NBs as nanoscale engineers in the synthesis of functional nanomaterials in a sustainable, controllable and soft-template manner. In this process, the preparation and stability control of NBs is particularly critical, which directly determines the performance of the soft template and the quality and functionality of the final material. This review focuses on the key breakthroughs of NBs as green and soft templates for the fabrication of functional nanomaterials. The emerging technique, which allows for the control over the size, morphology, and properties of the nanomaterials by adjusting the characteristics of the bulk NBs templates, shows significant promise. The burgeoning preparation techniques for NBs, including physical and chemical methods, are first outlined. The application scenarios and relative merits of different NBs producing methods are compared and analyzed. Recent advances in the control of NBs stability are then discussed, considering the influence of temperature, pH, surfactant, electrolyte, and gas properties on NBs stability. Finally, the recent achievements of NBs-templated nanomaterials for the applications in uranium extraction, catalysis and desalination are emphasized, while the underlying mechanisms for material preparation and optimization are also discussed.
{"title":"Nanoscale engineer: The revolutionary role of nanobubbles in the synthesis of functional nanomaterials","authors":"Yang Wu , Jiayin Zhang , Weixing Xu , Bin Li , Wei Zhang , Zhentao Wang , Haojie Xu , Junfeng Wang , Jianming Pan , Kai Yu","doi":"10.1016/j.desal.2024.118271","DOIUrl":"10.1016/j.desal.2024.118271","url":null,"abstract":"<div><div>The study of bulk nanobubbles (NBs) has long been an interest of the scientific community. Recent studies have highlighted the revolutionary role of NBs as nanoscale engineers in the synthesis of functional nanomaterials in a sustainable, controllable and soft-template manner. In this process, the preparation and stability control of NBs is particularly critical, which directly determines the performance of the soft template and the quality and functionality of the final material. This review focuses on the key breakthroughs of NBs as green and soft templates for the fabrication of functional nanomaterials. The emerging technique, which allows for the control over the size, morphology, and properties of the nanomaterials by adjusting the characteristics of the bulk NBs templates, shows significant promise. The burgeoning preparation techniques for NBs, including physical and chemical methods, are first outlined. The application scenarios and relative merits of different NBs producing methods are compared and analyzed. Recent advances in the control of NBs stability are then discussed, considering the influence of temperature, pH, surfactant, electrolyte, and gas properties on NBs stability. Finally, the recent achievements of NBs-templated nanomaterials for the applications in uranium extraction, catalysis and desalination are emphasized, while the underlying mechanisms for material preparation and optimization are also discussed.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"594 ","pages":"Article 118271"},"PeriodicalIF":8.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.desal.2024.118265
Mengshuang Zhang, Hongzhi Liu
In this work, two aggregation-induced emission (AIE)-active organic fluorescent monomers (TPV, TPC) were synthesized by Knoevenagel reaction of 2,2′-([1,1′-biphenyl]-4,4′-diyl)diacetonitrile with benzaldehyde and 4-bromobenzaldehyde, respectively. Subsequently, two fluorescent hybrid porous polymers with semiconductor performance (PCS-TPV, PCS-TPC) were prepared successfully by connecting octavinyl silsesquioxane (OVS) with TPV and TPC through Friedel-Crafts reaction and Heck coupling, respectively. Among them, PCS-TPV with a hyper-crosslinked structure offered a specific surface area of up to 1165 m2 g−1; PCS-TPC was the first AIE-derived fluorescent hybrid silsesquioxane-based semiconductor polymer with 3-D conjugated structure. Compared with PCS-TPV, PCS-TPC exhibited stronger visible light absorption, higher fluorescent performance and quantum yield due to its high AIE-active unit content. Besides, PCS-TPC exhibited a remarkable gold recovery capacity (Qm = 2728 mg g−1) when exposed to visible light irradiation. Adsorption mechanism revealed that the photoelectrons produced by PCS-TPC under visible light irradiation reduced all adsorbed Au(III) to Au(I) and Au(0). Furthermore, a hybrid aerogel was prepared through physical blending of PCS-TPC with chitosan, overcoming the limitation that insoluble powder was difficult to process and recycle. This work provided a very efficient, sustainable, and industrially feasible way for gold recovery in e-waste.
{"title":"AIE-derived fluorescent silsesquioxane-based hybrid aerogel for light-enhanced gold recovery","authors":"Mengshuang Zhang, Hongzhi Liu","doi":"10.1016/j.desal.2024.118265","DOIUrl":"10.1016/j.desal.2024.118265","url":null,"abstract":"<div><div>In this work, two aggregation-induced emission (AIE)-active organic fluorescent monomers (TPV, TPC) were synthesized by Knoevenagel reaction of 2,2′-([1,1′-biphenyl]-4,4′-diyl)diacetonitrile with benzaldehyde and 4-bromobenzaldehyde, respectively. Subsequently, two fluorescent hybrid porous polymers with semiconductor performance (PCS-TPV, PCS-TPC) were prepared successfully by connecting octavinyl silsesquioxane (OVS) with TPV and TPC through Friedel-Crafts reaction and Heck coupling, respectively. Among them, PCS-TPV with a hyper-crosslinked structure offered a specific surface area of up to 1165 m<sup>2</sup> g<sup>−1</sup>; PCS-TPC was the first AIE-derived fluorescent hybrid silsesquioxane-based semiconductor polymer with 3-D conjugated structure. Compared with PCS-TPV, PCS-TPC exhibited stronger visible light absorption, higher fluorescent performance and quantum yield due to its high AIE-active unit content. Besides, PCS-TPC exhibited a remarkable gold recovery capacity (Q<sub>m</sub> = 2728 mg g<sup>−1</sup>) when exposed to visible light irradiation. Adsorption mechanism revealed that the photoelectrons produced by PCS-TPC under visible light irradiation reduced all adsorbed Au(III) to Au(I) and Au(0). Furthermore, a hybrid aerogel was prepared through physical blending of PCS-TPC with chitosan, overcoming the limitation that insoluble powder was difficult to process and recycle. This work provided a very efficient, sustainable, and industrially feasible way for gold recovery in e-waste.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118265"},"PeriodicalIF":8.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-03DOI: 10.1016/j.desal.2024.118268
Fatema Khamis, Hanaa M. Hegab, Shadi W. Hasan
A green and sustainable pH-responsive adsorptive membrane using aminated-MXene mangrove filled (MXAM) polylactic acid ultrafiltration membrane was developed. The material synthesis involved employing the common in-situ HF acid-based etching method with Li+ intercalant, while membrane fabrication utilized the non-solvent induced phase inversion (NIPS) technique. The study tested pH-responsive adsorption and filtration using a 20 ppm synthetic polystyrene (PS) microplastic (MPs) suspension at pH 4, 7, and 10. Incorporating 1.5 wt% MXAM enhanced water permeability to 1855.6 LMHbar and achieved rejection rates of 79 %, 91.5 %, and 99.9 % for pH 4, 7, and 10, respectively. These improvements can be attributed to enhanced porosity, pore size, hydrophilicity, and surface charges. The kinetics of the adsorptive 1.5PLAMXAM membrane for PS MPs at 5 ppm and pH 7 showed psuedo-second-order kinetics (R2 = 0.967) matching experimental adsorption (qe,exp = 12.4 mg.g−1), indicating chemical adsorption. The equilibrium data of 1.5PLAMXAM membrane fitting the Langmuir isotherm, showed an increase in qe,exp from 5.69 to 12.79 mg.g−1 at pH 4 and 10, respectively, attributed to a higher density of pH-responsive groups. The fitted Langmuir isotherm suggested a maximum monolayer coverage of qm = 23.5 mg.g−1.
{"title":"Green and sustainable pH-responsive adsorptive membrane using aminated-MXene mangrove filled polylactic acid ultrafiltration membrane for enhanced water permeability and microplastic removal","authors":"Fatema Khamis, Hanaa M. Hegab, Shadi W. Hasan","doi":"10.1016/j.desal.2024.118268","DOIUrl":"10.1016/j.desal.2024.118268","url":null,"abstract":"<div><div>A green and sustainable pH-responsive adsorptive membrane using aminated-MXene mangrove filled (MXAM) polylactic acid ultrafiltration membrane was developed. The material synthesis involved employing the common in-situ HF acid-based etching method with Li<sup>+</sup> intercalant, while membrane fabrication utilized the non-solvent induced phase inversion (NIPS) technique. The study tested pH-responsive adsorption and filtration using a 20 ppm synthetic polystyrene (PS) microplastic (MPs) suspension at pH 4, 7, and 10. Incorporating 1.5 wt% MXAM enhanced water permeability to 1855.6 LMHbar and achieved rejection rates of 79 %, 91.5 %, and 99.9 % for pH 4, 7, and 10, respectively. These improvements can be attributed to enhanced porosity, pore size, hydrophilicity, and surface charges. The kinetics of the adsorptive 1.5PLAMXAM membrane for PS MPs at 5 ppm and pH 7 showed psuedo-second-order kinetics (R<sup>2</sup> = 0.967) matching experimental adsorption (q<sub>e,exp</sub> = 12.4 mg.g<sup>−1</sup>), indicating chemical adsorption. The equilibrium data of 1.5PLAMXAM membrane fitting the Langmuir isotherm, showed an increase in q<sub>e,exp</sub> from 5.69 to 12.79 mg.g<sup>−1</sup> at pH 4 and 10, respectively, attributed to a higher density of pH-responsive groups. The fitted Langmuir isotherm suggested a maximum monolayer coverage of q<sub>m</sub> = 23.5 mg.g<sup>−1</sup>.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"594 ","pages":"Article 118268"},"PeriodicalIF":8.3,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.desal.2024.118261
Zonglun Cao , Hailong Li , Yiyang Zhang , Yue Lian , Huaihao Zhang
Biomass-derived carbon typically contains abundant heteroatomic defects and interfacial functional groups, which can contribute to additional pseudocapacitance. However, the type of interfacial functional groups in biomass-derived carbon is uncontrollable and variable, reducing their homogeneity. In this work, recyclable boric acid was employed as an activator to convert bioaerogels into carbon nanosheets. Subsequently, low-temperature air oxidation was utilized to modulate their thickness and microstructure. Notably, the multiple and uncontrollable functional groups at the carbon interface were uniformly transformed into oxygen-containing functional groups under oxygen induction, resulting in 2D carbon nanosheet materials with enhanced stability properties. Meanwhile, the introduction of more oxygen-containing functional groups, such as carbonyl (C=O) and carboxyl (-COOH) groups, improves material wettability and capacitive properties. In addition, the boron and nitrogen elements doping introduced by activators and precursors enhances its pseudocapacitive properties and electrical conductivity from the carbon lattice perspective. Moreover, the rich electron/deficient effect of BN valence bond can effectively boost their conductivity and rate performance. In fact, the materials present good capacitive properties (high specific capacitance of 298.5 F g−1 in KOH three-electrode system) and CDI (capacitive deionization) performance (good desalting capacity of 35.2 mg g−1 in CDI system).
{"title":"Supercapacitive behavior of two-dimensional carbon nanosheets with oxygen-induced interfacial modification","authors":"Zonglun Cao , Hailong Li , Yiyang Zhang , Yue Lian , Huaihao Zhang","doi":"10.1016/j.desal.2024.118261","DOIUrl":"10.1016/j.desal.2024.118261","url":null,"abstract":"<div><div>Biomass-derived carbon typically contains abundant heteroatomic defects and interfacial functional groups, which can contribute to additional pseudocapacitance. However, the type of interfacial functional groups in biomass-derived carbon is uncontrollable and variable, reducing their homogeneity. In this work, recyclable boric acid was employed as an activator to convert bioaerogels into carbon nanosheets. Subsequently, low-temperature air oxidation was utilized to modulate their thickness and microstructure. Notably, the multiple and uncontrollable functional groups at the carbon interface were uniformly transformed into oxygen-containing functional groups under oxygen induction, resulting in 2D carbon nanosheet materials with enhanced stability properties. Meanwhile, the introduction of more oxygen-containing functional groups, such as carbonyl (C=O) and carboxyl (-COOH) groups, improves material wettability and capacitive properties. In addition, the boron and nitrogen elements doping introduced by activators and precursors enhances its pseudocapacitive properties and electrical conductivity from the carbon lattice perspective. Moreover, the rich electron/deficient effect of B<img>N valence bond can effectively boost their conductivity and rate performance. In fact, the materials present good capacitive properties (high specific capacitance of 298.5 F g<sup>−1</sup> in KOH three-electrode system) and CDI (capacitive deionization) performance (good desalting capacity of 35.2 mg g<sup>−1</sup> in CDI system).</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118261"},"PeriodicalIF":8.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.desal.2024.118270
Cong Liu , Siyang Gu , Wenjing Gao , Ming Tan , Yong Lin , Min Hu , Yuebiao Li , Yang Zhang
The development of lithium extraction technology from salt lakes has seen significant demand in recent years, driven by the surge in energy storage needs for lithium-ion batteries used in electric vehicles and renewable power plants. Currently, evaporation technologies such as Mechanical Vapor Recompression (MVR) and Multi-Effect Distillation (MED) are commonly employed to concentrate lithium chloride for subsequent lithium carbonate precipitation. However, these evaporation methods limit lithium yield and increase capital and operational costs, particularly in high latitude areas. Pressure-driven membrane processes like reverse osmosis are hindered by concentration polarization and cannot significantly increase lithium chloride concentration. This study proposes a new membrane stack configuration with a laddered compartment design, termed Ladder Electrodialysis (LED), which addresses the concentration polarization issue and achieves a lithium salt (LiCl) concentration of 16.39 % (196 g·L−1). Economic analysis shows that the energy consumption is only 0.42 kWh per kilogram of LiCl. Ladder electrodialysis is a novel salt concentration technology, with applications in brine valorization or disposal.
{"title":"Ladder electrodialysis: Efficient up-concentration of lithium ion and its mechanisms behind","authors":"Cong Liu , Siyang Gu , Wenjing Gao , Ming Tan , Yong Lin , Min Hu , Yuebiao Li , Yang Zhang","doi":"10.1016/j.desal.2024.118270","DOIUrl":"10.1016/j.desal.2024.118270","url":null,"abstract":"<div><div>The development of lithium extraction technology from salt lakes has seen significant demand in recent years, driven by the surge in energy storage needs for lithium-ion batteries used in electric vehicles and renewable power plants. Currently, evaporation technologies such as Mechanical Vapor Recompression (MVR) and Multi-Effect Distillation (MED) are commonly employed to concentrate lithium chloride for subsequent lithium carbonate precipitation. However, these evaporation methods limit lithium yield and increase capital and operational costs, particularly in high latitude areas. Pressure-driven membrane processes like reverse osmosis are hindered by concentration polarization and cannot significantly increase lithium chloride concentration. This study proposes a new membrane stack configuration with a laddered compartment design, termed Ladder Electrodialysis (LED), which addresses the concentration polarization issue and achieves a lithium salt (LiCl) concentration of 16.39 % (196 g·L<sup>−1</sup>). Economic analysis shows that the energy consumption is only 0.42 kWh per kilogram of LiCl. Ladder electrodialysis is a novel salt concentration technology, with applications in brine valorization or disposal.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"594 ","pages":"Article 118270"},"PeriodicalIF":8.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.desal.2024.118267
Xuewu Zhu , Feiyue Ge , Xinwei Kang , Liping Qiu , Bin Liu , Jingtao Xu , Feihong Wang , Daoji Wu , Zhe Yang , Daliang Xu , Heng Liang
Nanofiltration membranes (NF) possessing high flux, excellent selectivity, and chlorine resistance are urgently required for healthy drinking water treatment. In this work, we prepared a high-performance polyesteramide (PEA) nanofiltration membrane featuring polyester and polyamide composite structures using piperazine (PIP) and polyvinyl alcohol (PVA) as co-monomers via sodium hydroxide catalyzing interfacial polymerization. The resultant NF membranes' surface morphology, chemical structure, filtration performance, and chlorine stability were systematically evaluated. The optimized PEA membrane (PEA-TFC) possessed a terraced morphology and relatively high roughness (23.9 nm). During purifying real surface water, a high flux (20.29 LMH bar−1) with <50 % mineral rejection and over 70 % organic matter removal was achieved for PEA-TFC, demonstrating excellent organic/mineral selectivity. In addition, the polyamide and polyester structures provided uniform pore size distribution and fewer chlorine-active sites, granting PEA-TFC excellent chlorine resistance and stability. The exceptional organic/mineral selective separations and remarkable chlorine resistance endow the PEA-TFC as a promising candidate for healthy drinking water NF.
{"title":"Tailoring high-performance polyesteramide NF membranes for purifying natural surface water: Enhanced minerals preservation, chlorine resistance, and mechanisms","authors":"Xuewu Zhu , Feiyue Ge , Xinwei Kang , Liping Qiu , Bin Liu , Jingtao Xu , Feihong Wang , Daoji Wu , Zhe Yang , Daliang Xu , Heng Liang","doi":"10.1016/j.desal.2024.118267","DOIUrl":"10.1016/j.desal.2024.118267","url":null,"abstract":"<div><div>Nanofiltration membranes (NF) possessing high flux, excellent selectivity, and chlorine resistance are urgently required for healthy drinking water treatment. In this work, we prepared a high-performance polyesteramide (PEA) nanofiltration membrane featuring polyester and polyamide composite structures using piperazine (PIP) and polyvinyl alcohol (PVA) as <em>co</em>-monomers via sodium hydroxide catalyzing interfacial polymerization. The resultant NF membranes' surface morphology, chemical structure, filtration performance, and chlorine stability were systematically evaluated. The optimized PEA membrane (PEA-TFC) possessed a terraced morphology and relatively high roughness (23.9 nm). During purifying real surface water, a high flux (20.29 LMH bar<sup>−1</sup>) with <50 % mineral rejection and over 70 % organic matter removal was achieved for PEA-TFC, demonstrating excellent organic/mineral selectivity. In addition, the polyamide and polyester structures provided uniform pore size distribution and fewer chlorine-active sites, granting PEA-TFC excellent chlorine resistance and stability. The exceptional organic/mineral selective separations and remarkable chlorine resistance endow the PEA-TFC as a promising candidate for healthy drinking water NF.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118267"},"PeriodicalIF":8.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.desal.2024.118247
Yuyang Wang , Su Ma , Lida Hou , Jinlong Zuo , Xiangquan Kong , Yu Song , Zhijie Wang , Ye Tian , Jing Dong
Microbial fuel cells (MFCs) are energy conversion devices that utilize microorganisms attached to the electrode as catalysts for the oxidation of organic waste, thereby generating electricity. In this study, a two-step hydrothermal method was employed to prepare a CF/NiO/Fe3O4 capacitive composite anode by directly growing NiO on a carbon felt substrate as a metal framework to support the in-situ growth of Fe3O4. In this paper, electrochemical tests such as cyclic voltammetry and AC impedance were used to investigate the electrochemical performance of the modified anode. The two electrodes were characterized by SEM, EDS, XRD, FTIR, BET, TEM and SAED test. The MFCs with the CF/NiO/Fe3O4 anode exhibited significant improvements in generation of power and storage of energy performance, reaching a maximum power density of 9.29 W/m3, which has increased by 1.54-fold compared to CF/NiO anode. After charging/discharging for 60 min, the CF/NiO/Fe3O4 anode had a sum charge of 8532.07C /m2, which was a significant increase of 1868.82C/m2 compared to the CF/NiO anode. High-throughput sequencing analysis suggested that the proportion of electricity-generating microorganisms on the CF/NiO/Fe3O4 surface of the anode reached 86.03 %, which was higher than that on CF/NiO anode surface. The protein contents of the CF/NiO/Fe3O4 reached 71.03 mg/cm3. The application of capacitive materials in MFCs would allow the constructed MFCs to generate and store bioelectricity simultaneously.
{"title":"Enhanced electricity generation and energy storage in a microbial fuel cell with a bimetallic-modified capacitive anode","authors":"Yuyang Wang , Su Ma , Lida Hou , Jinlong Zuo , Xiangquan Kong , Yu Song , Zhijie Wang , Ye Tian , Jing Dong","doi":"10.1016/j.desal.2024.118247","DOIUrl":"10.1016/j.desal.2024.118247","url":null,"abstract":"<div><div>Microbial fuel cells (MFCs) are energy conversion devices that utilize microorganisms attached to the electrode as catalysts for the oxidation of organic waste, thereby generating electricity. In this study, a two-step hydrothermal method was employed to prepare a CF/NiO/Fe<sub>3</sub>O<sub>4</sub> capacitive composite anode by directly growing NiO on a carbon felt substrate as a metal framework to support the in-situ growth of Fe<sub>3</sub>O<sub>4</sub>. In this paper, electrochemical tests such as cyclic voltammetry and AC impedance were used to investigate the electrochemical performance of the modified anode. The two electrodes were characterized by SEM, EDS, XRD, FTIR, BET, TEM and SAED test. The MFCs with the CF/NiO/Fe<sub>3</sub>O<sub>4</sub> anode exhibited significant improvements in generation of power and storage of energy performance, reaching a maximum power density of 9.29 W/m<sup>3</sup>, which has increased by 1.54-fold compared to CF/NiO anode. After charging/discharging for 60 min, the CF/NiO/Fe<sub>3</sub>O<sub>4</sub> anode had a sum charge of 8532.07C /m<sup>2</sup>, which was a significant increase of 1868.82C/m<sup>2</sup> compared to the CF/NiO anode. High-throughput sequencing analysis suggested that the proportion of electricity-generating microorganisms on the CF/NiO/Fe<sub>3</sub>O<sub>4</sub> surface of the anode reached 86.03 %, which was higher than that on CF/NiO anode surface. The protein contents of the CF/NiO/Fe<sub>3</sub>O<sub>4</sub> reached 71.03 mg/cm<sup>3</sup>. The application of capacitive materials in MFCs would allow the constructed MFCs to generate and store bioelectricity simultaneously.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118247"},"PeriodicalIF":8.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.desal.2024.118259
Chunming Feng , Xiaobing Pan , Xiaocheng Lin , Yi Yang , Fuqiang Fan , Chenxiao Jiang , Ying Mei
Capacitive deionization (CDI) is a promising technology for removing phosphate from wastewater. Its practical implementation is however hindered by the constraints on the electrode materials. To boost the adsorption capacity, phosphate selectivity, and cost-effectiveness of the electrode, this study proposed a composite electrode blending Lanthanum-based layered double hydroxide (Ca-La LDH) and activated carbon (AC). It capitalizes on the synergistic effects of electric double layer capacitance (EDLC) of AC and the diffusion-controlled charge storage (pseudocapacitive behavior) of Ca-La LDH. By optimizing the mass ratios of the constituents and the electrode material loading capacities, the composite electrode AC/Ca-La LDH-5020 was developed, which contains 20 mg of 50 wt% Ca-La LDH. This composition achieved a remarkable phosphate adsorption capacity of 34.8 mg P /g and a low energy consumption of 0.0051 kWh/g P in constant voltage (CV) mode. It represented a 241 % increase in adsorption capacity (mg P/g) and 71 % decrease in specific energy consumption (kWh/g P) compared to the electrode made solely of AC. Particularly the moderate inclusion of Lanthanum contributes to its cost-effectiveness. Moreover, further studies extensively examined the impacts of electrical driving force, including applied voltage in constant voltage (CV) mode and applied current in constant current (CC) mode, on the phosphate removal efficiency. The composite electrode remained stable performance with the presence of the high content of coexisting anions (e.g.,Cl−,SO42−, HCO3−, NO3−), obtaining high selectivity coefficient of phosphate over other anions. This study highlighted the practical potential of AC/Ca-La LDH composite electrode for advancing CDI technology for phosphate removal in an efficient, energy-saving and cost-effective manner.
{"title":"Capacitive deionization exploiting La-based LDH composite electrode toward energy efficient and selective removal of phosphate","authors":"Chunming Feng , Xiaobing Pan , Xiaocheng Lin , Yi Yang , Fuqiang Fan , Chenxiao Jiang , Ying Mei","doi":"10.1016/j.desal.2024.118259","DOIUrl":"10.1016/j.desal.2024.118259","url":null,"abstract":"<div><div>Capacitive deionization (CDI) is a promising technology for removing phosphate from wastewater. Its practical implementation is however hindered by the constraints on the electrode materials. To boost the adsorption capacity, phosphate selectivity, and cost-effectiveness of the electrode, this study proposed a composite electrode blending Lanthanum-based layered double hydroxide (Ca-La LDH) and activated carbon (AC). It capitalizes on the synergistic effects of electric double layer capacitance (EDLC) of AC and the diffusion-controlled charge storage (pseudocapacitive behavior) of Ca-La LDH. By optimizing the mass ratios of the constituents and the electrode material loading capacities, the composite electrode AC/Ca-La LDH-50<sub>20</sub> was developed, which contains 20 mg of 50 wt% Ca-La LDH. This composition achieved a remarkable phosphate adsorption capacity of 34.8 mg P /g and a low energy consumption of 0.0051 kWh/g P in constant voltage (CV) mode. It represented a 241 % increase in adsorption capacity (mg P/g) and 71 % decrease in specific energy consumption (kWh/g P) compared to the electrode made solely of AC. Particularly the moderate inclusion of Lanthanum contributes to its cost-effectiveness. Moreover, further studies extensively examined the impacts of electrical driving force, including applied voltage in constant voltage (CV) mode and applied current in constant current (CC) mode, on the phosphate removal efficiency. The composite electrode remained stable performance with the presence of the high content of coexisting anions (e.g.,Cl<sup>−</sup>,SO<sub>4</sub><sup>2−</sup>, HCO<sub>3</sub><sup>−</sup>, NO<sub>3</sub><sup>−</sup>), obtaining high selectivity coefficient of phosphate over other anions. This study highlighted the practical potential of AC/Ca-La LDH composite electrode for advancing CDI technology for phosphate removal in an efficient, energy-saving and cost-effective manner.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"594 ","pages":"Article 118259"},"PeriodicalIF":8.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.desal.2024.118262
Tianmeng Zhang , Weiwei Zhang , Xiaoyan Yang , Han Zuilhof , Hao Lu
The structural assembly of polypyrrole particle stacking, combined with polydopamine space-filling, forms composite film with a network of interconnected fluid channels. The composite films achieve high water flus, separation efficiency and ratio of organic dyes/inorganic salts (flux: >600 L m−2 h−1 bar−1; dye rejection: ~100 %; salt rejection: <5 %). Simulation using different dye fouling models show that the dye only interacts at the surface, and hardly affects internal pores of the film throughout the filtration process. Owing to the patterned surface structure as constructed by microsphere arrangement and inter-structure adaptation assembly, the functional film has excellent contamination tolerance and rinsing regeneration for macromolecular pollutants. The results of computational fluid dynamics simulations further indicate that the high shear stress above the microspheres with vortex flow in the interstitial space has a positive effect on reducing contaminant deposition. In addition to the separation property, the composite film shows good structural stability and mechanical strength in various complex water environments, benefiting their future practical applications. This work unveils the structure-function relationship for composite function films with constructed graded channels in dye/salt separation, which is important for the design and future application of these functional films.
聚吡咯粒子堆叠结构与聚多巴胺空间填充相结合,形成了具有相互连接的流体通道网络的复合薄膜。这种复合薄膜具有较高的水通量、分离效率和有机染料/无机盐比率(通量:>600 L m-2 h-1 bar-1;染料去除率:~100%;盐去除率:<5%):~100 %;盐分去除率:<5 %)。使用不同的染料堵塞模型进行的模拟显示,在整个过滤过程中,染料只在表面发生作用,几乎不影响薄膜的内部孔隙。由于微球排列和结构间适应性组装构建了图案化的表面结构,该功能膜对大分子污染物具有出色的耐污染性和漂洗再生能力。计算流体动力学模拟结果进一步表明,微球上方的高剪切应力和间隙空间的涡流对减少污染物沉积有积极作用。除了分离性能外,复合膜在各种复杂的水环境中还表现出良好的结构稳定性和机械强度,有利于其未来的实际应用。这项研究揭示了具有构造分级通道的复合功能薄膜在染料/盐分离中的结构-功能关系,这对这些功能薄膜的设计和未来应用具有重要意义。
{"title":"Structure-function relationship for functional films with constructed graded channels in dye/salt separation and fouling resistance","authors":"Tianmeng Zhang , Weiwei Zhang , Xiaoyan Yang , Han Zuilhof , Hao Lu","doi":"10.1016/j.desal.2024.118262","DOIUrl":"10.1016/j.desal.2024.118262","url":null,"abstract":"<div><div>The structural assembly of polypyrrole particle stacking, combined with polydopamine space-filling, forms composite film with a network of interconnected fluid channels. The composite films achieve high water flus, separation efficiency and ratio of organic dyes/inorganic salts (flux: >600 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>; dye rejection: ~100 %; salt rejection: <5 %). Simulation using different dye fouling models show that the dye only interacts at the surface, and hardly affects internal pores of the film throughout the filtration process. Owing to the patterned surface structure as constructed by microsphere arrangement and inter-structure adaptation assembly, the functional film has excellent contamination tolerance and rinsing regeneration for macromolecular pollutants. The results of computational fluid dynamics simulations further indicate that the high shear stress above the microspheres with vortex flow in the interstitial space has a positive effect on reducing contaminant deposition. In addition to the separation property, the composite film shows good structural stability and mechanical strength in various complex water environments, benefiting their future practical applications. This work unveils the structure-function relationship for composite function films with constructed graded channels in dye/salt separation, which is important for the design and future application of these functional films.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118262"},"PeriodicalIF":8.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.desal.2024.118260
Yanli Xu , Hui Li , Azher M. Abed , M.A. El-Shorbagy , Ashit Kumar Dutta , Sherzod Abdullaev , Hakim AL Garalleh , Rania Mona Alqaralleh , Yasser Elmasry , Albara Ibrahim Alrawashdeh
The global demand for potable water is rising, prompting the development of various energy systems for distilled water production. However, the significance of utilizing multicomponent working fluids in these systems has been largely overlooked. This study presents computer modeling of three HDH-based distillation units powered by two conventional heat pump cycles, namely, the simple and vapor injection heat pumps (first and second models) and an innovative heat pump cycle with an ejector expander (third model). The significance of the research lies in its pioneering investigation of utilizing two- and three-component mixtures in heat pump-based desalination units, which has not been previously explored. The study's primary aim is to determine whether using multicomponent working fluids instead of pure fluids or introducing structural modifications can more effectively enhance the performance of heat pump-based distillation units. The proposed models are simulated using EES and MATLAB software, with the study focusing on energetic, exergetic, exergoeconomic, and heat exchanger modeling to evaluate the feasibility of the configurations. The findings revealed that the structural modifications in the third scenario using R134a resulted in the highest GOR, with improvements of 44 % and 26.03 %, respectively, compared to the other scenarios. However, utilizing binary blend R22/R142b with different compositions improved the GOR of the first to three scenarios by 41.26 %, 29.06 %, and 11.87 %, respectively. Furthermore, in this case, the unit cost of distilled water for the first, second, and third scenarios increased by 12.87 %, 14.32 %, and 12.70 %, respectively. Finally, the first scenario has the highest NPV of 4.40 M$ and the shortest PP of 8.13 years. Therefore, utilizing the blend in a simple heat pump proves to be more efficient and cost-effective than implementing structural modifications.
{"title":"Computer modeling of employing binary/ternary organic blends in integrated HP-assisted HDH desalination systems","authors":"Yanli Xu , Hui Li , Azher M. Abed , M.A. El-Shorbagy , Ashit Kumar Dutta , Sherzod Abdullaev , Hakim AL Garalleh , Rania Mona Alqaralleh , Yasser Elmasry , Albara Ibrahim Alrawashdeh","doi":"10.1016/j.desal.2024.118260","DOIUrl":"10.1016/j.desal.2024.118260","url":null,"abstract":"<div><div>The global demand for potable water is rising, prompting the development of various energy systems for distilled water production. However, the significance of utilizing multicomponent working fluids in these systems has been largely overlooked. This study presents computer modeling of three HDH-based distillation units powered by two conventional heat pump cycles, namely, the simple and vapor injection heat pumps (first and second models) and an innovative heat pump cycle with an ejector expander (third model). The significance of the research lies in its pioneering investigation of utilizing two- and three-component mixtures in heat pump-based desalination units, which has not been previously explored. The study's primary aim is to determine whether using multicomponent working fluids instead of pure fluids or introducing structural modifications can more effectively enhance the performance of heat pump-based distillation units. The proposed models are simulated using EES and MATLAB software, with the study focusing on energetic, exergetic, exergoeconomic, and heat exchanger modeling to evaluate the feasibility of the configurations. The findings revealed that the structural modifications in the third scenario using R134a resulted in the highest GOR, with improvements of 44 % and 26.03 %, respectively, compared to the other scenarios. However, utilizing binary blend R22/R142b with different compositions improved the GOR of the first to three scenarios by 41.26 %, 29.06 %, and 11.87 %, respectively. Furthermore, in this case, the unit cost of distilled water for the first, second, and third scenarios increased by 12.87 %, 14.32 %, and 12.70 %, respectively. Finally, the first scenario has the highest NPV of 4.40 M$ and the shortest PP of 8.13 years. Therefore, utilizing the blend in a simple heat pump proves to be more efficient and cost-effective than implementing structural modifications.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"594 ","pages":"Article 118260"},"PeriodicalIF":8.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}