Pub Date : 2016-06-19DOI: 10.1109/DRC.2016.7548453
M. Hasan, P. Gaillardon, B. Sensale‐Rodriguez
To: (i) reduce the power consumption in digital integrated circuits, (ii) increase the transistor trans-conductance generation efficiency in analog circuits, and (iii) attain a very sensitive nonlinear response to RF, transistors exhibiting very steep room-temperature subthreshold slope (SS) are required. The subthreshold slope of conventional MOSFETs is limited to >60mV/dec due to their current turn-on mechanism being thermionic emission. During the last decade, several emerging transistor concepts, based on alternative current transport mechanisms, have been proposed so to overcome this fundamental limitation. For instance, Tunnel FETs (TFETs) have emerged as one of the most attractive alternatives to traditional MOSFETs, with experimental demonstrations of SS below 30 mV/dec, due to the current turn-on mechanism in such devices being band-to-band tunneling. In this context, dual-independent-gate (DIG) FinFETs have been also demonstrated capable of achieving a very steep subthreshold slope [1, 2]. The reason behind this super steep slope is a positive feedback induced by weak impact ionization in the device. Experimental demonstrations of DIG FinFETs have shown SS of 3.4 mV/dec at room-temperature over 5 decades of current swing [1, 2]. In this paper, we discuss a simple, closed-form analytic model for the current-voltage characteristics of DIG FinFETs, which can be of interest for many applications including circuit-design and application oriented device performance evaluation.
{"title":"A compact DC model for dual-independent-gate FinFETs","authors":"M. Hasan, P. Gaillardon, B. Sensale‐Rodriguez","doi":"10.1109/DRC.2016.7548453","DOIUrl":"https://doi.org/10.1109/DRC.2016.7548453","url":null,"abstract":"To: (i) reduce the power consumption in digital integrated circuits, (ii) increase the transistor trans-conductance generation efficiency in analog circuits, and (iii) attain a very sensitive nonlinear response to RF, transistors exhibiting very steep room-temperature subthreshold slope (SS) are required. The subthreshold slope of conventional MOSFETs is limited to >60mV/dec due to their current turn-on mechanism being thermionic emission. During the last decade, several emerging transistor concepts, based on alternative current transport mechanisms, have been proposed so to overcome this fundamental limitation. For instance, Tunnel FETs (TFETs) have emerged as one of the most attractive alternatives to traditional MOSFETs, with experimental demonstrations of SS below 30 mV/dec, due to the current turn-on mechanism in such devices being band-to-band tunneling. In this context, dual-independent-gate (DIG) FinFETs have been also demonstrated capable of achieving a very steep subthreshold slope [1, 2]. The reason behind this super steep slope is a positive feedback induced by weak impact ionization in the device. Experimental demonstrations of DIG FinFETs have shown SS of 3.4 mV/dec at room-temperature over 5 decades of current swing [1, 2]. In this paper, we discuss a simple, closed-form analytic model for the current-voltage characteristics of DIG FinFETs, which can be of interest for many applications including circuit-design and application oriented device performance evaluation.","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133950801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-06-19DOI: 10.1109/DRC.2016.7676205
K. Konishi, K. Goto, Q. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Kuramata, S. Yamakoshi, M. Higashiwaki
We succeeded in fabricating HVPE-grown Ga2O3 FP-SBDs with a record Vbr of over 1 kV. This is an important step in the research and development of Ga2O3 power devices toward practical applications and future commercialization. This work was partially supported by Council for Science, Technology, and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), "Next-generation power electronics" (funding agency: NEDO).
{"title":"Ga2O3 field-plated schottky barrier diodes with a breakdown voltage of over 1 kV","authors":"K. Konishi, K. Goto, Q. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Kuramata, S. Yamakoshi, M. Higashiwaki","doi":"10.1109/DRC.2016.7676205","DOIUrl":"https://doi.org/10.1109/DRC.2016.7676205","url":null,"abstract":"We succeeded in fabricating HVPE-grown Ga<sub>2</sub>O<sub>3</sub> FP-SBDs with a record V<sub>br</sub> of over 1 kV. This is an important step in the research and development of Ga<sub>2</sub>O<sub>3</sub> power devices toward practical applications and future commercialization. This work was partially supported by Council for Science, Technology, and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), \"Next-generation power electronics\" (funding agency: NEDO).","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134194221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-06-19DOI: 10.1109/DRC.2016.7548407
Hong Zhou, Karynn A. Sutherlin, X. Lou, Sang Bok Kim, K. Chabak, R. Gordon, P. Ye
High performance deep sub-micron T-gate AlGaN/GaN MOSHEMTs are demonstrated using lattice matched ALE MgCaO as gate dielectric. The 120 nm-Lg MOSHEMT has an IDMAX of 1.2 A/mm, Ron of 1.5 Ω·mm, a ft/fmax of 101/150 GHz, with negligible hysteresis and IG, showing the promise as a GaN MOS technology. The work at Purdue University is supported by AFOSR and the work at Harvard University is supported by ONR.
{"title":"DC and RF characterizations of AlGaN/GaN MOSHEMTs with deep sub-micron T-gates and atomic layer epitaxy MgCaO as gate dielectric","authors":"Hong Zhou, Karynn A. Sutherlin, X. Lou, Sang Bok Kim, K. Chabak, R. Gordon, P. Ye","doi":"10.1109/DRC.2016.7548407","DOIUrl":"https://doi.org/10.1109/DRC.2016.7548407","url":null,"abstract":"High performance deep sub-micron T-gate AlGaN/GaN MOSHEMTs are demonstrated using lattice matched ALE MgCaO as gate dielectric. The 120 nm-Lg MOSHEMT has an I<sub>DMAX</sub> of 1.2 A/mm, R<sub>on</sub> of 1.5 Ω·mm, a f<sub>t</sub>/f<sub>max</sub> of 101/150 GHz, with negligible hysteresis and I<sub>G</sub>, showing the promise as a GaN MOS technology. The work at Purdue University is supported by AFOSR and the work at Harvard University is supported by ONR.","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124895741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-06-19DOI: 10.1109/DRC.2016.7548394
S. Bajaj, F. Akyol, S. Krishnamoorthy, Yuewei Zhang, A. Armstrong, A. Allerman, S. Rajan
We report on the first ultra-wide bandgap Al0.75Ga0.25N channel metal-insulator-semiconductor field-effect transistor (MISFET) with heterostructure engineered ohmic contacts. The large breakdown field of AlN (12 MV/cm) and the superior device figures of merit make wider bandgap AlGaN attractive for the next-generation RF power amplifiers and switches [1]. However, a critical challenge preventing advancement in high composition AlGaN-based devices is the high resistance of ohmic contacts, due to the large ionization energy of dopants and the low electron affinity of AlN, both of which increase tunneling barrier for electrons. In this work, we use reverse polarization-graded n++ AlGaN contact layers to achieve a record low contact resistance (Rc) of 0.3 Ω.mm to 75 nm thick n-Al0.75Ga0.25N channel, translating in a specific contact resistance (ρsp) of 1.9×10-6 Ω.cm2. We then demonstrate the first ultra-wide bandgap Al0.75Ga0.25N channel MISFET with gate-recessed structure, employing polarization-graded contacts and Atomic Layer Deposited Al2O3 as the gate-dielectric.
{"title":"Ultra-wide bandgap AlGaN channel MISFET with polarization engineered ohmics","authors":"S. Bajaj, F. Akyol, S. Krishnamoorthy, Yuewei Zhang, A. Armstrong, A. Allerman, S. Rajan","doi":"10.1109/DRC.2016.7548394","DOIUrl":"https://doi.org/10.1109/DRC.2016.7548394","url":null,"abstract":"We report on the first ultra-wide bandgap Al<sub>0.75</sub>Ga<sub>0.25</sub>N channel metal-insulator-semiconductor field-effect transistor (MISFET) with heterostructure engineered ohmic contacts. The large breakdown field of AlN (12 MV/cm) and the superior device figures of merit make wider bandgap AlGaN attractive for the next-generation RF power amplifiers and switches [1]. However, a critical challenge preventing advancement in high composition AlGaN-based devices is the high resistance of ohmic contacts, due to the large ionization energy of dopants and the low electron affinity of AlN, both of which increase tunneling barrier for electrons. In this work, we use reverse polarization-graded n++ AlGaN contact layers to achieve a record low contact resistance (Rc) of 0.3 Ω.mm to 75 nm thick n-Al<sub>0.75</sub>Ga<sub>0.25</sub>N channel, translating in a specific contact resistance (ρsp) of 1.9×10<sup>-6</sup> Ω.cm<sup>2</sup>. We then demonstrate the first ultra-wide bandgap Al<sub>0.75</sub>Ga<sub>0.25</sub>N channel MISFET with gate-recessed structure, employing polarization-graded contacts and Atomic Layer Deposited Al<sub>2</sub>O<sub>3</sub> as the gate-dielectric.","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132299056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-06-19DOI: 10.1109/DRC.2016.7548462
Yunkun Xie, B. Behin-Aein, Avik W. Ghosh
Emerging spintronics and nanomagnetic devices have attracted a lot of attention due to their versatility, scalability and energy efficiency. Most spintronics applications require manipulation of nano-magnet in a fast and efficient way. Spin transfer torque (STT) effect[1] is so far the most studied and well demonstrated means to switch a nano-size magnetic. Compared to traditional switching scheme by magnetic field, STT provides a scalable solution to manipulate the magnetization of a nano-sized magnet. STT based memory spin transfer torque magnetic random access memory (STT-MRAM) and spin torque oscillator (STO) have been proposed and experimentally demonstrated[2, 3]. One issue accompanies magnetic switching is the thermal noise. Under room temperature the magnetic switching under STT is susceptible to thermal fluctuation and often results in a distribution in switching current/delay. In applications like STT based memory, its stochastic nature can cause read/write error. In the case of write operation, increasing applied current or switching time can effectively reduce write error but both quantities are limited by other considerations such as energy dissipation, junction breakdown and etc. This kind of trade-off is essential in device and application design. The aim of the work is to promote numerical Fokker-Planck based framework to study thermal effect in STT switching. The comparison between numerical Fokker-Planck approach and other methods are summarized. We have also investigated write error rate (WER) in STT switching with a focus on its `slope' which is related to the write margin but not so often discussed in literature.
{"title":"Numerical Fokker-Planck simulation of stochastic write error in spin torque switching with thermal noise","authors":"Yunkun Xie, B. Behin-Aein, Avik W. Ghosh","doi":"10.1109/DRC.2016.7548462","DOIUrl":"https://doi.org/10.1109/DRC.2016.7548462","url":null,"abstract":"Emerging spintronics and nanomagnetic devices have attracted a lot of attention due to their versatility, scalability and energy efficiency. Most spintronics applications require manipulation of nano-magnet in a fast and efficient way. Spin transfer torque (STT) effect[1] is so far the most studied and well demonstrated means to switch a nano-size magnetic. Compared to traditional switching scheme by magnetic field, STT provides a scalable solution to manipulate the magnetization of a nano-sized magnet. STT based memory spin transfer torque magnetic random access memory (STT-MRAM) and spin torque oscillator (STO) have been proposed and experimentally demonstrated[2, 3]. One issue accompanies magnetic switching is the thermal noise. Under room temperature the magnetic switching under STT is susceptible to thermal fluctuation and often results in a distribution in switching current/delay. In applications like STT based memory, its stochastic nature can cause read/write error. In the case of write operation, increasing applied current or switching time can effectively reduce write error but both quantities are limited by other considerations such as energy dissipation, junction breakdown and etc. This kind of trade-off is essential in device and application design. The aim of the work is to promote numerical Fokker-Planck based framework to study thermal effect in STT switching. The comparison between numerical Fokker-Planck approach and other methods are summarized. We have also investigated write error rate (WER) in STT switching with a focus on its `slope' which is related to the write margin but not so often discussed in literature.","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133869977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-06-19DOI: 10.1109/DRC.2016.7548448
J. M. Nassar, Marlon Diaz, M. Hussain
We report an ultra-low cost flexible proximity sensor using only off-the-shelf recyclable materials such as aluminum foil, napkin and double-sided tape. Unlike previous reports, our device structure exhibits two sensing capabilities in one platform, with outstanding long detection range of 20 cm and pressure sensitivity of 0.05 kPa-1. This is the first ever demonstration of a low-cost, accessible, and batch manufacturing process for pressure and proximity sensing on a singular platform. The mechanical flexibility of the sensor makes it possible to mount on various irregular platforms, which is vital in many areas, such as robotics, machine automation, vehicular technology and inspection tools.
{"title":"Affordable dual-sensing proximity sensor for touchless interactive systems","authors":"J. M. Nassar, Marlon Diaz, M. Hussain","doi":"10.1109/DRC.2016.7548448","DOIUrl":"https://doi.org/10.1109/DRC.2016.7548448","url":null,"abstract":"We report an ultra-low cost flexible proximity sensor using only off-the-shelf recyclable materials such as aluminum foil, napkin and double-sided tape. Unlike previous reports, our device structure exhibits two sensing capabilities in one platform, with outstanding long detection range of 20 cm and pressure sensitivity of 0.05 kPa-1. This is the first ever demonstration of a low-cost, accessible, and batch manufacturing process for pressure and proximity sensing on a singular platform. The mechanical flexibility of the sensor makes it possible to mount on various irregular platforms, which is vital in many areas, such as robotics, machine automation, vehicular technology and inspection tools.","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114820819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-06-19DOI: 10.1109/DRC.2016.7548451
A. Alharbi, D. Shahrjerdi
Flexible electronics based on rigid conventional crystalline semiconductors such as silicon and compound semiconductors is emerging as a new class of technology. At present, the existing approaches for realizing flexible electronics from those materials have focused on maintaining the performance of the original device. Here, we demonstrate a new approach for tailoring the electronic and optoelectronic properties of high-performance flexible devices through strain engineering. In this work, we use flexible gallium arsenide (GaAs) devices as a model system. We show that layer transfer through substrate cracking with a pre-tensioned nickel film can be utilized for engineering the electronic band structure of flexible GaAs devices. We empirically and theoretically quantify the effect of the `engineered' residual strain on the electronic band structure in these flexible GaAs devices. Photoluminescence (PL) and quantum efficiency (QE) measurements indicate the widening of the GaAs energy bandgap due to the residual compressive strain. More importantly, our strain engineering method is universal and can be readily extended to other flexible material systems such as gallium nitride.
{"title":"A new approach for energy band engineering in flexible GaAs devices","authors":"A. Alharbi, D. Shahrjerdi","doi":"10.1109/DRC.2016.7548451","DOIUrl":"https://doi.org/10.1109/DRC.2016.7548451","url":null,"abstract":"Flexible electronics based on rigid conventional crystalline semiconductors such as silicon and compound semiconductors is emerging as a new class of technology. At present, the existing approaches for realizing flexible electronics from those materials have focused on maintaining the performance of the original device. Here, we demonstrate a new approach for tailoring the electronic and optoelectronic properties of high-performance flexible devices through strain engineering. In this work, we use flexible gallium arsenide (GaAs) devices as a model system. We show that layer transfer through substrate cracking with a pre-tensioned nickel film can be utilized for engineering the electronic band structure of flexible GaAs devices. We empirically and theoretically quantify the effect of the `engineered' residual strain on the electronic band structure in these flexible GaAs devices. Photoluminescence (PL) and quantum efficiency (QE) measurements indicate the widening of the GaAs energy bandgap due to the residual compressive strain. More importantly, our strain engineering method is universal and can be readily extended to other flexible material systems such as gallium nitride.","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116599940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-06-19DOI: 10.1109/DRC.2016.7548503
M. Jerry, Wei-Yu Tsai, Baihua Xie, Xueqing Li, V. Narayanan, A. Raychowdhury, S. Datta
Spiking neural networks are expected to play a vital role in realizing ultra-low power hardware for computer vision applications [1]. While the algorithmic efficiency is promising, their solid-state implementation with traditional CMOS transistors lead to area expensive solutions. Transistors are typically designed and optimized to perform as switches and do not naturally exhibit the dynamical properties of neurons. In this work, we harness the abrupt insulator-to-metal transition (IMT) in a prototypical IMT material, vanadium dioxide (VO2) [2], to experimentally demonstrate a compact integrate and fire spiking neuron [3]. Further, we show multiple spiking dynamics of the neuron relevant to implementing `winner take all' max pooling layers employed in image processing pipelines.
{"title":"Phase transition oxide neuron for spiking neural networks","authors":"M. Jerry, Wei-Yu Tsai, Baihua Xie, Xueqing Li, V. Narayanan, A. Raychowdhury, S. Datta","doi":"10.1109/DRC.2016.7548503","DOIUrl":"https://doi.org/10.1109/DRC.2016.7548503","url":null,"abstract":"Spiking neural networks are expected to play a vital role in realizing ultra-low power hardware for computer vision applications [1]. While the algorithmic efficiency is promising, their solid-state implementation with traditional CMOS transistors lead to area expensive solutions. Transistors are typically designed and optimized to perform as switches and do not naturally exhibit the dynamical properties of neurons. In this work, we harness the abrupt insulator-to-metal transition (IMT) in a prototypical IMT material, vanadium dioxide (VO2) [2], to experimentally demonstrate a compact integrate and fire spiking neuron [3]. Further, we show multiple spiking dynamics of the neuron relevant to implementing `winner take all' max pooling layers employed in image processing pipelines.","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116046836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-06-19DOI: 10.1109/DRC.2016.7548515
R. Kirste, B. Sarkar, F. Kaess, I. Bryan, Z. Bryan, J. Tweedie, R. Collazo, Z. Sitar
Despite the rapid progress in III-nitride-based laser diodes, sub-300 nm UV semiconductors lasers have not been realized yet, mainly due to technical and scientific barriers arising from the lack of proper crystalline substrates and poor understanding of defect control in the wide bandgap semiconductors. In addition to low dislocation density, reduction in non-radiative centers and compensating point defect is required to achieve high internal quantum efficiency (IQE). AlGaN-based technology developed on single crystalline AlN substrates offers a pathway to address these challenges [1, 2]. Recently, UV LEDs emitting at 265 nm with output powers exceeding 80 mW and high reliability [3], as well as low-threshold, optically pumped lasers emitting at wavelengths between 230-280 nm [4,5] have been demonstrated.
{"title":"Challenges and breakthroughs in the development of AlGaN-based UVC lasers","authors":"R. Kirste, B. Sarkar, F. Kaess, I. Bryan, Z. Bryan, J. Tweedie, R. Collazo, Z. Sitar","doi":"10.1109/DRC.2016.7548515","DOIUrl":"https://doi.org/10.1109/DRC.2016.7548515","url":null,"abstract":"Despite the rapid progress in III-nitride-based laser diodes, sub-300 nm UV semiconductors lasers have not been realized yet, mainly due to technical and scientific barriers arising from the lack of proper crystalline substrates and poor understanding of defect control in the wide bandgap semiconductors. In addition to low dislocation density, reduction in non-radiative centers and compensating point defect is required to achieve high internal quantum efficiency (IQE). AlGaN-based technology developed on single crystalline AlN substrates offers a pathway to address these challenges [1, 2]. Recently, UV LEDs emitting at 265 nm with output powers exceeding 80 mW and high reliability [3], as well as low-threshold, optically pumped lasers emitting at wavelengths between 230-280 nm [4,5] have been demonstrated.","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"706 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116100314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-06-19DOI: 10.1109/DRC.2016.7548469
Y. Gong, T. Jackson
We report ZnO thin film transistors (TFTs) with offset drain for high voltage operation. Offset-drain FETs using Si, a-Si:H, and pentacene have been previously demonstrated [1,2,3]. The TFTs use a bottom gate structure with Al2O3 gate dielectric and ZnO active layers deposited by plasma enhanced atomic layer deposition (PEALD). As the drain offset is increased from 0 μm to 2 μm· the drain-to-source breakdown voltage increased from 33 V to 82 V, while the linear mobility decreased from 10 cm2/Vs to 4 cm2/Vs. Our process flow is simple and compatible with glass and polymeric substrates.
{"title":"Drain-offset ZnO thin film transistors for high voltage operations","authors":"Y. Gong, T. Jackson","doi":"10.1109/DRC.2016.7548469","DOIUrl":"https://doi.org/10.1109/DRC.2016.7548469","url":null,"abstract":"We report ZnO thin film transistors (TFTs) with offset drain for high voltage operation. Offset-drain FETs using Si, a-Si:H, and pentacene have been previously demonstrated [1,2,3]. The TFTs use a bottom gate structure with Al2O3 gate dielectric and ZnO active layers deposited by plasma enhanced atomic layer deposition (PEALD). As the drain offset is increased from 0 μm to 2 μm· the drain-to-source breakdown voltage increased from 33 V to 82 V, while the linear mobility decreased from 10 cm2/Vs to 4 cm2/Vs. Our process flow is simple and compatible with glass and polymeric substrates.","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"214 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121639529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}