首页 > 最新文献

Telematika最新文献

英文 中文
Implementation of Fuzzy Multi-Objective Optimization On The Basic Of Ratio Analysis (Fuzzy-MOORA) In Determining The Eligibility Of Employee Salary 基于比率分析(Fuzzy- moora)的模糊多目标优化在确定员工薪酬资格中的应用
Pub Date : 2021-10-04 DOI: 10.31315/TELEMATIKA.V18I2.4664
I. Sudipa, I. N. T. A. Putra, Dwi Putra Asana, Revan Dwi Hanza
Purpose: CV. Harmoni Permata has several employees, and each employee has a bonus salary. However, in determining who is eligible for the employee salary bonus at CV. Harmoni Permata is still done manually assessment. This causes an error in the calculation because the decision-maker must look at previous historical data to decide.Design/methodology/approach: System design includes systems that can manage user data, position data, criteria data, criteria description data, absences data, task data, and assessment data, which will produce an assessment report. The MOORA method approach is used because it has calculations with minimum and simple math and has a good level of selectivity. Findings/result: The normalization comparison test of the manual calculation of the MOORA method with the system calculation results is the same, with the best five alternative employees who deserve a salary bonus.Originality/value/state of the art: Based on previous research reviews, this study uses the criteria for performance, honesty, attendance, and accuracy by determining the weight based on the type of benefit or cost and the MOORA method in calculating the final value of alternative ranking.
目的:简历。Harmoni Permata有几个员工,每个员工都有奖金。然而,在确定谁有资格获得员工工资奖金的简历。Harmoni Permata仍然是手工评估。这将导致计算错误,因为决策者必须查看以前的历史数据才能做出决定。设计/方法论/方法:系统设计包括可以管理用户数据、职位数据、标准数据、标准描述数据、缺勤数据、任务数据和评估数据的系统,这些系统将生成评估报告。使用MOORA方法方法是因为它具有最小和简单的数学计算,并且具有良好的选择性。发现/结果:MOORA法人工计算与系统计算结果的归一化比较检验结果相同,最佳的5名备选员工应获得工资奖金。原创性/价值/技术水平:本研究在回顾前人研究的基础上,采用绩效、诚信、出勤率和准确性标准,根据效益或成本的类型确定权重,并采用MOORA方法计算替代排名的最终值。
{"title":"Implementation of Fuzzy Multi-Objective Optimization On The Basic Of Ratio Analysis (Fuzzy-MOORA) In Determining The Eligibility Of Employee Salary","authors":"I. Sudipa, I. N. T. A. Putra, Dwi Putra Asana, Revan Dwi Hanza","doi":"10.31315/TELEMATIKA.V18I2.4664","DOIUrl":"https://doi.org/10.31315/TELEMATIKA.V18I2.4664","url":null,"abstract":"Purpose: CV. Harmoni Permata has several employees, and each employee has a bonus salary. However, in determining who is eligible for the employee salary bonus at CV. Harmoni Permata is still done manually assessment. This causes an error in the calculation because the decision-maker must look at previous historical data to decide.Design/methodology/approach: System design includes systems that can manage user data, position data, criteria data, criteria description data, absences data, task data, and assessment data, which will produce an assessment report. The MOORA method approach is used because it has calculations with minimum and simple math and has a good level of selectivity. Findings/result: The normalization comparison test of the manual calculation of the MOORA method with the system calculation results is the same, with the best five alternative employees who deserve a salary bonus.Originality/value/state of the art: Based on previous research reviews, this study uses the criteria for performance, honesty, attendance, and accuracy by determining the weight based on the type of benefit or cost and the MOORA method in calculating the final value of alternative ranking.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81913328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Evaluation Of Jogja Application Success From User's Perspective Using Development of Delone And Mclean Models To Support The Realization Of The Smart Province 基于Delone和Mclean模型的用户视角下的汉字应用成功评价支持智能省的实现
Pub Date : 2021-10-04 DOI: 10.31315/TELEMATIKA.V18I2.5316
Angelica Amartya Putri, H. Jayadianti, B. Yuwono
Purpose: This study aims to measure success and determine the factors that support or hinder the success of the Jogja Istimewa application.Methodology: This study uses a modified DeLone and McLean Model 2003. The data used are primary data obtained from interviews with the DISKOMINFO and answers to 125 users of the Jogja Istimewa application as respondents in a distributed questionnaire. The results of the questionnaire were processed using SPSS to test the validity, reliability and normality of the data. After that, the data is processed using Structural Equation Modeling (SEM) to test the inner model and outer model which includes hypothesis testing.Result There are nine hypotheses tested using the SEM model. Nine hypotheses were proposed, it was stated that five hypotheses were accepted and four other hypotheses were rejected. the Jogja Istimewa application has a high success rate. The factors that are stated to influence the success of the Jogja Istimewa application are Information Quality, Service Quality, System Quality and User Satisfaction. The factors that are stated to hinder the success of the Jogja Istimewa application are Format of Output and Reliability in the Information Quality variable, the System Quality variable in the Language indicator, and the Charges for System Use indicator on the Intention to Use variable.Value: Based on previous research, this study has a fairly similar reference but different case studies, indicators, and conceptual models to test hypotheses in addition to knowing the factors that hinder and support the success of the Jogja Istimewa application.
目的:本研究的目的是衡量成功,并确定支持或阻碍慢跑运动应用成功的因素。方法:本研究采用改良的DeLone and McLean模型2003。所使用的数据是从对DISKOMINFO的访谈和对Jogja Istimewa应用程序的125名用户的回答中获得的主要数据。问卷结果采用SPSS软件进行处理,检验数据的效度、信度和正态性。然后,利用结构方程模型(SEM)对数据进行内部模型和外部模型的检验,其中包括假设检验。结果用SEM模型检验了9个假设。提出了9个假设,其中5个假设被接受,另外4个假设被拒绝。Jogja Istimewa应用程序有很高的成功率。影响Jogja Istimewa应用程序成功的因素包括信息质量、服务质量、系统质量和用户满意度。阻碍Jogja Istimewa应用程序成功的因素是信息质量变量中的输出格式和可靠性,语言指标中的系统质量变量,以及使用意向变量中的系统使用费用指标。价值:在前人研究的基础上,本研究具有相当相似的参考,但案例研究、指标和概念模型不同,可以检验假设,并了解阻碍和支持Jogja Istimewa应用成功的因素。
{"title":"Evaluation Of Jogja Application Success From User's Perspective Using Development of Delone And Mclean Models To Support The Realization Of The Smart Province","authors":"Angelica Amartya Putri, H. Jayadianti, B. Yuwono","doi":"10.31315/TELEMATIKA.V18I2.5316","DOIUrl":"https://doi.org/10.31315/TELEMATIKA.V18I2.5316","url":null,"abstract":"Purpose: This study aims to measure success and determine the factors that support or hinder the success of the Jogja Istimewa application.Methodology: This study uses a modified DeLone and McLean Model 2003. The data used are primary data obtained from interviews with the DISKOMINFO and answers to 125 users of the Jogja Istimewa application as respondents in a distributed questionnaire. The results of the questionnaire were processed using SPSS to test the validity, reliability and normality of the data. After that, the data is processed using Structural Equation Modeling (SEM) to test the inner model and outer model which includes hypothesis testing.Result There are nine hypotheses tested using the SEM model. Nine hypotheses were proposed, it was stated that five hypotheses were accepted and four other hypotheses were rejected. the Jogja Istimewa application has a high success rate. The factors that are stated to influence the success of the Jogja Istimewa application are Information Quality, Service Quality, System Quality and User Satisfaction. The factors that are stated to hinder the success of the Jogja Istimewa application are Format of Output and Reliability in the Information Quality variable, the System Quality variable in the Language indicator, and the Charges for System Use indicator on the Intention to Use variable.Value: Based on previous research, this study has a fairly similar reference but different case studies, indicators, and conceptual models to test hypotheses in addition to knowing the factors that hinder and support the success of the Jogja Istimewa application.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90856985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation of Convolutional Neural Network (CNN) in Facial Expression Recognition 卷积神经网络(CNN)在面部表情识别中的实现
Pub Date : 2021-10-04 DOI: 10.31315/TELEMATIKA.V18I2.4823
Augyeris Lioga Seandrio, A. H. Pratomo, Mangaras Yanu Florestiyanto
Tujuan: Membantu pengajar melakukan monitoring emosi siswa dengan menerapkan metode Convolutional Neural Network pada aplikasi, serta mengetahui akurasi dalam melakukan pengenalan ekspresi wajah.Perancangan/metode/pendekatan: Menggunakan Convolutional Neural Network untuk mengklasifikasi pengolahan berupa citra. Pengembangan sistem menggunakan metode prototype.Hasil: Berdasarkan hasil pengujian yang dilakukan dengan menggunakan 3589 data ekspresi dasar manusia mendapatkan nilai akurasi sebesar 70,46%, nilai presisi sebesar 71% dan nilai recall sebesar 70%.Keaslian/ state of the art: Berdasarkan penelitian sebelumnya, penelitian ini mempunyai karakteristik yang relatif serupa dalam tema penelitian. Namun memiliki perbedaan pada metode penelitan, perangkat yang digunakan, dan hasil keluaran penelitian.Pada penelitian sebelumnya, dengan objek yang sama yaitu wajah dan emosi wajah, pada metode yang digunakan, perangkat dalam pengambilan citra emosi dan wajah, serta langkah-langkah dalam prosesnya pun berbeda. Pada penelitian ini emosi pada wajah diidentifikasi melalui citra yang diambil secara real-time menggunakan kamera dan dengan menerapkan metode Convolutional Neural Network dengan arsitektur visual group geometry (VGG) dengan 11, 13, 16 dan 19 lapisan yang akan menghasilkan probabilitas ekspresi dalam 7 ekspresi dasar manusia beserta kategorinya.
目的:帮助教师通过应用应用神经通路网络来监测学生的情绪,并知道面部表情识别的准确性。设计/方法/方法:利用神经联导网络对图像的处理过程进行分类。系统开发使用原型法。结果:根据使用3589个基本人类表达式数据进行的测试结果,准确率为70.46%,精度为71%,召回值为70%。根据之前的研究,这项研究在研究主题中有一个相对相似的特征。但是研究方法、使用的设备和研究结果各不相同。在之前的研究中,面部表情和情感都与之相似,使用的方法、情感和面部表情检索的设备以及过程中的步骤是不同的。在这项研究中,面部的情绪是通过使用相机拍摄的图像来识别的,并通过使用组几何图形架构(VGG)的神经连接网络(vmetry)的11、13、16和19层来识别的。
{"title":"Implementation of Convolutional Neural Network (CNN) in Facial Expression Recognition","authors":"Augyeris Lioga Seandrio, A. H. Pratomo, Mangaras Yanu Florestiyanto","doi":"10.31315/TELEMATIKA.V18I2.4823","DOIUrl":"https://doi.org/10.31315/TELEMATIKA.V18I2.4823","url":null,"abstract":"Tujuan: Membantu pengajar melakukan monitoring emosi siswa dengan menerapkan metode Convolutional Neural Network pada aplikasi, serta mengetahui akurasi dalam melakukan pengenalan ekspresi wajah.Perancangan/metode/pendekatan: Menggunakan Convolutional Neural Network untuk mengklasifikasi pengolahan berupa citra. Pengembangan sistem menggunakan metode prototype.Hasil: Berdasarkan hasil pengujian yang dilakukan dengan menggunakan 3589 data ekspresi dasar manusia mendapatkan nilai akurasi sebesar 70,46%, nilai presisi sebesar 71% dan nilai recall sebesar 70%.Keaslian/ state of the art: Berdasarkan penelitian sebelumnya, penelitian ini mempunyai karakteristik yang relatif serupa dalam tema penelitian. Namun memiliki perbedaan pada metode penelitan, perangkat yang digunakan, dan hasil keluaran penelitian.Pada penelitian sebelumnya, dengan objek yang sama yaitu wajah dan emosi wajah, pada metode yang digunakan, perangkat dalam pengambilan citra emosi dan wajah, serta langkah-langkah dalam prosesnya pun berbeda. Pada penelitian ini emosi pada wajah diidentifikasi melalui citra yang diambil secara real-time menggunakan kamera dan dengan menerapkan metode Convolutional Neural Network dengan arsitektur visual group geometry (VGG) dengan 11, 13, 16 dan 19 lapisan yang akan menghasilkan probabilitas ekspresi dalam 7 ekspresi dasar manusia beserta kategorinya.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87502074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Content Based Image Retrieval Using Gray Level Co-Occurrence Matrix to Detect Pneumonia in X-Ray Thorax Image 基于内容的图像检索:灰度共生矩阵检测x射线胸片肺炎
Pub Date : 2021-10-04 DOI: 10.31315/TELEMATIKA.V18I2.5508
Wilis Kaswidjanti, B. Yuwono, N. Azizah, Nurheri Cahyana
Purpose:This study aims to detect the presence of pneumonia or not in thorax x-ray images using the Gray Level Co-Occurence Matrix (GLCM) method as well as find out the accuracy of the accuracy of pneumonia detection accuracy.Design/methodology/approach:The process of detecting pneumonia in thorax x-ray images can use Content Based Image Retriveal (CBIR). CBIR is an image search method by comparing the input image feature with the image feature in the database. Extraction features x-ray texture of thorax in pneumonia detection using Color Histogram, Discrete Cosine Transform and Gray Level Cooccurence Matrix (GLCM). From the day of extraction the feature will be carried out similarity measurements with database images using Euclidean Distance..Findings/result: The test results showed that the GLCM extraction feature with euclidean distance similarity measurements gained 95% accuracy on 100 training data and 20 test data, with the number of images displayed 6. Whereas when testing using data that has been trained produces 100% accuracy.Originality/value/state of the art:The difference between this study and previous research is in the pre-processing method section of imagery. This pre-processing process, x-ray image of thorax is carried out color histogram and discrete cosine transform process. Then continued the extraction of features using GLCM. The output of this system is the result of detection whether normal or pneumonia. Tujuan:Penelitian ini bertujuan untuk mendeteksi adanya Pneumonia atau tidak pada citra x-ray thorax menggunakan metode Gray Level Co-Occurence Matrix (GLCM) serta mengetahui akurasi tingkat akurasi deteksi pneumonia.Perancangan/metode/pendekatan:Proses deteksi penyakit Pneumonia pada citra x-ray thorax dapat menggunakan Content Based Image Retriveal (CBIR). CBIR adalah suatu metode pencarian citra dengan melakukan perbandingan antara fitur citra input dengan fitur citra yang ada didalam database. Ekstraksi  fitur tekstur x-ray thorax dalam deteksi pneumonia menggunakan Color Histogram, Discrete Cosine Transform dan Gray Level Cooccurence Matrix (GLCM). Dari hari ekstraksi fitur tersebut akan dilakukan pengukuran kemiripan dengan citra database menggunakan jarak Euclidean Distance.Hasil:Hasil pengujian menunjukkan bahwa fitur ekstraksi GLCM dengan pengukuran kemiripan Euclidean Distance diperoleh akurasi sebesar 95% pada data latih 100 dan data uji 20, dengan jumlah citra yang ditampilkan 6. Sedangkan bila pengujian menggunakan data yang sudah dilatihkan menghasilkan akurasi 100%.State of the art:Perbedaan penelitian ini dengan penelitian sebelumnya adalah pada bagian metode pre processing citra. Proses pre processing  ini,  citra x-ray thorax di lakukan proses Color Histogram dan Discrete Cosine Transform. Kemudian dilanjutkan ekstraksi fitur menggunakan GLCM. Output dari sistem ini berupa hasil deteksi apakah normal atau pneumonia.
目的:本研究旨在利用灰度共现矩阵(GLCM)方法检测胸腔x线图像是否存在肺炎,并找出肺炎检测准确率的准确性。设计/方法/方法:在胸部x线图像中检测肺炎的过程可以使用基于内容的图像检索(CBIR)。CBIR是一种将输入的图像特征与数据库中的图像特征进行比较的图像搜索方法。利用颜色直方图、离散余弦变换和灰度共生矩阵(GLCM)提取肺炎检测中胸部x射线特征纹理。从提取特征之日起,将使用欧几里得距离与数据库图像进行相似性测量。发现/结果:测试结果表明,基于欧氏距离相似度量的GLCM提取特征在100个训练数据和20个测试数据上获得了95%的准确率,显示的图像数量为6。然而,当使用经过训练的数据进行测试时,会产生100%的准确性。原创性/价值/艺术水平:本研究与以往研究的不同之处在于图像预处理方法部分。本预处理过程中,对胸部x射线图像进行了颜色直方图和离散余弦变换处理。然后继续使用GLCM进行特征提取。该系统的输出是检测正常或肺炎的结果。图juan:Penelitian ini bertujuan untuk mendeteksi adanya肺炎,x线胸透,蒙古纳坎方法,灰度共现矩阵(GLCM),显示蒙古纳坎与阿古纳坎肺炎。Perancangan/ method /pendekatan:研究基于内容的图像检索(Content Based Image retrieval, CBIR)的肺炎x线胸片检测方法。CBIR adalah suatu方法,彭安柑橘,登根,melakukan, perbandbandan和antara fitcitra输入登根fitcitra yang ada didalam数据库。彩色直方图,离散余弦变换和灰度共生矩阵(GLCM)。欧几里得距离(欧几里得距离)哈西尔:哈西尔企鹅menunjukkan bahwa fitur ekstraksi GLCM登干企鹅kmiripan欧几里得距离diperoleh akurasi sebesar 95%帕达数据latih 100丹数据uji 20,登干jumlah citra yang ditampilkan 6。Sedangkan bila penguin menggunakan数据yang sudah dilatihkan menghasilkan akurasi 100%。现有技术现状:Perbedaan penelitian ini dengan penelitian sebelumnya adalah padbagian预处理柑橘的方法。过程预处理ini,柠檬酸x射线胸片迪拉坎处理颜色直方图和离散余弦变换。Kemudian dilanjutkan ekstraksi fitur menggunakan GLCM。输出达里系统异常,可诊断为正常肺炎。
{"title":"Content Based Image Retrieval Using Gray Level Co-Occurrence Matrix to Detect Pneumonia in X-Ray Thorax Image","authors":"Wilis Kaswidjanti, B. Yuwono, N. Azizah, Nurheri Cahyana","doi":"10.31315/TELEMATIKA.V18I2.5508","DOIUrl":"https://doi.org/10.31315/TELEMATIKA.V18I2.5508","url":null,"abstract":"Purpose:This study aims to detect the presence of pneumonia or not in thorax x-ray images using the Gray Level Co-Occurence Matrix (GLCM) method as well as find out the accuracy of the accuracy of pneumonia detection accuracy.Design/methodology/approach:The process of detecting pneumonia in thorax x-ray images can use Content Based Image Retriveal (CBIR). CBIR is an image search method by comparing the input image feature with the image feature in the database. Extraction features x-ray texture of thorax in pneumonia detection using Color Histogram, Discrete Cosine Transform and Gray Level Cooccurence Matrix (GLCM). From the day of extraction the feature will be carried out similarity measurements with database images using Euclidean Distance..Findings/result: The test results showed that the GLCM extraction feature with euclidean distance similarity measurements gained 95% accuracy on 100 training data and 20 test data, with the number of images displayed 6. Whereas when testing using data that has been trained produces 100% accuracy.Originality/value/state of the art:The difference between this study and previous research is in the pre-processing method section of imagery. This pre-processing process, x-ray image of thorax is carried out color histogram and discrete cosine transform process. Then continued the extraction of features using GLCM. The output of this system is the result of detection whether normal or pneumonia. Tujuan:Penelitian ini bertujuan untuk mendeteksi adanya Pneumonia atau tidak pada citra x-ray thorax menggunakan metode Gray Level Co-Occurence Matrix (GLCM) serta mengetahui akurasi tingkat akurasi deteksi pneumonia.Perancangan/metode/pendekatan:Proses deteksi penyakit Pneumonia pada citra x-ray thorax dapat menggunakan Content Based Image Retriveal (CBIR). CBIR adalah suatu metode pencarian citra dengan melakukan perbandingan antara fitur citra input dengan fitur citra yang ada didalam database. Ekstraksi  fitur tekstur x-ray thorax dalam deteksi pneumonia menggunakan Color Histogram, Discrete Cosine Transform dan Gray Level Cooccurence Matrix (GLCM). Dari hari ekstraksi fitur tersebut akan dilakukan pengukuran kemiripan dengan citra database menggunakan jarak Euclidean Distance.Hasil:Hasil pengujian menunjukkan bahwa fitur ekstraksi GLCM dengan pengukuran kemiripan Euclidean Distance diperoleh akurasi sebesar 95% pada data latih 100 dan data uji 20, dengan jumlah citra yang ditampilkan 6. Sedangkan bila pengujian menggunakan data yang sudah dilatihkan menghasilkan akurasi 100%.State of the art:Perbedaan penelitian ini dengan penelitian sebelumnya adalah pada bagian metode pre processing citra. Proses pre processing  ini,  citra x-ray thorax di lakukan proses Color Histogram dan Discrete Cosine Transform. Kemudian dilanjutkan ekstraksi fitur menggunakan GLCM. Output dari sistem ini berupa hasil deteksi apakah normal atau pneumonia.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79952444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated Website Monitoring System Using Web Scraping and Raspberry Pi 使用网络抓取和树莓派的自动网站监控系统
Pub Date : 2021-10-04 DOI: 10.31315/TELEMATIKA.V18I2.5506
P. P. Arhandi, Irsyad Arief Mashudi, Fuad Adi Nugroho
Purpose: Create a system to monitor website availability automatically using web scraping and raspberry piDesign/methodology/approach: This system successfully checks website availability using various ISPs with an accuracy of more than 90%.Findings/result: This system successfully checks website availability using various ISPs with an accuracy of more than 90%.Originality/value/state of the art: The contribution of this research is to create systems and agents that collaborate automatically to check website availability. Tujuan: Membuat sebuah sistem untuk melakukan pemantauan ketersediaan situs web secara otomatis menggunakan web scraping dan raspberyy piPerancangan/metode/pendekatan: Pada penelitian ini dibuat sebuah sistem utama sebagai pusat data dan beberapa agent menggunakan raspberry pi. Sistem utama dibangun menggunakan codeigniter dan web scraping di raspberry pi dilakukan menggunakan node js serta REST API untuk komunikasi antara agent dan sistem utama.Hasil: Sistem ini berhasil melakukan pengecekan ketersediaan situs web menggunakan berbagai ISP dengan keakuratan lebih dari 90%.Keaslian/ state of the art: Kontribusi penelitian ini adalah membuat sistem dan agen yang berkolaborasi secara otomatis untuk mengecek ketersediaan situs web. 
{"title":"Automated Website Monitoring System Using Web Scraping and Raspberry Pi","authors":"P. P. Arhandi, Irsyad Arief Mashudi, Fuad Adi Nugroho","doi":"10.31315/TELEMATIKA.V18I2.5506","DOIUrl":"https://doi.org/10.31315/TELEMATIKA.V18I2.5506","url":null,"abstract":"Purpose: Create a system to monitor website availability automatically using web scraping and raspberry piDesign/methodology/approach: This system successfully checks website availability using various ISPs with an accuracy of more than 90%.Findings/result: This system successfully checks website availability using various ISPs with an accuracy of more than 90%.Originality/value/state of the art: The contribution of this research is to create systems and agents that collaborate automatically to check website availability. Tujuan: Membuat sebuah sistem untuk melakukan pemantauan ketersediaan situs web secara otomatis menggunakan web scraping dan raspberyy piPerancangan/metode/pendekatan: Pada penelitian ini dibuat sebuah sistem utama sebagai pusat data dan beberapa agent menggunakan raspberry pi. Sistem utama dibangun menggunakan codeigniter dan web scraping di raspberry pi dilakukan menggunakan node js serta REST API untuk komunikasi antara agent dan sistem utama.Hasil: Sistem ini berhasil melakukan pengecekan ketersediaan situs web menggunakan berbagai ISP dengan keakuratan lebih dari 90%.Keaslian/ state of the art: Kontribusi penelitian ini adalah membuat sistem dan agen yang berkolaborasi secara otomatis untuk mengecek ketersediaan situs web. ","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79909372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cluster Analysis of Hospital Inpatient Service Efficiency Based on BOR, BTO, TOI, AvLOS Indicators using Agglomerative Hierarchical Clustering 基于BOR、BTO、TOI、AvLOS指标的医院住院服务效率聚类分析
Pub Date : 2021-10-04 DOI: 10.31315/TELEMATIKA.V18I2.4786
Tresna Maulana Fahrudin, P. Riyantoko, K. M. Hindrayani, M. H. P. Swari
Purpose: The research proposed an approach for grouping hospital inpatient service efficiency that have the same characteristics into certain clusters based on BOR, BTO, TOI, and AvLOS indicators using Agglomerative Hierarchical Clustering.Design/methodology/approach: Applying Agglomerative Hierarchical Clustering with dissimilarity measures such as single linkage, complete linkage, average linkage, and ward linkage.Findings/result: The experiment result has shown that ward linkage was given a quite good score of silhouette coefficient reached 0.4454 for the evaluation of cluster quality. The cluster formed using ward linkage was more proportional than the other dissimilarity measures. Ward linkage has generated cluster 0 consists of 23 members, cluster 1 consists of 34 members, while both of cluster 2 and 3 consists of only 1 member respectively. The experiment reported that each cluster had problems with inpatient indicators that were not ideal and even exceeded the ideal limit, but cluster 0 generated the ideal BOR and TOI parameters, both reached 52.17% (12 of 23 hospital inpatient) and 78.36% (18 of 23 hospital inpatient) respectively.Originality/value/state of the art: Based on previous research, this study provides an alternative to produce more proportional, representative and quality clusters in mapping hospital inpatient service efficiency that have the same characteristics into certain clusters using Agglomerative Hierarchical Clustering Method compared to the K-means Clustering Method which is often trapped in local optima. 
目的:研究提出了一种基于聚类层次聚类方法,基于BOR、BTO、TOI和AvLOS指标对具有相同特征的医院住院服务效率进行聚类的方法。设计/方法/方法:采用不同的度量方法,如单链接、完全链接、平均链接和病房链接,应用聚集分层聚类。发现/结果:实验结果表明,ward联动的剪影系数达到0.4454,对聚类质量进行了评价。采用病房联动形成的聚类比其他不相似测度更成比例。Ward联动产生的集群0由23个成员组成,集群1由34个成员组成,而集群2和集群3分别只有1个成员。实验报告,每个聚类都存在住院指标不理想甚至超过理想限度的问题,但聚类0产生了理想的BOR和TOI参数,分别达到52.17%(23例住院患者中有12例)和78.36%(23例住院患者中有18例)。独创性/价值/技术水平:在前人研究的基础上,本研究提供了一种替代方法,在将具有相同特征的医院住院服务效率映射为特定集群时,使用聚集层次聚类方法,而不是经常陷入局部最优的K-means聚类方法。
{"title":"Cluster Analysis of Hospital Inpatient Service Efficiency Based on BOR, BTO, TOI, AvLOS Indicators using Agglomerative Hierarchical Clustering","authors":"Tresna Maulana Fahrudin, P. Riyantoko, K. M. Hindrayani, M. H. P. Swari","doi":"10.31315/TELEMATIKA.V18I2.4786","DOIUrl":"https://doi.org/10.31315/TELEMATIKA.V18I2.4786","url":null,"abstract":"Purpose: The research proposed an approach for grouping hospital inpatient service efficiency that have the same characteristics into certain clusters based on BOR, BTO, TOI, and AvLOS indicators using Agglomerative Hierarchical Clustering.Design/methodology/approach: Applying Agglomerative Hierarchical Clustering with dissimilarity measures such as single linkage, complete linkage, average linkage, and ward linkage.Findings/result: The experiment result has shown that ward linkage was given a quite good score of silhouette coefficient reached 0.4454 for the evaluation of cluster quality. The cluster formed using ward linkage was more proportional than the other dissimilarity measures. Ward linkage has generated cluster 0 consists of 23 members, cluster 1 consists of 34 members, while both of cluster 2 and 3 consists of only 1 member respectively. The experiment reported that each cluster had problems with inpatient indicators that were not ideal and even exceeded the ideal limit, but cluster 0 generated the ideal BOR and TOI parameters, both reached 52.17% (12 of 23 hospital inpatient) and 78.36% (18 of 23 hospital inpatient) respectively.Originality/value/state of the art: Based on previous research, this study provides an alternative to produce more proportional, representative and quality clusters in mapping hospital inpatient service efficiency that have the same characteristics into certain clusters using Agglomerative Hierarchical Clustering Method compared to the K-means Clustering Method which is often trapped in local optima. ","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74734109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Data Mining for Determining The Best Cluster Of Student Instagram Account As New Student Admission Influencer 数据挖掘确定学生Instagram账户的最佳集群作为新生入学影响者
Pub Date : 2021-10-04 DOI: 10.31315/TELEMATIKA.V18I2.5067
Ahmad Irfan Abdullah, A. Priadana, M. Muhajir, Syahrir Nawir Nur
Purpose: This study aims to apply the web data extraction method to extract student Instagram account data and the K-Means data mining method to perform clustering automatically to determine the best cluster of students' Instagram accounts as influencers for new student admissions.Design/methodology/approach: This study implemented the web data extraction method to extract student Instagram account data. This study also implemented a data mining method called K-Means to cluster data and the Silhouette Coefficient method to determine the best number of clusters.Findings/result: This study has succeeded in determining the seven best student accounts from 100 accounts that can be used as influencers for new student admissions with the highest Silhouette Score for the number of influencers selected between 5-10, which is 0.608 of the 22 clusters.Originality/value/state of the art: Research related to the determination of the best cluster of students' Instagram accounts as new student admissions influencers using web data extraction and K-Means has never been done in previous studies.
目的:本研究旨在应用web数据提取方法提取学生Instagram账户数据,并使用K-Means数据挖掘方法自动进行聚类,以确定学生Instagram账户作为新生入学影响者的最佳聚类。设计/方法/方法:本研究采用web数据提取方法提取学生Instagram账户数据。本研究还实现了一种称为K-Means的数据挖掘方法来聚类数据和轮廓系数方法来确定最佳聚类数量。发现/结果:本研究成功地从100个账户中确定了7个最好的学生账户,这些账户可以作为新生入学的影响者,所选择的影响者数量在5-10之间,剪影得分最高,在22个集群中为0.608。原创性/价值/艺术水平:使用网络数据提取和K-Means确定学生Instagram账户的最佳集群作为新生入学影响者的研究在以前的研究中从未做过。
{"title":"Data Mining for Determining The Best Cluster Of Student Instagram Account As New Student Admission Influencer","authors":"Ahmad Irfan Abdullah, A. Priadana, M. Muhajir, Syahrir Nawir Nur","doi":"10.31315/TELEMATIKA.V18I2.5067","DOIUrl":"https://doi.org/10.31315/TELEMATIKA.V18I2.5067","url":null,"abstract":"Purpose: This study aims to apply the web data extraction method to extract student Instagram account data and the K-Means data mining method to perform clustering automatically to determine the best cluster of students' Instagram accounts as influencers for new student admissions.Design/methodology/approach: This study implemented the web data extraction method to extract student Instagram account data. This study also implemented a data mining method called K-Means to cluster data and the Silhouette Coefficient method to determine the best number of clusters.Findings/result: This study has succeeded in determining the seven best student accounts from 100 accounts that can be used as influencers for new student admissions with the highest Silhouette Score for the number of influencers selected between 5-10, which is 0.608 of the 22 clusters.Originality/value/state of the art: Research related to the determination of the best cluster of students' Instagram accounts as new student admissions influencers using web data extraction and K-Means has never been done in previous studies.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88920037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The Evaluation of Image Messages in MP3 Audio Steganography Using Modified Low-Bit Encoding 利用改进的低比特编码对MP3音频隐写中的图像信息进行评估
Pub Date : 2021-08-31 DOI: 10.35671/telematika.v14i2.1031
Ilham Firman Ashari
{"title":"The Evaluation of Image Messages in MP3 Audio Steganography Using Modified Low-Bit Encoding","authors":"Ilham Firman Ashari","doi":"10.35671/telematika.v14i2.1031","DOIUrl":"https://doi.org/10.35671/telematika.v14i2.1031","url":null,"abstract":"","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76483137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
CNN Architecture for Classifying Types of Mango Based on Leaf Images 基于叶子图像的芒果类型分类CNN架构
Pub Date : 2021-08-26 DOI: 10.35671/telematika.v14i2.1262
Nur Nafi’iyah, Jauharul Maknun
In such conditions, it is necessary to have a system that can automatically classify plant species or identify types of plant diseases using either machine learning or deep learning. The plant classification system for ordinary people who are not familiar with the field of crops is not an easy job, it requires in-depth knowledge of the field from the experts. This study proposes a system for identifying mango plant species based on leaves using the CNN method. The reason for proposing the CNN method from previous research is that the CNN method produces good accuracy. Most previous studies to classify plant species use the leaves of the plant. The purpose of this study is to propose a CNN architectural model in classifying mango species based on leaf imagery. The input image of colored mango tree leaves measuring 224x224 is trained based on the CNN architectural model that was built. There are 4 CNN architectural models proposed in the study and 1 transfer learning InceptionV4. Based on the evaluation test results of the proposed CNN architectural model, that the best architectural model is the third. The number of parameters of the third CNN architecture is 1,245,989 with loss values and accuracy during evaluation are 1,431 and 0.55. The largest number of parameters is transfer learning InceptionV3 21,802,784, but transfer learning shows the lowest accuracy value and the highest loss, namely 0.2, and 1.61.
在这种情况下,有必要有一个系统,可以使用机器学习或深度学习自动分类植物物种或识别植物疾病类型。植物分类系统对于不熟悉作物领域的普通人来说不是一件容易的工作,它需要专家对该领域的深入了解。本研究提出了一种基于叶片的芒果植物种类识别系统。从之前的研究中提出CNN方法的原因是CNN方法具有很好的准确率。以前对植物物种进行分类的大多数研究都使用植物的叶子。本研究的目的是提出一种基于叶片图像的芒果物种分类CNN建筑模型。基于所构建的CNN建筑模型,对尺寸为224x224的彩色芒果树叶子的输入图像进行训练。本研究共提出了4个CNN架构模型和1个迁移学习模型。根据所提出的CNN架构模型的评估测试结果,认为最佳架构模型为第三种。第三种CNN架构的参数个数为1,245,989,评估时的损失值为1,431,准确率为0.55。参数数量最多的是迁移学习InceptionV3 21,802,784,但迁移学习的准确率值最低,损失最大,分别为0.2和1.61。
{"title":"CNN Architecture for Classifying Types of Mango Based on Leaf Images","authors":"Nur Nafi’iyah, Jauharul Maknun","doi":"10.35671/telematika.v14i2.1262","DOIUrl":"https://doi.org/10.35671/telematika.v14i2.1262","url":null,"abstract":"In such conditions, it is necessary to have a system that can automatically classify plant species or identify types of plant diseases using either machine learning or deep learning. The plant classification system for ordinary people who are not familiar with the field of crops is not an easy job, it requires in-depth knowledge of the field from the experts. This study proposes a system for identifying mango plant species based on leaves using the CNN method. The reason for proposing the CNN method from previous research is that the CNN method produces good accuracy. Most previous studies to classify plant species use the leaves of the plant. The purpose of this study is to propose a CNN architectural model in classifying mango species based on leaf imagery. The input image of colored mango tree leaves measuring 224x224 is trained based on the CNN architectural model that was built. There are 4 CNN architectural models proposed in the study and 1 transfer learning InceptionV4. Based on the evaluation test results of the proposed CNN architectural model, that the best architectural model is the third. The number of parameters of the third CNN architecture is 1,245,989 with loss values and accuracy during evaluation are 1,431 and 0.55. The largest number of parameters is transfer learning InceptionV3 21,802,784, but transfer learning shows the lowest accuracy value and the highest loss, namely 0.2, and 1.61.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76205081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart Payment Application Security Optimization from Cross-Site Scripting (XSS) Attacks Based on Blockchain Technology 基于区块链技术的跨站脚本攻击下的智能支付应用安全优化
Pub Date : 2021-08-26 DOI: 10.35671/telematika.v14i2.1221
I. Riadi, R. Umar, Tri Lestari
The digital era is an era everyone has used technology and they are connected to each other very easily. The Smart Payment application is one of the applications that is developing in the digital era. This application is not equipped with security, so there is a concern that hackers will try to change user or even change user data. One of the possible attacks on this application is a cross-site attack (XSS). It is a code injection attack on the user side. Security in the Smart Payment application needs to be improved so that data integrity is maintained. In this research, security optimization is carried out by implementing blockchain. Blockchain has the advantage in terms of security with the concept of decentralization by utilizing a consensus algorithm that can eliminate and make improvements to data changes made by hackers. The result obtained from this study is the implementation of blockchain to maintain the security of payment transaction data on the Smart Payment application from XSS attacks. It is proven by the results of the vulnerability before and after blockchain implementation. Before the implementation of the vulnerability is found, 1 XSS vulnerability had a high level of overall risk. Meanwhile, the result of the vulnerability after blockchain implementation was not found from XSS attacks (the XSS vulnerability was 0 or not found).
数字时代是每个人都使用技术的时代,他们彼此之间很容易联系起来。智能支付应用程序是数字时代发展的应用程序之一。此应用程序没有配备安全性,因此存在黑客试图更改用户甚至更改用户数据的担忧。针对此应用程序的一种可能的攻击是跨站点攻击(XSS)。这是一种针对用户端的代码注入攻击。需要改进智能支付应用程序中的安全性,以维护数据完整性。在本研究中,通过实现区块链进行安全优化。区块链在安全性方面具有优势,通过使用共识算法,可以消除并改进黑客所做的数据更改,从而实现去中心化的概念。本研究的结果是实现区块链,以维护智能支付应用程序上支付交易数据的安全,免受XSS攻击。区块链实施前后的漏洞分析结果证明了这一点。在发现漏洞实施前,1个XSS漏洞整体风险较高。同时,在XSS攻击中未发现区块链实现后的漏洞结果(XSS漏洞为0或未发现)。
{"title":"Smart Payment Application Security Optimization from Cross-Site Scripting (XSS) Attacks Based on Blockchain Technology","authors":"I. Riadi, R. Umar, Tri Lestari","doi":"10.35671/telematika.v14i2.1221","DOIUrl":"https://doi.org/10.35671/telematika.v14i2.1221","url":null,"abstract":"The digital era is an era everyone has used technology and they are connected to each other very easily. The Smart Payment application is one of the applications that is developing in the digital era. This application is not equipped with security, so there is a concern that hackers will try to change user or even change user data. One of the possible attacks on this application is a cross-site attack (XSS). It is a code injection attack on the user side. Security in the Smart Payment application needs to be improved so that data integrity is maintained. In this research, security optimization is carried out by implementing blockchain. Blockchain has the advantage in terms of security with the concept of decentralization by utilizing a consensus algorithm that can eliminate and make improvements to data changes made by hackers. The result obtained from this study is the implementation of blockchain to maintain the security of payment transaction data on the Smart Payment application from XSS attacks. It is proven by the results of the vulnerability before and after blockchain implementation. Before the implementation of the vulnerability is found, 1 XSS vulnerability had a high level of overall risk. Meanwhile, the result of the vulnerability after blockchain implementation was not found from XSS attacks (the XSS vulnerability was 0 or not found).","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76065664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Telematika
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1