首页 > 最新文献

Applied Surface Science Advances最新文献

英文 中文
Transfer of micron pattern with reactive atmospheric plasma jets into fused silica 用反应性大气等离子体射流将微米图案转移到熔融石英中
IF 7.5 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-01 DOI: 10.1016/j.apsadv.2024.100636
Martin Ehrhardt , Pierre Lorenz , Joachim Zajadacz , Robert Heinke , Thomas Arnold , Klaus Zimmer

Pattern transfer by plasma etching is a traditional standard technology in microelectronics and other micron technologies. These technologies require vacuum conditions, which limit throughput, size, and low-cost fabrication. Recent developments in low cost atmospheric plasma technologies may be suitable to realize pattern transfer without vacuum conditions. Reactive atmospheric plasma jet etching has been used to transfer aluminum mask patterns to fused silica. Aluminum line patterns of 2.5 to 50 µm width on fused silica wafer are exposed to a static as well as a scanning CF4/O2 reactive atmospheric plasma jet with a footprint diameter of 0.85 mm (full width at half maximum), resulting in etching only the SiO2 and causing a nearly isotropic etch with an etch rate of about 200 nm/s. As a result, line narrowing, trapezoidal line cross-sections, and under-etching were observed. The successfully transferred line patterns with the demonstrated widths and depths are of technological interest in various fields of application. Therefore, this approach enables low-cost patterning of fused silica through the use of reactive atmospheric plasma jet etching for micron-scale pattern transfer. This advancement addresses the limitations of both traditional vacuum-based and wet etching methods.

等离子刻蚀图案转移是微电子和其他微米技术的传统标准技术。这些技术需要真空条件,从而限制了产量、尺寸和低成本制造。低成本大气等离子体技术的最新发展可能适合在无真空条件下实现图案转移。反应性大气等离子体喷射蚀刻已被用于将铝掩膜图案转移到熔融石英上。将熔融石英晶片上宽度为 2.5 至 50 微米的铝线图案暴露在静态和扫描 CF4/O2 反应性大气等离子体射流中,射流的足迹直径为 0.85 毫米(半最大全宽),结果只蚀刻了二氧化硅,并以约 200 纳米/秒的蚀刻速率产生了近乎各向同性的蚀刻。因此,观察到了线变窄、梯形线截面和蚀刻不足。成功转移的线条图案具有所展示的宽度和深度,在各个应用领域都具有技术意义。因此,这种方法通过使用反应性大气等离子体喷射蚀刻技术进行微米级图案转移,实现了熔融石英的低成本图案化。这一进步解决了传统真空蚀刻和湿蚀刻方法的局限性。
{"title":"Transfer of micron pattern with reactive atmospheric plasma jets into fused silica","authors":"Martin Ehrhardt ,&nbsp;Pierre Lorenz ,&nbsp;Joachim Zajadacz ,&nbsp;Robert Heinke ,&nbsp;Thomas Arnold ,&nbsp;Klaus Zimmer","doi":"10.1016/j.apsadv.2024.100636","DOIUrl":"10.1016/j.apsadv.2024.100636","url":null,"abstract":"<div><p>Pattern transfer by plasma etching is a traditional standard technology in microelectronics and other micron technologies. These technologies require vacuum conditions, which limit throughput, size, and low-cost fabrication. Recent developments in low cost atmospheric plasma technologies may be suitable to realize pattern transfer without vacuum conditions. Reactive atmospheric plasma jet etching has been used to transfer aluminum mask patterns to fused silica. Aluminum line patterns of 2.5 to 50 µm width on fused silica wafer are exposed to a static as well as a scanning CF<sub>4</sub>/O<sub>2</sub> reactive atmospheric plasma jet with a footprint diameter of 0.85 mm (full width at half maximum), resulting in etching only the SiO<sub>2</sub> and causing a nearly isotropic etch with an etch rate of about 200 nm/s. As a result, line narrowing, trapezoidal line cross-sections, and under-etching were observed. The successfully transferred line patterns with the demonstrated widths and depths are of technological interest in various fields of application. Therefore, this approach enables low-cost patterning of fused silica through the use of reactive atmospheric plasma jet etching for micron-scale pattern transfer. This advancement addresses the limitations of both traditional vacuum-based and wet etching methods.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"23 ","pages":"Article 100636"},"PeriodicalIF":7.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523924000643/pdfft?md5=91e11ffead3dff5c2224954deb53fba6&pid=1-s2.0-S2666523924000643-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preface on Novel Aspects in Theoretical and Computational Surface Science (NATCSS) 理论与计算表面科学(NATCSS)新观点序言
IF 7.5 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-28 DOI: 10.1016/j.apsadv.2024.100632
Seung Geol Lee , Ian Shuttleworth , Herbert M. Urbassek , Byungchan Han , Alfredo Juan
{"title":"Preface on Novel Aspects in Theoretical and Computational Surface Science (NATCSS)","authors":"Seung Geol Lee ,&nbsp;Ian Shuttleworth ,&nbsp;Herbert M. Urbassek ,&nbsp;Byungchan Han ,&nbsp;Alfredo Juan","doi":"10.1016/j.apsadv.2024.100632","DOIUrl":"10.1016/j.apsadv.2024.100632","url":null,"abstract":"","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"23 ","pages":"Article 100632"},"PeriodicalIF":7.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523924000606/pdfft?md5=84cf5fde1316e072dde91b94349fd28e&pid=1-s2.0-S2666523924000606-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sand blasting for hydrophobic surface generation in polymers: Experimental and machine learning approaches 在聚合物中喷砂生成疏水表面:实验和机器学习方法
IF 7.5 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-28 DOI: 10.1016/j.apsadv.2024.100633
Erencan Oranli , Chenbin Ma , Nahsan Gungoren , Asghar Heydari Astaraee , Sara Bagherifard , Mario Guagliano

Wettability is a crucial surface feature of polymers due to their numerous interaction-destined applications. This study focuses on the application of sand blasting process for investigating the wettability of polymeric materials to produce hydrophobic behavior. Four different polymeric materials, Acrylonitrile Butadiene Styrene (ABS), Poly(methyl methacrylate) (PMMA), Polypropylene (PP), and Polycarbonate (PC) underwent sand blasting with varying process parameters, following a comprehensive plan for the design of experiments. Subsequent analyses included surface roughness measurement and wettability tests, supplemented by scanning electron and confocal microscopy observations to gain deeper insights into the blasted surfaces. A predictive model based on a machine learning algorithm was developed using the backpropagation technique to correlate the surface treatment parameters to surface roughness and wettability indexes. From the experimental results sand blasting proved to be efficient in creating hydrophobic surfaces on all the tested materials. The developed neural network demonstrated high fitting degrees between the predicted and measured values. ABS exhibited the most hydrophobic behavior and emerged as a strong candidate for further investigations.

润湿性是聚合物的一个重要表面特征,因为它们有许多相互作用的用途。本研究的重点是应用喷砂工艺研究聚合物材料的润湿性,以产生疏水行为。四种不同的聚合物材料,即丙烯腈-丁二烯-苯乙烯(ABS)、聚甲基丙烯酸甲酯(PMMA)、聚丙烯(PP)和聚碳酸酯(PC),按照实验设计的综合计划,采用不同的工艺参数进行喷砂处理。随后的分析包括表面粗糙度测量和润湿性测试,并辅以扫描电子显微镜和共聚焦显微镜观察,以深入了解喷砂表面。利用反向传播技术开发了基于机器学习算法的预测模型,将表面处理参数与表面粗糙度和润湿性指标联系起来。实验结果证明,喷砂能有效地在所有测试材料上形成疏水表面。开发的神经网络在预测值和测量值之间表现出很高的拟合度。ABS 的疏水性最强,是进一步研究的有力候选材料。
{"title":"Sand blasting for hydrophobic surface generation in polymers: Experimental and machine learning approaches","authors":"Erencan Oranli ,&nbsp;Chenbin Ma ,&nbsp;Nahsan Gungoren ,&nbsp;Asghar Heydari Astaraee ,&nbsp;Sara Bagherifard ,&nbsp;Mario Guagliano","doi":"10.1016/j.apsadv.2024.100633","DOIUrl":"10.1016/j.apsadv.2024.100633","url":null,"abstract":"<div><p>Wettability is a crucial surface feature of polymers due to their numerous interaction-destined applications. This study focuses on the application of sand blasting process for investigating the wettability of polymeric materials to produce hydrophobic behavior. Four different polymeric materials, Acrylonitrile Butadiene Styrene (ABS), Poly(methyl methacrylate) (PMMA), Polypropylene (PP), and Polycarbonate (PC) underwent sand blasting with varying process parameters, following a comprehensive plan for the design of experiments. Subsequent analyses included surface roughness measurement and wettability tests, supplemented by scanning electron and confocal microscopy observations to gain deeper insights into the blasted surfaces. A predictive model based on a machine learning algorithm was developed using the backpropagation technique to correlate the surface treatment parameters to surface roughness and wettability indexes. From the experimental results sand blasting proved to be efficient in creating hydrophobic surfaces on all the tested materials. The developed neural network demonstrated high fitting degrees between the predicted and measured values. ABS exhibited the most hydrophobic behavior and emerged as a strong candidate for further investigations.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"23 ","pages":"Article 100633"},"PeriodicalIF":7.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523924000618/pdfft?md5=4155484b966e607625fbecec370bdcfd&pid=1-s2.0-S2666523924000618-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of SiO2-reinforcement and alkali treatment on the corrosion resistance of plasma electrolytic oxide coating on AZ31 magnesium alloy 二氧化硅强化和碱处理对 AZ31 镁合金等离子电解氧化物涂层耐腐蚀性的影响
IF 7.5 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-26 DOI: 10.1016/j.apsadv.2024.100631
Sri Rahmadani, Anawati Anawati

Plasma electrolytic oxidation (PEO) produces an oxide coating containing pores and cracks lowering corrosion protection. The defects can be sealed by in-situ or post-treatment methods. This work compares the sealing effect of SiO2 particles and post-alkali treatment on the corrosion resistance of PEO coatings formed on AZ31 magnesium (Mg) alloy. PEO was conducted in a phosphate-based electrolyte containing 2 g/l nanoparticle SiO2 at a constant current density of 300 A/m2 for 10 min. The post-alkali treatment was performed in 0.5 M NaOH solution at 80 °C for 30 min. The corrosion resistance was evaluated using polarization, electrochemical impedance spectroscopy, and weight loss tests. The SiO2 particles were successfully embedded uniformly in the Mg3(PO4)2 coating, enhancing the coating compactness and stability. The reinforced coating exhibited ten times higher impedance modulus and lower corrosion current density. The post-alkali treatment improved corrosion resistance but not as high as the SiO2 reinforcement. The impedance modulus of the alkali-treated specimen increased five times, and the corrosion current density decreased three times of the base coating. The weight loss test consistently showed that the SiO2-reinforced coating generated lower mass loss during 14 days of immersion in simulated body fluid.

等离子电解氧化(PEO)产生的氧化物涂层含有气孔和裂缝,可降低腐蚀防护能力。这些缺陷可通过原位或后处理方法进行密封。本研究比较了二氧化硅颗粒和后碱处理对 AZ31 镁(Mg)合金上形成的 PEO 涂层耐腐蚀性的密封效果。PEO 在含有 2 g/l 纳米颗粒 SiO2 的磷酸盐电解液中以 300 A/m2 的恒定电流密度进行 10 分钟。后碱处理在 0.5 M NaOH 溶液中进行,温度为 80 °C,时间为 30 分钟。使用极化、电化学阻抗光谱和失重测试对耐腐蚀性能进行了评估。二氧化硅颗粒成功地均匀嵌入了 Mg3(PO4)2 涂层,增强了涂层的致密性和稳定性。增强涂层的阻抗模量提高了十倍,腐蚀电流密度降低了。后碱处理提高了耐腐蚀性,但不如 SiO2 增强层高。碱处理试样的阻抗模量提高了五倍,腐蚀电流密度降低了三倍。失重试验一致表明,SiO2 增强涂层在模拟体液中浸泡 14 天后产生的质量损失较小。
{"title":"Effect of SiO2-reinforcement and alkali treatment on the corrosion resistance of plasma electrolytic oxide coating on AZ31 magnesium alloy","authors":"Sri Rahmadani,&nbsp;Anawati Anawati","doi":"10.1016/j.apsadv.2024.100631","DOIUrl":"10.1016/j.apsadv.2024.100631","url":null,"abstract":"<div><p>Plasma electrolytic oxidation (PEO) produces an oxide coating containing pores and cracks lowering corrosion protection. The defects can be sealed by in-situ or post-treatment methods. This work compares the sealing effect of SiO<sub>2</sub> particles and post-alkali treatment on the corrosion resistance of PEO coatings formed on AZ31 magnesium (Mg) alloy. PEO was conducted in a phosphate-based electrolyte containing 2 g/l nanoparticle SiO<sub>2</sub> at a constant current density of 300 A/m<sup>2</sup> for 10 min. The post-alkali treatment was performed in 0.5 M NaOH solution at 80 °C for 30 min. The corrosion resistance was evaluated using polarization, electrochemical impedance spectroscopy, and weight loss tests. The SiO<sub>2</sub> particles were successfully embedded uniformly in the Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> coating, enhancing the coating compactness and stability. The reinforced coating exhibited ten times higher impedance modulus and lower corrosion current density. The post-alkali treatment improved corrosion resistance but not as high as the SiO<sub>2</sub> reinforcement. The impedance modulus of the alkali-treated specimen increased five times, and the corrosion current density decreased three times of the base coating. The weight loss test consistently showed that the SiO<sub>2</sub>-reinforced coating generated lower mass loss during 14 days of immersion in simulated body fluid.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"23 ","pages":"Article 100631"},"PeriodicalIF":7.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266652392400059X/pdfft?md5=75c62bcf2061d1dd4eff14167cf6c163&pid=1-s2.0-S266652392400059X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing PEHD pipes reliability prediction: Integrating ANN and FEM for tensile strength analysis 加强 PEHD 管道的可靠性预测:拉伸强度分析中的 ANN 和 FEM 集成
IF 7.5 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-07 DOI: 10.1016/j.apsadv.2024.100630
Srii Ihssan , Nagoor Basha Shaik , Naoual Belouaggadia , Mustapha Jammoukh , Alanssari Nasserddine

In the pipe industry, pressure pipes have long made use of High-Density Polyethylene (HDPE), which is used extensively. Currently, HDPE pipes are installed in higher numbers in comparison with other plastic pipes. The purpose of this study is to evaluate and compare the predictive capabilities of two methods, including the finite element method (FEM) and artificial neural network (ANN) techniques, for predicting the tensile strength of HDPE pipes used in water distribution systems. Attempts have been made to improve prediction models to better predict the mechanical behavior of these pipes by improving our understanding of the structure and surface characteristics as well as the interactions between the interface and the operating environment. The results show that experimental trial results are in perfect agreement with machine learning techniques. The findings of this study highlight the benefits of using ANN to predict the behavior of HDPE pipes, which may have significant ramifications for the plastics and water distribution industries.

在管道行业,压力管道长期以来一直广泛使用高密度聚乙烯(HDPE)。目前,高密度聚乙烯管道的安装数量高于其他塑料管道。本研究旨在评估和比较两种方法的预测能力,包括有限元法(FEM)和人工神经网络(ANN)技术,用于预测输水系统中使用的高密度聚乙烯管道的抗拉强度。我们尝试改进预测模型,通过提高对结构和表面特征以及界面与工作环境之间相互作用的理解,更好地预测这些管道的机械行为。结果表明,实验试验结果与机器学习技术完全一致。这项研究的结果凸显了使用 ANN 预测高密度聚乙烯管道行为的好处,这可能会对塑料和输水行业产生重大影响。
{"title":"Enhancing PEHD pipes reliability prediction: Integrating ANN and FEM for tensile strength analysis","authors":"Srii Ihssan ,&nbsp;Nagoor Basha Shaik ,&nbsp;Naoual Belouaggadia ,&nbsp;Mustapha Jammoukh ,&nbsp;Alanssari Nasserddine","doi":"10.1016/j.apsadv.2024.100630","DOIUrl":"10.1016/j.apsadv.2024.100630","url":null,"abstract":"<div><p>In the pipe industry, pressure pipes have long made use of High-Density Polyethylene (HDPE), which is used extensively. Currently, HDPE pipes are installed in higher numbers in comparison with other plastic pipes. The purpose of this study is to evaluate and compare the predictive capabilities of two methods, including the finite element method (FEM) and artificial neural network (ANN) techniques, for predicting the tensile strength of HDPE pipes used in water distribution systems. Attempts have been made to improve prediction models to better predict the mechanical behavior of these pipes by improving our understanding of the structure and surface characteristics as well as the interactions between the interface and the operating environment. The results show that experimental trial results are in perfect agreement with machine learning techniques. The findings of this study highlight the benefits of using ANN to predict the behavior of HDPE pipes, which may have significant ramifications for the plastics and water distribution industries.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"23 ","pages":"Article 100630"},"PeriodicalIF":7.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523924000588/pdfft?md5=41246ebad2fe1a4ae4f8d18c6ece7877&pid=1-s2.0-S2666523924000588-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical state-of-the-art literature review of surface roughness in incremental sheet forming: A comparative analysis 关于增量板材成形中表面粗糙度的最新关键文献综述:比较分析
IF 7.5 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-06 DOI: 10.1016/j.apsadv.2024.100625
Ajay Kumar

Incremental sheet forming (ISF) is a controlled and die-less forming process that can produce customized products from the sheets layer by layer using the same setup, i.e., forming tools and machine. This novel and emerging forming technique can potentially be useful as a green aspect of manufacturing by reducing the required power and by saving the resources for producing the components of lightweight materials because material is deformed locally during ISF. The surface quality of the formed parts from sheet material affects the aesthetics aspects, stress concentration, fatigue life and their applicability. This review article aims to provide a state-of-the-art review for various aspects and parameters of ISF process that affect the surface roughness significantly by conducting literature survey quantitatively. Furthermore, the techniques of ISF and roles of various parameters responsible for affecting the surface quality of parts have also been explored for providing the critics for existing literature and setting the further guidelines for the researchers. Various instruments used for measuring the surface roughness of parts formed by ISF has also been discussed. Comparative analysis of exiting literature available in the context of various process parameters, ISF hardware, and surface roughness makes this study comprehensive and exhaustive for the researchers to find the gaps and challenges in this field. The relationship of wall angle with other process parameters can be explored in the future to obtain the desired surface quality of a particular material. Significant parameters responsible for the surface quality have also been discussed critically. Further, the new tool paths can be developed for high surface quality and low forming time. A study on the selection of feed rate for various applications and relation with other parameter is also recommended for the future work. The lubricants with additives can further be tested for high surface quality of ISF. Further, significant study on surface roughness is not conducted on hybrid sheet forming and other advanced variants of ISF (like hot forming, friction stir assisted incremental forming, waterjet forming). It is required to develop the comparisons between the different techniques of ISF. Results also showed that majority of researchers used SPIF technique followed by DSIF and hybrid ISF.

增量式板材成型(ISF)是一种可控的无模成型工艺,可使用相同的设置(即成型工具和机器)将板材逐层制成定制产品。由于材料在 ISF 成型过程中会发生局部变形,因此这种新兴的成型技术在生产轻质材料部件时可减少所需的动力并节省资源,从而有可能成为一种绿色制造技术。板材成型零件的表面质量会影响美观、应力集中、疲劳寿命及其适用性。本综述文章旨在通过定量的文献调查,对严重影响表面粗糙度的 ISF 工艺的各个方面和参数进行最新综述。此外,文章还探讨了 ISF 技术以及影响零件表面质量的各种参数的作用,以便对现有文献进行批判,并为研究人员提供进一步的指导。此外,还讨论了用于测量 ISF 制成的零件表面粗糙度的各种仪器。对各种工艺参数、ISF 硬件和表面粗糙度方面的现有文献进行比较分析,使本研究全面详尽,便于研究人员找到该领域的差距和挑战。今后还可以探讨壁角与其他工艺参数的关系,以获得特定材料所需的表面质量。此外,还对影响表面质量的重要参数进行了批判性讨论。此外,还可以开发新的刀具路径,以获得较高的表面质量和较短的成形时间。此外,还建议在今后的工作中对各种应用的进给量选择以及与其他参数的关系进行研究。还可以进一步测试添加剂的润滑剂,以提高 ISF 的表面质量。此外,对混合板材成形和 ISF 的其他先进变体(如热成形、摩擦搅拌辅助增量成形、水刀成形)的表面粗糙度还没有进行深入研究。需要对 ISF 的不同技术进行比较。研究结果还显示,大多数研究人员使用了 SPIF 技术,其次是 DSIF 和混合 ISF。
{"title":"Critical state-of-the-art literature review of surface roughness in incremental sheet forming: A comparative analysis","authors":"Ajay Kumar","doi":"10.1016/j.apsadv.2024.100625","DOIUrl":"10.1016/j.apsadv.2024.100625","url":null,"abstract":"<div><p>Incremental sheet forming (ISF) is a controlled and die-less forming process that can produce customized products from the sheets layer by layer using the same setup, i.e., forming tools and machine. This novel and emerging forming technique can potentially be useful as a green aspect of manufacturing by reducing the required power and by saving the resources for producing the components of lightweight materials because material is deformed locally during ISF. The surface quality of the formed parts from sheet material affects the aesthetics aspects, stress concentration, fatigue life and their applicability. This review article aims to provide a state-of-the-art review for various aspects and parameters of ISF process that affect the surface roughness significantly by conducting literature survey quantitatively. Furthermore, the techniques of ISF and roles of various parameters responsible for affecting the surface quality of parts have also been explored for providing the critics for existing literature and setting the further guidelines for the researchers. Various instruments used for measuring the surface roughness of parts formed by ISF has also been discussed. Comparative analysis of exiting literature available in the context of various process parameters, ISF hardware, and surface roughness makes this study comprehensive and exhaustive for the researchers to find the gaps and challenges in this field. The relationship of wall angle with other process parameters can be explored in the future to obtain the desired surface quality of a particular material. Significant parameters responsible for the surface quality have also been discussed critically. Further, the new tool paths can be developed for high surface quality and low forming time. A study on the selection of feed rate for various applications and relation with other parameter is also recommended for the future work. The lubricants with additives can further be tested for high surface quality of ISF. Further, significant study on surface roughness is not conducted on hybrid sheet forming and other advanced variants of ISF (like hot forming, friction stir assisted incremental forming, waterjet forming). It is required to develop the comparisons between the different techniques of ISF. Results also showed that majority of researchers used SPIF technique followed by DSIF and hybrid ISF.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"23 ","pages":"Article 100625"},"PeriodicalIF":7.5,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523924000539/pdfft?md5=00fd5a6ba3ecadda36b51446229a09cf&pid=1-s2.0-S2666523924000539-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimizing surface adhesion of Sylgard 184 for medical applications 最大限度减少医疗应用中 Sylgard 184 的表面附着力
IF 7.5 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-05 DOI: 10.1016/j.apsadv.2024.100624
Axel Bachoux , Cédric Desroches , Nina Attik , Rodica Chiriac , François Toche , Bérangère Toury

Silicones such Sylgard 184 are widely employed in biological applications due to their versatile properties. However, their inherently adhesive surfaces can restrict their application, especially in direct contact with damaged biological tissues, potentially compromising patient comfort. To enhance the surface properties of Sylgard 184 while maintaining its transparency in the visible spectrum, a novel low-temperature method (70 °C) has been developed. This method involves immersing PDMS in a solution of titanium (IV) ethoxide in THF, thus inducing swelling of the silicone's polymer network, followed by the diffusion and condensation of titanium (IV) ethoxide within the polymer matrix. The resulting hybrid material, incorporating amorphous titanium oxide within the silicone network, exhibits significantly increased surface hardness compared to unmodified Sylgard 184, while retaining transparency and improving biological behaviour. The elaborated method holds promising potential for enhancing the performance of silicone-based materials in diverse biomedical applications.

Sylgard 184 等有机硅因其多功能特性而被广泛应用于生物领域。然而,其固有的粘性表面会限制其应用,特别是在直接接触受损生物组织时,可能会影响患者的舒适度。为了增强 Sylgard 184 的表面特性,同时保持其在可见光谱下的透明度,我们开发了一种新型低温方法(70 °C)。这种方法是将 PDMS 浸入乙醇钛(IV)的四氢呋喃溶液中,从而引起硅树脂聚合物网络的膨胀,随后乙醇钛(IV)在聚合物基质中扩散并凝结。与未改性的 Sylgard 184 相比,在有机硅网络中加入无定形氧化钛的混合材料的表面硬度显著提高,同时还保持了透明度并改善了生物特性。所阐述的方法有望提高硅基材料在各种生物医学应用中的性能。
{"title":"Minimizing surface adhesion of Sylgard 184 for medical applications","authors":"Axel Bachoux ,&nbsp;Cédric Desroches ,&nbsp;Nina Attik ,&nbsp;Rodica Chiriac ,&nbsp;François Toche ,&nbsp;Bérangère Toury","doi":"10.1016/j.apsadv.2024.100624","DOIUrl":"10.1016/j.apsadv.2024.100624","url":null,"abstract":"<div><p>Silicones such Sylgard 184 are widely employed in biological applications due to their versatile properties. However, their inherently adhesive surfaces can restrict their application, especially in direct contact with damaged biological tissues, potentially compromising patient comfort. To enhance the surface properties of Sylgard 184 while maintaining its transparency in the visible spectrum, a novel low-temperature method (70 °C) has been developed. This method involves immersing PDMS in a solution of titanium (IV) ethoxide in THF, thus inducing swelling of the silicone's polymer network, followed by the diffusion and condensation of titanium (IV) ethoxide within the polymer matrix. The resulting hybrid material, incorporating amorphous titanium oxide within the silicone network, exhibits significantly increased surface hardness compared to unmodified Sylgard 184, while retaining transparency and improving biological behaviour. The elaborated method holds promising potential for enhancing the performance of silicone-based materials in diverse biomedical applications.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"23 ","pages":"Article 100624"},"PeriodicalIF":7.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523924000527/pdfft?md5=df0ee12fdaaf7a3df510123fc5b367d6&pid=1-s2.0-S2666523924000527-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible PMN-PT/rGO/PVDF-TrFE based composites for triboelectric and piezoelectric energy harvesting 基于柔性 PMN-PT/rGO/PVDF-TrFE 的三电和压电能量采集复合材料
IF 7.5 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-05 DOI: 10.1016/j.apsadv.2024.100626
Satyabati Das , Manila Mallik , Kalpana Parida , Nilotpala Bej , Jayashree Baral

Flexible piezoelectric nanogenerator (PENG) and triboelectric nanogenerators (TENG) have gained prodigious attention due to the increasing demand of nano and micro energy for driving of miniaturized electronic devices, sensors, and various internet of things. The key challenges that are currently in focus are material selection and simple fabrication techniques for improved electrical performance along with good mechanical properties and flexibility. Herein, a ferroelectric polymer, poly(vinylidenefluoride-co-trifluoroethyne) (PVDF-TrFE), is chosen as a flexible material due to its promising prospect for energy harvesting. To improve the performance, a ceramic material, 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 (PMN-PT), with very high piezoelectric properties has been selected as the reinforcement. Further, reduced graphene oxide has been added as a conducting filler to promote charge conduction. A remarkable enhancement in output voltage of nearly 3 fold is achieved in PVDF-TrFE/PMN-PT (PP) polymer composite as compared to the base polymer PVDF-TrFE (P) TENG device. Furthermore, the PVDF-TrFE/rGO/PMN-PT (PPR) as a PENG illustrates a great improvement in output current of the order of 2 as compared to the pristine polymer. The maximum output voltage as shown by the TENG is 200 V and the maximum current that is shown by the PENG is 30 µA. Therefore, the fabricated PMN-PT based PVDF-TrFE nanogenerators have an immense prospect for applications in self-powered systems.

柔性压电纳米发电机(PENG)和三电纳米发电机(TENG)受到了广泛的关注,因为在驱动小型化电子设备、传感器和各种物联网时,对纳米和微型能源的需求日益增长。目前的主要挑战是如何选择材料和简单的制造技术,以提高电气性能以及良好的机械性能和灵活性。本文选择了一种铁电聚合物--聚(偏氟乙烯-共三氟乙烯)(PVDF-TrFE)作为柔性材料,因为它在能量收集方面具有广阔的前景。为了提高性能,我们选择了具有极高压电特性的陶瓷材料 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) 作为增强材料。此外,还添加了还原氧化石墨烯作为导电填料,以促进电荷传导。与基础聚合物 PVDF-TrFE (P) TENG 器件相比,PVDF-TrFE/PMN-PT (PP) 聚合物复合材料的输出电压明显提高了近 3 倍。此外,作为 PENG 的 PVDF-TrFE/rGO/PMN-PT(PPR)与原始聚合物相比,输出电流大大提高了 2 倍。TENG 显示的最大输出电压为 200 V,PENG 显示的最大电流为 30 µA。因此,基于 PMN-PT 的 PVDF-TrFE 纳米发电机在自供电系统中具有广阔的应用前景。
{"title":"Flexible PMN-PT/rGO/PVDF-TrFE based composites for triboelectric and piezoelectric energy harvesting","authors":"Satyabati Das ,&nbsp;Manila Mallik ,&nbsp;Kalpana Parida ,&nbsp;Nilotpala Bej ,&nbsp;Jayashree Baral","doi":"10.1016/j.apsadv.2024.100626","DOIUrl":"10.1016/j.apsadv.2024.100626","url":null,"abstract":"<div><p>Flexible piezoelectric nanogenerator (PENG) and triboelectric nanogenerators (TENG) have gained prodigious attention due to the increasing demand of nano and micro energy for driving of miniaturized electronic devices, sensors, and various internet of things. The key challenges that are currently in focus are material selection and simple fabrication techniques for improved electrical performance along with good mechanical properties and flexibility. Herein, a ferroelectric polymer, poly(vinylidenefluoride-co-trifluoroethyne) (PVDF-TrFE), is chosen as a flexible material due to its promising prospect for energy harvesting. To improve the performance, a ceramic material, 0.65Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>–0.35PbTiO<sub>3</sub> (PMN-PT), with very high piezoelectric properties has been selected as the reinforcement. Further, reduced graphene oxide has been added as a conducting filler to promote charge conduction. A remarkable enhancement in output voltage of nearly 3 fold is achieved in PVDF-TrFE/PMN-PT (PP) polymer composite as compared to the base polymer PVDF-TrFE (P) TENG device. Furthermore, the PVDF-TrFE/rGO/PMN-PT (PPR) as a PENG illustrates a great improvement in output current of the order of 2 as compared to the pristine polymer. The maximum output voltage as shown by the TENG is 200 V and the maximum current that is shown by the PENG is 30 µA. Therefore, the fabricated PMN-PT based PVDF-TrFE nanogenerators have an immense prospect for applications in self-powered systems.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"23 ","pages":"Article 100626"},"PeriodicalIF":7.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523924000540/pdfft?md5=27e207bd41e806006e60db8ceed56caf&pid=1-s2.0-S2666523924000540-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Models for predicting corrosion inhibition efficiency of common drugs on steel surfaces: A rationalized comparison among methodologies 钢铁表面常见药物缓蚀效率的预测模型:各种方法的合理比较
IF 7.5 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-01 DOI: 10.1016/j.apsadv.2024.100621
Andrés A.A. Serrano, Alan Miralrio, Carlos Beltran-Perez

Several anticorrosive treatments have been proposed over time to create protective layers to hinder the corrosion phenomenon. In recent years, organic molecules from plant extracts and expired drugs have been tested due to their potential corrosion inhibition properties. However, direct corrosion inhibition efficiency (IE%) evaluation requires costly reactants and a specific experimental setup. Quantitative-structure activity relationship (QSAR) proposes modeling IE% in terms of variables measured in previous experiments or determined by theoretical approaches. Computed descriptors, such as ionization energy (I), electronic affinity (A), or global hardness, were added to a database of physicochemical properties. This work compares several methodologies to obtain precise yet portable mathematical models for predicting corrosion inhibition efficiency. As an original approach from this research group, nonlinear autoregressive moving average with exogenous inputs (NARMAX), using forward regression with orthogonal least squares (FROLS), models were implemented as a robust method to get nonlinear portable models and to determine the most important variables impacting IE%. Contrastingly, ordinary least squares (OLS) methodology was employed with the novelty of applying power series expansions from the promoted FROLS variables for linear and polynomial regression with only one independent variable, which resulted in clearer graph visualization of trends and the ease of proposing thumb rules based on raw information. Finally, IBM Watson was also compared as a robust yet non-portable and highly parametrized alternative to conventional mathematical approaches, based on extra trees regressor (ETR). The models were compared using mean absolute percentage error (MAPE), mean-squared error (MSE), and root-mean-squared error (RMSE). Overall, models with fewer variables and up to second-order terms show improved performance. The main tendencies of IE%, drawn by inferences for 630 substances by second-order NARX, are analyzed. Also, the determinant role of the highest occupied molecular orbital energy was reported. Experimentalists can take advantage of a “cost-free” general approach that can obtain estimations for IE% values with errors of about 6 %, in particular the second-order NARX model.

随着时间的推移,人们提出了几种防腐处理方法,以形成保护层来阻止腐蚀现象。近年来,从植物提取物和过期药物中提取的有机分子因其潜在的缓蚀特性而受到测试。然而,直接评估缓蚀效率(IE%)需要昂贵的反应物和特定的实验装置。定量-结构-活性关系(QSAR)建议根据以往实验中测量的变量或理论方法确定的变量来建立 IE% 模型。计算出的描述符(如电离能 (I)、电子亲和力 (A) 或整体硬度)被添加到理化性质数据库中。这项工作对几种方法进行了比较,以获得预测缓蚀效率的精确而便携的数学模型。作为该研究小组的独创方法,使用正交最小二乘法前向回归(FROLS)的外生输入非线性自回归移动平均(NARMAX)模型被作为一种稳健的方法来获得非线性可移植模型,并确定影响 IE% 的最重要变量。与此形成鲜明对比的是,普通最小二乘法(OLS)采用了一种新方法,即在仅有一个自变量的情况下,将正交最小二乘法(FROLS)变量的幂级数展开应用于线性回归和多项式回归,从而使趋势图更加清晰可视,并便于根据原始信息提出经验法则。最后,IBM Watson 作为传统数学方法的一种稳健但非便携且高度参数化的替代方法,基于额外树回归器(ETR)进行了比较。使用平均绝对百分比误差 (MAPE)、均方误差 (MSE) 和均方根误差 (RMSE) 对模型进行了比较。总体而言,变量较少且最多为二阶项的模型性能有所改善。通过二阶 NARX 对 630 种物质的推断,分析了 IE% 的主要趋势。此外,还报告了最高占据分子轨道能量的决定性作用。实验人员可以利用一种 "无成本 "的通用方法,尤其是二阶 NARX 模型,获得误差约为 6% 的 IE% 估计值。
{"title":"Models for predicting corrosion inhibition efficiency of common drugs on steel surfaces: A rationalized comparison among methodologies","authors":"Andrés A.A. Serrano,&nbsp;Alan Miralrio,&nbsp;Carlos Beltran-Perez","doi":"10.1016/j.apsadv.2024.100621","DOIUrl":"10.1016/j.apsadv.2024.100621","url":null,"abstract":"<div><p>Several anticorrosive treatments have been proposed over time to create protective layers to hinder the corrosion phenomenon. In recent years, organic molecules from plant extracts and expired drugs have been tested due to their potential corrosion inhibition properties. However, direct corrosion inhibition efficiency (IE%) evaluation requires costly reactants and a specific experimental setup. Quantitative-structure activity relationship (QSAR) proposes modeling IE% in terms of variables measured in previous experiments or determined by theoretical approaches. Computed descriptors, such as ionization energy (I), electronic affinity (A), or global hardness, were added to a database of physicochemical properties. This work compares several methodologies to obtain precise yet portable mathematical models for predicting corrosion inhibition efficiency. As an original approach from this research group, nonlinear autoregressive moving average with exogenous inputs (NARMAX), using forward regression with orthogonal least squares (FROLS), models were implemented as a robust method to get nonlinear portable models and to determine the most important variables impacting IE%. Contrastingly, ordinary least squares (OLS) methodology was employed with the novelty of applying power series expansions from the promoted FROLS variables for linear and polynomial regression with only one independent variable, which resulted in clearer graph visualization of trends and the ease of proposing thumb rules based on raw information. Finally, IBM Watson was also compared as a robust yet non-portable and highly parametrized alternative to conventional mathematical approaches, based on extra trees regressor (ETR). The models were compared using mean absolute percentage error (MAPE), mean-squared error (MSE), and root-mean-squared error (RMSE). Overall, models with fewer variables and up to second-order terms show improved performance. The main tendencies of IE%, drawn by inferences for 630 substances by second-order NARX, are analyzed. Also, the determinant role of the highest occupied molecular orbital energy was reported. Experimentalists can take advantage of a “cost-free” general approach that can obtain estimations for IE% values with errors of about 6 %, in particular the second-order NARX model.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"22 ","pages":"Article 100621"},"PeriodicalIF":7.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523924000497/pdfft?md5=3464e9266d1d00fa94793a449be2e4f2&pid=1-s2.0-S2666523924000497-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141953517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Au nanoparticles on mitigating the negative impacts of humidity on ZnO gas sensors to detect triethylamine at room temperature 金纳米粒子对减轻湿度对氧化锌气体传感器在室温下检测三乙胺的负面影响的影响
IF 7.5 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-01 DOI: 10.1016/j.apsadv.2024.100623
Amirhossein Alaghmandfard, Somayeh Fardindoost, Mina Hoorfar

The impact of humidity on the efficiency of gas sensors has become highlighted in the realm of gas detection. Due to the complex relationship between humidity and gas sensor performance, the development of gas sensors has recently focused on minimizing humidity-related interference. This research aims to address humidity-related challenges in zinc oxide (ZnO) gas sensors designed to detect triethylamine. The ZnO nanostructures (NSs) were synthesized using thermal decomposition methods at varying temperatures (380 °C, 480 °C, and 580 °C) and annealing times (3 h, 7 h, 12 h, and 21 h). X-ray diffraction (XRD) confirmed the formation of a wurtzite hexagonal close-packed structure in ZnO NSs. Scanning electron microscopy (SEM) images provided insights into the morphologies of ZnO NSs at different annealing temperatures, while energy dispersive spectroscopy (EDS) demonstrated the elemental distribution. Subsequently, gold (Au) nanoparticles were uniformly sputtered onto ZnO sensors with thickness variations (0.1 nm, 0.6 nm, 1 nm, 5 nm, and 10 nm). XPS was employed to analyse the elemental composition and oxygen vacancies of the synthesized sensing materials. The effectiveness of 0.6 nm-thick Au nanoparticles in mitigating humidity effects was observed in ZnO sensors synthesized at 380 °C. The results indicated that ZnO sensors coated with 0.6 nm-thick Au nanoparticles exhibited highly stable responses to ethanol and triethylamine at different humidity levels from 50 % to 90 %. Notably, these sensors demonstrated promising selectivity towards triethylamine (with a response of 17.57) compared to various gas targets at room temperature. The sensor exhibited rapid response and recovery times of 9.8 s and 4.4 s, respectively, toward triethylamine with excellent stability in variable humid environments. The sensor maintained a consistent response over 24 days, demonstrating good stability at high humidity.

在气体检测领域,湿度对气体传感器效率的影响已成为一个突出问题。由于湿度与气体传感器性能之间的复杂关系,最近气体传感器的开发重点是最大限度地减少与湿度有关的干扰。本研究旨在解决设计用于检测三乙胺的氧化锌(ZnO)气体传感器中与湿度有关的难题。氧化锌纳米结构(NSs)是在不同温度(380 °C、480 °C和580 °C)和退火时间(3小时、7小时、12小时和21小时)下采用热分解方法合成的。X 射线衍射(XRD)证实 ZnO NSs 形成了钨六方紧密堆积结构。扫描电子显微镜(SEM)图像提供了不同退火温度下 ZnO NSs 的形态,而能量色散光谱(EDS)则显示了元素的分布。随后,金(Au)纳米粒子被均匀地溅射到厚度不同(0.1 nm、0.6 nm、1 nm、5 nm 和 10 nm)的氧化锌传感器上。利用 XPS 分析了合成传感材料的元素组成和氧空位。在 380 ℃ 合成的氧化锌传感器中观察到了 0.6 nm 厚的金纳米粒子在减轻湿度效应方面的有效性。结果表明,镀有 0.6 nm 厚金纳米粒子的氧化锌传感器在 50% 至 90% 的不同湿度水平下对乙醇和三乙胺的反应非常稳定。值得注意的是,与室温下的各种气体目标相比,这些传感器对三乙胺具有良好的选择性(响应为 17.57)。该传感器对三乙胺的快速响应和恢复时间分别为 9.8 秒和 4.4 秒,在多变的潮湿环境中具有出色的稳定性。该传感器在 24 天内保持了一致的响应,显示了在高湿度环境下的良好稳定性。
{"title":"Effect of Au nanoparticles on mitigating the negative impacts of humidity on ZnO gas sensors to detect triethylamine at room temperature","authors":"Amirhossein Alaghmandfard,&nbsp;Somayeh Fardindoost,&nbsp;Mina Hoorfar","doi":"10.1016/j.apsadv.2024.100623","DOIUrl":"10.1016/j.apsadv.2024.100623","url":null,"abstract":"<div><p>The impact of humidity on the efficiency of gas sensors has become highlighted in the realm of gas detection. Due to the complex relationship between humidity and gas sensor performance, the development of gas sensors has recently focused on minimizing humidity-related interference. This research aims to address humidity-related challenges in zinc oxide (ZnO) gas sensors designed to detect triethylamine. The ZnO nanostructures (NSs) were synthesized using thermal decomposition methods at varying temperatures (380 °C, 480 °C, and 580 °C) and annealing times (3 h, 7 h, 12 h, and 21 h). X-ray diffraction (XRD) confirmed the formation of a wurtzite hexagonal close-packed structure in ZnO NSs. Scanning electron microscopy (SEM) images provided insights into the morphologies of ZnO NSs at different annealing temperatures, while energy dispersive spectroscopy (EDS) demonstrated the elemental distribution. Subsequently, gold (Au) nanoparticles were uniformly sputtered onto ZnO sensors with thickness variations (0.1 nm, 0.6 nm, 1 nm, 5 nm, and 10 nm). XPS was employed to analyse the elemental composition and oxygen vacancies of the synthesized sensing materials. The effectiveness of 0.6 nm-thick Au nanoparticles in mitigating humidity effects was observed in ZnO sensors synthesized at 380 °C. The results indicated that ZnO sensors coated with 0.6 nm-thick Au nanoparticles exhibited highly stable responses to ethanol and triethylamine at different humidity levels from 50 % to 90 %. Notably, these sensors demonstrated promising selectivity towards triethylamine (with a response of 17.57) compared to various gas targets at room temperature. The sensor exhibited rapid response and recovery times of 9.8 s and 4.4 s, respectively, toward triethylamine with excellent stability in variable humid environments. The sensor maintained a consistent response over 24 days, demonstrating good stability at high humidity.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"22 ","pages":"Article 100623"},"PeriodicalIF":7.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523924000515/pdfft?md5=9c33f82a13fb8b47a8e575a8522fb3ec&pid=1-s2.0-S2666523924000515-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied Surface Science Advances
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1