Pub Date : 2023-08-09DOI: 10.25299/jeee.2023.14088
Bastian Torus, Kunti Yoga Arista, Elta Purnama Wulan, M. Lubis, I. Herawati, W. Pranowo
Carbon Capture and Storage (CCS) is used at Sleipner Field due to the implementation of a carbon emission tax off the coast of Norway. This project causes the fluid at the Utsira Formation as a reservoir to be replaced by CO2, so the elastic property of the reservoir rock will change. Because of that, the 3D seismic survey was carried out in 1994 (baseline) and re-acquisition in 2001 (monitor) to observe CO2 distribution and changes in rock properties. This study aims to monitor the distribution of CO2 as well as changes in reservoir rock's acoustic and elastic parameters. This research performed the cross-equalization, 4D Seismic Inversion model-based, and rock physics modeling process. From data processing, obtained information that CO2 spreads laterally, then moves to the northeast and does not penetrate the overburden. Also, we get the NRMS value of 0.443068 and the cross-correlation value of 0.907426. 4D Inversion results reveal a change in the reflector at the reservoir zone, as indicated by the velocity pushdown caused for a decrease in seismic velocity owing to CO2. In addition, rock physics modeling provides that changes occur in bulk modulus, Vp, Vs, density, and AI. From the process, there are differences in AI values where the Inversion results show a decrease in AI values of 2.9%, while rock physics modeling shows a 12% reduction.
{"title":"4D Seismic Inversion and Rock Physic Modeling to Monitor CO2 Injection at Carbon Capture and Storage Project in The Utsira Formation, Sleipner Field, North Sea, Norway","authors":"Bastian Torus, Kunti Yoga Arista, Elta Purnama Wulan, M. Lubis, I. Herawati, W. Pranowo","doi":"10.25299/jeee.2023.14088","DOIUrl":"https://doi.org/10.25299/jeee.2023.14088","url":null,"abstract":"Carbon Capture and Storage (CCS) is used at Sleipner Field due to the implementation of a carbon emission tax off the coast of Norway. This project causes the fluid at the Utsira Formation as a reservoir to be replaced by CO2, so the elastic property of the reservoir rock will change. Because of that, the 3D seismic survey was carried out in 1994 (baseline) and re-acquisition in 2001 (monitor) to observe CO2 distribution and changes in rock properties. This study aims to monitor the distribution of CO2 as well as changes in reservoir rock's acoustic and elastic parameters. This research performed the cross-equalization, 4D Seismic Inversion model-based, and rock physics modeling process. From data processing, obtained information that CO2 spreads laterally, then moves to the northeast and does not penetrate the overburden. Also, we get the NRMS value of 0.443068 and the cross-correlation value of 0.907426. 4D Inversion results reveal a change in the reflector at the reservoir zone, as indicated by the velocity pushdown caused for a decrease in seismic velocity owing to CO2. In addition, rock physics modeling provides that changes occur in bulk modulus, Vp, Vs, density, and AI. From the process, there are differences in AI values where the Inversion results show a decrease in AI values of 2.9%, while rock physics modeling shows a 12% reduction.","PeriodicalId":33635,"journal":{"name":"Journal of Earth Energy Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47654739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-09DOI: 10.25299/jeee.2023.14099
I. Budi, Ajeng Oktaviani
In an EOR project, process improvement must be continually pursued since EOR is often marginally profitable. In steamflood EOR project, steam injection rate is very important parameter to ensure that each pattern reach maturity within a certain early period that result in high oil recovery and meet the economic hurdles. In particularly shallow formation settings, steam injection target is often difficult to achieve because limited by fracturing pressure to avoid breaching the cap rock and creating environmental problem. In this study we simulate steam injection in a typical heavy oil reservoir (high API, shallow depth, low pressure) to enable optimization of steam injection. A model has been built using typical shallow reservoir in using Builder-CMG. Wellan data, fluid model and operating conditions (injection strategy, steam quality) and expected/ forecasted performance. CMOST package is then used to design optimization study by varying the steam injection rate. The best scenario is based on the lowest reservoir pressure and cumulative SOR. We created three development options: regular inverted 7-spot 15.5-acre pattern, horizontal well and pattern size reduction (PSR). From this numerical study it is found that for the case studied, steam injection rate can be ramped up from 250 - 300 BSPD within 6-7 years, followed by peak production. A wind down injection rate to 0 can be used after this peak production to achieve CSOR target of 3-4 bbl of steam/bbl of oil. If a quicker SBT is required, then more steam injectivity is needed to put underground. Several scenarios can be considered as follow: (1) reducing the pattern size (thus adding steam via additional injection wells) and (2) utilizing horizontal wells.
{"title":"Numerical Simulation Study of Steam Injection Optimization in Shallow Reservoir","authors":"I. Budi, Ajeng Oktaviani","doi":"10.25299/jeee.2023.14099","DOIUrl":"https://doi.org/10.25299/jeee.2023.14099","url":null,"abstract":"In an EOR project, process improvement must be continually pursued since EOR is often marginally profitable. In steamflood EOR project, steam injection rate is very important parameter to ensure that each pattern reach maturity within a certain early period that result in high oil recovery and meet the economic hurdles. In particularly shallow formation settings, steam injection target is often difficult to achieve because limited by fracturing pressure to avoid breaching the cap rock and creating environmental problem. In this study we simulate steam injection in a typical heavy oil reservoir (high API, shallow depth, low pressure) to enable optimization of steam injection. A model has been built using typical shallow reservoir in using Builder-CMG. Wellan data, fluid model and operating conditions (injection strategy, steam quality) and expected/ forecasted performance. CMOST package is then used to design optimization study by varying the steam injection rate. The best scenario is based on the lowest reservoir pressure and cumulative SOR. We created three development options: regular inverted 7-spot 15.5-acre pattern, horizontal well and pattern size reduction (PSR). From this numerical study it is found that for the case studied, steam injection rate can be ramped up from 250 - 300 BSPD within 6-7 years, followed by peak production. A wind down injection rate to 0 can be used after this peak production to achieve CSOR target of 3-4 bbl of steam/bbl of oil. If a quicker SBT is required, then more steam injectivity is needed to put underground. Several scenarios can be considered as follow: (1) reducing the pattern size (thus adding steam via additional injection wells) and (2) utilizing horizontal wells.","PeriodicalId":33635,"journal":{"name":"Journal of Earth Energy Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42860797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-09DOI: 10.25299/jeee.2023.13956
Dennya Angeline Ardiyanto Putri, M. Sulhan
Geothermal energy is a sustainable and ecologically beneficial energy source, it is believed that Indonesia alone has 40% of the world's geothermal energy reserves of roughly 28.000 MW. The Indonesian government expects the geothermal power plant installed capacity to reach 10.000 MW by 2025. However, the installed capacity remained at 1.739 MW until 2014. Aside from that, the Indonesian government has made significant investments to expand the geothermal sector through different current rules. This research aims to determine the absorption of geothermal energy as an alternative to power generation and many elements of the associated hurdles, such as natural and human resources. In addition, this paper also creates new model parameters that significantly improve model performance. Analysis of system dynamics methods and modelling and simulation methods are used for fast and accurate results. According to a literature analysis done by collecting secondary data from journals and associated research publications, existing conditions are judged insufficient to meet the installed capacity of geothermal energy with a target of 3.458 MW in 2025 based on simulation results of forecasts through 2050. Factors impeding progress include the government's lack of coordination and implementation difficulties. Furthermore, because the financial sector was redirected to cope with the economic crisis, the pandemic scenario in 2020 was one of the impediments. Based on these criteria, the optimum solution was sought by expanding installed electricity capacity and raising the selling price of geothermal power with a target of 24.5% and electricity output of 13.263 GWh.
{"title":"The development of geothermal energy as a renewable power plant","authors":"Dennya Angeline Ardiyanto Putri, M. Sulhan","doi":"10.25299/jeee.2023.13956","DOIUrl":"https://doi.org/10.25299/jeee.2023.13956","url":null,"abstract":"Geothermal energy is a sustainable and ecologically beneficial energy source, it is believed that Indonesia alone has 40% of the world's geothermal energy reserves of roughly 28.000 MW. The Indonesian government expects the geothermal power plant installed capacity to reach 10.000 MW by 2025. However, the installed capacity remained at 1.739 MW until 2014. Aside from that, the Indonesian government has made significant investments to expand the geothermal sector through different current rules. This research aims to determine the absorption of geothermal energy as an alternative to power generation and many elements of the associated hurdles, such as natural and human resources. In addition, this paper also creates new model parameters that significantly improve model performance. Analysis of system dynamics methods and modelling and simulation methods are used for fast and accurate results. According to a literature analysis done by collecting secondary data from journals and associated research publications, existing conditions are judged insufficient to meet the installed capacity of geothermal energy with a target of 3.458 MW in 2025 based on simulation results of forecasts through 2050. Factors impeding progress include the government's lack of coordination and implementation difficulties. Furthermore, because the financial sector was redirected to cope with the economic crisis, the pandemic scenario in 2020 was one of the impediments. Based on these criteria, the optimum solution was sought by expanding installed electricity capacity and raising the selling price of geothermal power with a target of 24.5% and electricity output of 13.263 GWh.","PeriodicalId":33635,"journal":{"name":"Journal of Earth Energy Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42436306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-09DOI: 10.25299/jeee.2023.14100
R. Wardana, Muhammad Akhwan
Casing design is the most crucial phase of drill a geothermal well. As most of problems could be prevented beforehand by having an excellent well casing design. Prior and present well problems may be assessed to enhance casing design mitigate leading causes and its relationship to well casing. This research is about geothermal well casing design by analyzing in advance the problems that the casing may encounter during drilling and production through NPT & casing damage analysis. The purpose is to construct design depth and grade of geothermal well casing from the effects of axial, hoop, and thermal stress, as well as corrosion. The method used is to analyze the NPT from the available DDR data of the wells and then analyze the damage that occurs to the production wells which then the results of these analysis’ become recommendations for of the next well casing design. The results show Well FDL-33 will use tie-back system with surface casing 20” K55 133 ppf at 350 mMD with semi-premium connection, production casing 13-3/8” L80 68 ppf at 1475.8 mMD with premium connection, production tieback casing 13-3 /8” L80 68 ppf at 300 mMD with premium connection, and production liner 9-5/8” L80 40 ppf at 2695.3 mMD with semi-premium connection.
{"title":"Geothermal Well Casing Design with High Temperature and Corrosive in Q Field","authors":"R. Wardana, Muhammad Akhwan","doi":"10.25299/jeee.2023.14100","DOIUrl":"https://doi.org/10.25299/jeee.2023.14100","url":null,"abstract":"Casing design is the most crucial phase of drill a geothermal well. As most of problems could be prevented beforehand by having an excellent well casing design. Prior and present well problems may be assessed to enhance casing design mitigate leading causes and its relationship to well casing. This research is about geothermal well casing design by analyzing in advance the problems that the casing may encounter during drilling and production through NPT & casing damage analysis. The purpose is to construct design depth and grade of geothermal well casing from the effects of axial, hoop, and thermal stress, as well as corrosion. The method used is to analyze the NPT from the available DDR data of the wells and then analyze the damage that occurs to the production wells which then the results of these analysis’ become recommendations for of the next well casing design. The results show Well FDL-33 will use tie-back system with surface casing 20” K55 133 ppf at 350 mMD with semi-premium connection, production casing 13-3/8” L80 68 ppf at 1475.8 mMD with premium connection, production tieback casing 13-3 /8” L80 68 ppf at 300 mMD with premium connection, and production liner 9-5/8” L80 40 ppf at 2695.3 mMD with semi-premium connection.","PeriodicalId":33635,"journal":{"name":"Journal of Earth Energy Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45539965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-09DOI: 10.25299/jeee.2023.13958
Muhammad Hasbi Ar-Raihan, Raisya Salsabila, Azis Adharis, P. J. Ratri, T. R. Mayangsari
The decline in oil production has led to the development of the Enhanced Oil Recovery (EOR) technology to increase oil production. Chemical injection is one of the methods in EOR by injecting surfactants or polymers into reservoir wells. To understand the properties and dynamics of surfactants and polymers at the nanoscale, computational studies using molecular dynamics simulation were carried out. In this study, surfactant Sodium Dodecyl Benzene Sulfonate (SDBS) and polymers such as Polyacrylamide (PAM) were used to investigate their effect on the oil-water interface system at the atomic level. Molecular dynamics simulation was carried out using Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) to calculate the diffusion coefficient and Interface Formation Energy (IFE) value for the addition of the surfactant and polymers. The simulation results show that the addition of the surfactant and polymers affects the water-oil interface system differently. The diffusion coefficient results indicates that there are strong interactions between SDBS and dodecane with D of 0.01358. While for PAM, the interactions with water are more significant with D of 0.059. The results of the IFE calculation value also show that the addition of SDBS and PAM makes the water-oil interface system more stable with the negative IFE value of -197.51 and -13.13 Kcal/mol respectively. The results of this study will be used as a reference and a basis for designing new surfactants or polymers that will led to more oil recovery.
{"title":"Analysis of Surfactant and Polymer Behavior on Water/Oil Systems as Additives in Enhanced Oil Recovery (EOR) Technology through Molecular Dynamics Simulation: A Preliminary Study","authors":"Muhammad Hasbi Ar-Raihan, Raisya Salsabila, Azis Adharis, P. J. Ratri, T. R. Mayangsari","doi":"10.25299/jeee.2023.13958","DOIUrl":"https://doi.org/10.25299/jeee.2023.13958","url":null,"abstract":"The decline in oil production has led to the development of the Enhanced Oil Recovery (EOR) technology to increase oil production. Chemical injection is one of the methods in EOR by injecting surfactants or polymers into reservoir wells. To understand the properties and dynamics of surfactants and polymers at the nanoscale, computational studies using molecular dynamics simulation were carried out. In this study, surfactant Sodium Dodecyl Benzene Sulfonate (SDBS) and polymers such as Polyacrylamide (PAM) were used to investigate their effect on the oil-water interface system at the atomic level. Molecular dynamics simulation was carried out using Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) to calculate the diffusion coefficient and Interface Formation Energy (IFE) value for the addition of the surfactant and polymers. The simulation results show that the addition of the surfactant and polymers affects the water-oil interface system differently. The diffusion coefficient results indicates that there are strong interactions between SDBS and dodecane with D of 0.01358. While for PAM, the interactions with water are more significant with D of 0.059. The results of the IFE calculation value also show that the addition of SDBS and PAM makes the water-oil interface system more stable with the negative IFE value of -197.51 and -13.13 Kcal/mol respectively. The results of this study will be used as a reference and a basis for designing new surfactants or polymers that will led to more oil recovery.","PeriodicalId":33635,"journal":{"name":"Journal of Earth Energy Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48610639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-09DOI: 10.25299/jeee.2023.14098
Brimas Aptanindia Pangestu, M. Lubis
Sleipner is the world's first commercial Carbon Capture and Storage (CCS) project, located off the coast of Norway, with the goal of reducing carbon emissions by capturing CO2 and storing it in a utsira saline aquifer sandstone reservoir capable of storing up to 600 billion tonnes of CO2. The CO2 injection in these projects increases year after year, so the CO2 development must be monitored to see the distribution pattern and its implications for the reservoir zone. The purpose of this research is to calculate and model the CO2 distribution resulting from acoustic impedance inversion using 4-dimensional inversion, to calculate the repeatability from seismic data between baseline and monitor using the Normalized Root Mean Square attribute. In the processing, baseline and monitor data must be matched in the overburden zone using a cross-equalization process so that the inversion process. The results revealed a correlation between the two seismic data sets (baseline and monitor) with the classification of Reasonable Repeatability, and CO2 distribution in a securely stored reservoir that spreads laterally and does not leak.
{"title":"4-dimensional seismic interpretation to monitor CO2 injection in carbon capture & storage project of Sleipner field, North Sea, Norway using inversion method","authors":"Brimas Aptanindia Pangestu, M. Lubis","doi":"10.25299/jeee.2023.14098","DOIUrl":"https://doi.org/10.25299/jeee.2023.14098","url":null,"abstract":"Sleipner is the world's first commercial Carbon Capture and Storage (CCS) project, located off the coast of Norway, with the goal of reducing carbon emissions by capturing CO2 and storing it in a utsira saline aquifer sandstone reservoir capable of storing up to 600 billion tonnes of CO2. The CO2 injection in these projects increases year after year, so the CO2 development must be monitored to see the distribution pattern and its implications for the reservoir zone. The purpose of this research is to calculate and model the CO2 distribution resulting from acoustic impedance inversion using 4-dimensional inversion, to calculate the repeatability from seismic data between baseline and monitor using the Normalized Root Mean Square attribute. In the processing, baseline and monitor data must be matched in the overburden zone using a cross-equalization process so that the inversion process. The results revealed a correlation between the two seismic data sets (baseline and monitor) with the classification of Reasonable Repeatability, and CO2 distribution in a securely stored reservoir that spreads laterally and does not leak.","PeriodicalId":33635,"journal":{"name":"Journal of Earth Energy Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45187932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-09DOI: 10.25299/jeee.2023.13957
Weny Astuti, Wahyu Tri Mulyono
This research discusses the optimization of production carried out in Well A and Well B. The two Wells are production Well with three production layers (multilayer) that have different characteristics for each layer. Based on the performance evaluation of the production Wells, it’s known that Well A and Well B are no longer able to produce naturally (natural flow). Therefore, it’s necessary to have an artificial lift in order to be able to produce.The artificial lift method used for Well A and Well B is to install an electric submersible pump (ESP), because based on the screening criteria of artificial lift, both Wells can use an electric submersible pump. It’s known that Well A has an absolute open flow (AOF) value of 5840 stb/d and Well B of 3874 stb/d. The production optimization carried out has a production target of 70% of the absolute open flow value. Therefore, the selection of the electric submersible pump for each Well must have an operating flowrate that is in accordance with the production target of the two Wells and must perform a sensitivity test on the selected electric submersible pump to obtain the optimal scenario. So that, the electric submersible pump design for Well A is REDA D4300N with operating frequency of 60 hz and 156 stages, while for Well B is REDA DN3100 with operating frequency of 70 hz and 188 stages.
{"title":"Production optimization in Well A and Well B using electric submersible pump (ESP)","authors":"Weny Astuti, Wahyu Tri Mulyono","doi":"10.25299/jeee.2023.13957","DOIUrl":"https://doi.org/10.25299/jeee.2023.13957","url":null,"abstract":"This research discusses the optimization of production carried out in Well A and Well B. The two Wells are production Well with three production layers (multilayer) that have different characteristics for each layer. Based on the performance evaluation of the production Wells, it’s known that Well A and Well B are no longer able to produce naturally (natural flow). Therefore, it’s necessary to have an artificial lift in order to be able to produce.The artificial lift method used for Well A and Well B is to install an electric submersible pump (ESP), because based on the screening criteria of artificial lift, both Wells can use an electric submersible pump. It’s known that Well A has an absolute open flow (AOF) value of 5840 stb/d and Well B of 3874 stb/d. The production optimization carried out has a production target of 70% of the absolute open flow value. Therefore, the selection of the electric submersible pump for each Well must have an operating flowrate that is in accordance with the production target of the two Wells and must perform a sensitivity test on the selected electric submersible pump to obtain the optimal scenario. So that, the electric submersible pump design for Well A is REDA D4300N with operating frequency of 60 hz and 156 stages, while for Well B is REDA DN3100 with operating frequency of 70 hz and 188 stages.","PeriodicalId":33635,"journal":{"name":"Journal of Earth Energy Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47091107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.25299/jeee.2023.11934
Sefilra Andalucia
Calculation Evaporation Loss (Fixed Roof Tank) on Tank Y and Tank Z in SA Field, PT X Prabumulih. The calculation of evaporation loss consists of breathing loss and working loss. By calculating breathing loss and working loss, it can be known the losses that occur in a tank. The most significant parameters in influencing breathing loss are temperature and ullage tanks, while parameters that greatly affect working loss are true vapor pressure and trhoughput. After calculating, the total losses that occurred in Tank Y and Tank Z were obtained as much as 3.46 Bbl / day or 1,261.41 Bbl / year, if assumed with the Indonesian Crude Price (ICP) price of crude oil per barrel is currently US $ 117.62 then the loss incurred in Tank Y and Tank Z is Rp. 2,209,762,045 / year.
PT X Prabumulih SA油田储罐Y和储罐Z的蒸发损失计算(固定顶储罐)。蒸发损失的计算包括呼吸损失和工作损失。通过计算呼吸损失和工作损失,可以知道储罐中发生的损失。影响呼吸损失的最重要参数是温度和空罐,而对工作损失影响最大的参数是真实蒸汽压力和流量。经过计算,Y罐和Z罐发生的总损失高达34.6亿桶/天或1261.41亿桶/年,如果假设印尼原油价格(ICP)目前为每桶117.62美元,那么Y罐和Z罐发生的损失为2209762045卢比/年。
{"title":"THE CALCULATION OF EVAPORATION LOSS IN TANK Y AND TANK Z AT PT X PRABUMULIH","authors":"Sefilra Andalucia","doi":"10.25299/jeee.2023.11934","DOIUrl":"https://doi.org/10.25299/jeee.2023.11934","url":null,"abstract":"Calculation Evaporation Loss (Fixed Roof Tank) on Tank Y and Tank Z in SA Field, PT X Prabumulih. The calculation of evaporation loss consists of breathing loss and working loss. By calculating breathing loss and working loss, it can be known the losses that occur in a tank. The most significant parameters in influencing breathing loss are temperature and ullage tanks, while parameters that greatly affect working loss are true vapor pressure and trhoughput. After calculating, the total losses that occurred in Tank Y and Tank Z were obtained as much as 3.46 Bbl / day or 1,261.41 Bbl / year, if assumed with the Indonesian Crude Price (ICP) price of crude oil per barrel is currently US $ 117.62 then the loss incurred in Tank Y and Tank Z is Rp. 2,209,762,045 / year.","PeriodicalId":33635,"journal":{"name":"Journal of Earth Energy Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46824051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.25299/jeee.2023.10978
S. F. Maulindani, T. Marhaendrajana, D. Abdassah
A naturally fractured reservoir today plays a significant role in the improved worldwide oil and gas production. More than half of the resource is mostly found in this reservoir. In this reservoir, there are two porous media: the matrix, which serves as the fluid source, and the fractures, as the fluid network that flow to the wellbore. Many authors have done the researches of works in order to modelling this reservoir. There are two model are done in this study, such as Warren and Root model, where fluid flow mechanism matrix to fractures is known as pseudosteady-state flow and Kazemi-Gilman model is known as transient interporosity flow. Reservoir Engineers generally utilize pressure transient analysis to determine this reservoir's characteristics. The purpose of this study is to assess whether it is feasible to incorporate the parameters from the Pressure Transient analysis using a synthesis simulation model. It also aims to observe how reservoir parameters behave in relation to the characteristics of naturally fractured reservoirs by utilizing various values for porosity, permeability, and fracture spacing.
{"title":"Pressure Transient Analysis using Generated Simulation Reservoir Data for Dual Porosity Model of Naturally Fractured Reservoir","authors":"S. F. Maulindani, T. Marhaendrajana, D. Abdassah","doi":"10.25299/jeee.2023.10978","DOIUrl":"https://doi.org/10.25299/jeee.2023.10978","url":null,"abstract":"A naturally fractured reservoir today plays a significant role in the improved worldwide oil and gas production. More than half of the resource is mostly found in this reservoir. In this reservoir, there are two porous media: the matrix, which serves as the fluid source, and the fractures, as the fluid network that flow to the wellbore. Many authors have done the researches of works in order to modelling this reservoir. There are two model are done in this study, such as Warren and Root model, where fluid flow mechanism matrix to fractures is known as pseudosteady-state flow and Kazemi-Gilman model is known as transient interporosity flow. \u0000Reservoir Engineers generally utilize pressure transient analysis to determine this reservoir's characteristics. The purpose of this study is to assess whether it is feasible to incorporate the parameters from the Pressure Transient analysis using a synthesis simulation model. It also aims to observe how reservoir parameters behave in relation to the characteristics of naturally fractured reservoirs by utilizing various values for porosity, permeability, and fracture spacing.","PeriodicalId":33635,"journal":{"name":"Journal of Earth Energy Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44859962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.25299/jeee.2023.11083
Ali Musnal, Richa Melysa
The inability of the gas to lift liquid to the surface causes liquid to accumulate in the downhole, this event is called liquid loading, and sand deposits at the bottom of the well are caused to be swept away by the gas flow. If a well has liquid loading and sandification, well production will decrease and even the well will die. For this reason, it is necessary to carry out a predictive analysis of the well and a method to overcome the problem of liquid loading and sandiness using a plunger lift.Liquid loading is not always easy to identify, because the well is still producing significantly. The method used in the petroleum world to identify liquid loading is the "Turner et al" method. The plunger is a piston-type device that moves freely in the tubing and according to the inside diameter of the pipe, rising when the well pressure is sufficient to lift it and moving back down due to the force of gravity. The plunger lifting system uses gas pressure buildup in the well to lift the accumulated liquid column out of the well. The researcher conducted a liquid loading analysis on well A1 and well A2. From the results of the study it was identified that well A1 did not experience liquid loading, because the calculation results showed that the well's critical gas flow rate was 3.3 MMSCFPD which was less than the actual gas flow rate of 5 MMSCFPD. Well A2 is experiencing liquid loading, because the results of the calculation of the well's critical gas flow rate are 3.6 MMSCFPD, while the actual gas flow rate in the field is 3MMSCFPD.After removal of fluid and sand from the bottom of the well, the production rate of the A2 gas well increased to 5 MMSCFPD.
{"title":"Analysis of Liquid Loading and Sandness in Gas Wells A1, A2 And Their Correction with The Plunger Lift Method in Field B","authors":"Ali Musnal, Richa Melysa","doi":"10.25299/jeee.2023.11083","DOIUrl":"https://doi.org/10.25299/jeee.2023.11083","url":null,"abstract":"The inability of the gas to lift liquid to the surface causes liquid to accumulate in the downhole, this event is called liquid loading, and sand deposits at the bottom of the well are caused to be swept away by the gas flow. If a well has liquid loading and sandification, well production will decrease and even the well will die. For this reason, it is necessary to carry out a predictive analysis of the well and a method to overcome the problem of liquid loading and sandiness using a plunger lift.Liquid loading is not always easy to identify, because the well is still producing significantly. The method used in the petroleum world to identify liquid loading is the \"Turner et al\" method. The plunger is a piston-type device that moves freely in the tubing and according to the inside diameter of the pipe, rising when the well pressure is sufficient to lift it and moving back down due to the force of gravity. The plunger lifting system uses gas pressure buildup in the well to lift the accumulated liquid column out of the well. The researcher conducted a liquid loading analysis on well A1 and well A2. From the results of the study it was identified that well A1 did not experience liquid loading, because the calculation results showed that the well's critical gas flow rate was 3.3 MMSCFPD which was less than the actual gas flow rate of 5 MMSCFPD. Well A2 is experiencing liquid loading, because the results of the calculation of the well's critical gas flow rate are 3.6 MMSCFPD, while the actual gas flow rate in the field is 3MMSCFPD.After removal of fluid and sand from the bottom of the well, the production rate of the A2 gas well increased to 5 MMSCFPD.","PeriodicalId":33635,"journal":{"name":"Journal of Earth Energy Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44063446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}