Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556332
C. Boutry, Wei Sun, Tobias Strunz, Hengky Chandrahalim, C. Hierold
The objective of this research is to develop a completely polymeric and biodegradable RF driven RLC resonator circuit. New polymer composites are fabricated and characterized: they consist on conductive polymer nanoparticles (polypyrrole PPy) embedded in a biodegradable polymer matrix (both polylactide PLLA and polycaprolactone PCL are under investigation). The influence of PPy content and polymerization conditions (temperature, atmosphere, additional doping agent) on the resistivity are evaluated. A strong decrease of the resistivity is observed for composites containing more than 12% and 6% of PPy for PLLA/PPy and PCL/PPy, respectively. Resistivities of 0.0043Ω.m (PLLA/PPy39%) and 0.0016Ω.m (PCL/PPy39%) are achieved. A Matlab modelling and HFSS simulation of the RLC resonator performances based on the measured material properties is performed. The simulation results validate the use of these composites to successfully fabricate RLC resonators.
{"title":"Development and characterization of biodegradable conductive polymers for the next generation of RF bio-resonators","authors":"C. Boutry, Wei Sun, Tobias Strunz, Hengky Chandrahalim, C. Hierold","doi":"10.1109/FREQ.2010.5556332","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556332","url":null,"abstract":"The objective of this research is to develop a completely polymeric and biodegradable RF driven RLC resonator circuit. New polymer composites are fabricated and characterized: they consist on conductive polymer nanoparticles (polypyrrole PPy) embedded in a biodegradable polymer matrix (both polylactide PLLA and polycaprolactone PCL are under investigation). The influence of PPy content and polymerization conditions (temperature, atmosphere, additional doping agent) on the resistivity are evaluated. A strong decrease of the resistivity is observed for composites containing more than 12% and 6% of PPy for PLLA/PPy and PCL/PPy, respectively. Resistivities of 0.0043Ω.m (PLLA/PPy39%) and 0.0016Ω.m (PCL/PPy39%) are achieved. A Matlab modelling and HFSS simulation of the RLC resonator performances based on the measured material properties is performed. The simulation results validate the use of these composites to successfully fabricate RLC resonators.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126234643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556333
B. Fisher, D. Malocha
Traditionally, low-powered, room temperature sensing of gaseous hydrogen (H2) is difficult. With renewed interest in H2 as a source of energy, there is a need for reliable, energy-efficient sensors. A potential solution can be found in using surface acoustic wave (SAW) devices, which have been implemented as passive, wireless RFID tag-sensors. Thus, in concept, it is advantageous to develop a SAW device with H2 sensing capabilities. Prior experiments have successfully demonstrated a passive SAW-based H2 gas sensor by placing an ultra-thin Palladium (Pd) film (<50Å) in the propagation path [1–3]. These sensors have an instantaneous response and a significant fractional change in SAW propagation loss; however, the lifetime of these sensors are still unknown. Hence, the objective of this study was to examine the influence of aging of ultra-thin Pd films on the usable life of passive SAW H2 gas sensors.
{"title":"A study on the aging of ultra-thin Palladium films on SAW hydrogen gas sensors","authors":"B. Fisher, D. Malocha","doi":"10.1109/FREQ.2010.5556333","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556333","url":null,"abstract":"Traditionally, low-powered, room temperature sensing of gaseous hydrogen (H2) is difficult. With renewed interest in H2 as a source of energy, there is a need for reliable, energy-efficient sensors. A potential solution can be found in using surface acoustic wave (SAW) devices, which have been implemented as passive, wireless RFID tag-sensors. Thus, in concept, it is advantageous to develop a SAW device with H2 sensing capabilities. Prior experiments have successfully demonstrated a passive SAW-based H2 gas sensor by placing an ultra-thin Palladium (Pd) film (<50Å) in the propagation path [1–3]. These sensors have an instantaneous response and a significant fractional change in SAW propagation loss; however, the lifetime of these sensors are still unknown. Hence, the objective of this study was to examine the influence of aging of ultra-thin Pd films on the usable life of passive SAW H2 gas sensors.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129848721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556339
J. Prestage, Sang K. Chung
Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished “flow through” configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker ‘environmental’ relaxation of the atomic coherence set-up in the atomic sample.
{"title":"Repetitive interrogation of 2-level quantum systems","authors":"J. Prestage, Sang K. Chung","doi":"10.1109/FREQ.2010.5556339","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556339","url":null,"abstract":"Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished “flow through” configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker ‘environmental’ relaxation of the atomic coherence set-up in the atomic sample.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130137086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556284
R. Smíd, O. Cíp, Z. Buchta, J. Ježek, B. Mikel, M. Čížek, J. Lazar
The use of an ultra low expansion cavity plays a crucial role in laser stabilization, and it is essential in atomic or ion clocks. In this work we present a method of mirror distance monitoring in an evacuated Fabry-Perot cavity (FPC) made from an ultra low expansion material (Zerodur expansion class 0). The FPC was placed into a temperature-stabilized stainless steel chamber and the FPC temperature was set to remain close to the point where the expansion coefficient of the cavity material is the lowest. The precise distance of the FPC mirrors in vacuum was indirectly proportional to the optical frequency of a laser. One of the frequency comb component chosen by FBG grating was locked to the FPC of 400 MHz free spectral range. The 100 MHz repetition frequency of the femtosecond laser comb was monitored with counter referenced to a crystal oscillator with short term stability < 10−12 and long term stability locked to a GPS.
{"title":"Precise monitoring of ultra low expansion Fabry-Perot cavity length by the use of a stabilized optical frequency comb","authors":"R. Smíd, O. Cíp, Z. Buchta, J. Ježek, B. Mikel, M. Čížek, J. Lazar","doi":"10.1109/FREQ.2010.5556284","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556284","url":null,"abstract":"The use of an ultra low expansion cavity plays a crucial role in laser stabilization, and it is essential in atomic or ion clocks. In this work we present a method of mirror distance monitoring in an evacuated Fabry-Perot cavity (FPC) made from an ultra low expansion material (Zerodur expansion class 0). The FPC was placed into a temperature-stabilized stainless steel chamber and the FPC temperature was set to remain close to the point where the expansion coefficient of the cavity material is the lowest. The precise distance of the FPC mirrors in vacuum was indirectly proportional to the optical frequency of a laser. One of the frequency comb component chosen by FBG grating was locked to the FPC of 400 MHz free spectral range. The 100 MHz repetition frequency of the femtosecond laser comb was monitored with counter referenced to a crystal oscillator with short term stability < 10−12 and long term stability locked to a GPS.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129365256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556259
G. Douchet, O. Medeira, F. Sthal, T. Leblois
Materials like langasite (LGS), langatate (LGT) or gallium orthophosphate (GaPO4) crystals have higher piezoelectric coefficients and also have a better high-temperature behaviour than quartz crystal. Thus they are worth being considered as a replacement for quartz in applications such as oscillators, piezoelectric accelerometers, microbalances or clocks. Length-extension resonators have already been manufactured using quartz crystal in order to get atomically-resolved imaging by frequency-modulation atomic force microscopy. The goal of this study is to obtain better results with langasite. It has been shown that LGS-crystal microsensors should have a sensitivity three times better than quartz crystal ones. This fact added to the existence of temperature-compensated cuts for the extensional mode of vibration is of prime importance for applications such as microcantilevers for frequency-modulation atomic force microscopes. This paper focuses on the fabrication of Langasite resonators with different cut angles around the temperature-compensated cuts both in length-extension and flexure mode.
{"title":"Chemically etched resonant LGS microsensors","authors":"G. Douchet, O. Medeira, F. Sthal, T. Leblois","doi":"10.1109/FREQ.2010.5556259","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556259","url":null,"abstract":"Materials like langasite (LGS), langatate (LGT) or gallium orthophosphate (GaPO4) crystals have higher piezoelectric coefficients and also have a better high-temperature behaviour than quartz crystal. Thus they are worth being considered as a replacement for quartz in applications such as oscillators, piezoelectric accelerometers, microbalances or clocks. Length-extension resonators have already been manufactured using quartz crystal in order to get atomically-resolved imaging by frequency-modulation atomic force microscopy. The goal of this study is to obtain better results with langasite. It has been shown that LGS-crystal microsensors should have a sensitivity three times better than quartz crystal ones. This fact added to the existence of temperature-compensated cuts for the extensional mode of vibration is of prime importance for applications such as microcantilevers for frequency-modulation atomic force microscopes. This paper focuses on the fabrication of Langasite resonators with different cut angles around the temperature-compensated cuts both in length-extension and flexure mode.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130901250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556383
C. Zuo, G. Piazza
This paper reports on the first demonstration of single-ended-to-differential and differential-to-differential (S2D and D2D) channel-select filters based on single-layer (SL) and dual-layer-stacked (DLS) AlN contour-mode MEMS resonators. The key filter performances in terms of insertion loss (as low as 1.4 dB), operating frequency (250–1280 MHz), and out-of-band rejection (up to 60 dB) constitute a significant advancement over all other state-of-the-art RF MEMS technologies. The fabrication process, namely stacking of two piezoelectric AlN layers (600 nm each) and three Pt electrode layers (100 nm each), is fully compatible with the previously demonstrated AlN RF MEMS switch process (also post-CMOS compatible), which makes it possible to implement multi-frequency switchable filter banks on a single chip. The S2D configuration is also able to combine the balun, filter, and impedance transformer functions in a single MEMS structure and only takes on a very small form factor (60×200 µm). These unique features will potentially revolutionize the field of RF and microwave IC design by enabling MEMS-IC co-design and the development of unconventional and low-power RF architectures.
{"title":"Single-ended-to-differential and differential-to-differential channel-select filters based on piezoelectric AlN contour-mode MEMS resonators","authors":"C. Zuo, G. Piazza","doi":"10.1109/FREQ.2010.5556383","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556383","url":null,"abstract":"This paper reports on the first demonstration of single-ended-to-differential and differential-to-differential (S2D and D2D) channel-select filters based on single-layer (SL) and dual-layer-stacked (DLS) AlN contour-mode MEMS resonators. The key filter performances in terms of insertion loss (as low as 1.4 dB), operating frequency (250–1280 MHz), and out-of-band rejection (up to 60 dB) constitute a significant advancement over all other state-of-the-art RF MEMS technologies. The fabrication process, namely stacking of two piezoelectric AlN layers (600 nm each) and three Pt electrode layers (100 nm each), is fully compatible with the previously demonstrated AlN RF MEMS switch process (also post-CMOS compatible), which makes it possible to implement multi-frequency switchable filter banks on a single chip. The S2D configuration is also able to combine the balun, filter, and impedance transformer functions in a single MEMS structure and only takes on a very small form factor (60×200 µm). These unique features will potentially revolutionize the field of RF and microwave IC design by enabling MEMS-IC co-design and the development of unconventional and low-power RF architectures.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129931158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556245
M. Pijolat, S. Loubriat, D. Mercier, A. Reinhardt, E. Defay, C. Deguet, M. Aid, S. Queste, S. Ballandras
As layer transfer techniques have been notably improved these passed years, lithium niobate (LiNbO3) appears as a candidate for the next generation of ultra wide band Radio Frequency (RF) filters. Depending on the crystalline orientation, LiNbO3 can achieve electromechanical coupling factors Kt2 more than 6 times larger than those of sputtered aluminium nitride films. In this paper, a process based on direct bonding, grinding, polishing and Deep Reactive Ion Etching (DRIE) is proposed to fabricate a single crystal LiNbO3 Film Bulk Acoustic Resonator (FBAR). From the fabricated test vehicles Kt2 of 45% is measured confirming the values predicted by theoretical computations.
{"title":"LiNbO3 Film Bulk Acoustic Resonator","authors":"M. Pijolat, S. Loubriat, D. Mercier, A. Reinhardt, E. Defay, C. Deguet, M. Aid, S. Queste, S. Ballandras","doi":"10.1109/FREQ.2010.5556245","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556245","url":null,"abstract":"As layer transfer techniques have been notably improved these passed years, lithium niobate (LiNbO3) appears as a candidate for the next generation of ultra wide band Radio Frequency (RF) filters. Depending on the crystalline orientation, LiNbO3 can achieve electromechanical coupling factors Kt2 more than 6 times larger than those of sputtered aluminium nitride films. In this paper, a process based on direct bonding, grinding, polishing and Deep Reactive Ion Etching (DRIE) is proposed to fabricate a single crystal LiNbO3 Film Bulk Acoustic Resonator (FBAR). From the fabricated test vehicles Kt2 of 45% is measured confirming the values predicted by theoretical computations.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130066943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556293
A. Hati, C. Nelson, B. Riddle, D. Howe
We describe the design of a low-phase modulated (PM) noise 40 GHz oscillator that uses a conventional air-dielectric cavity resonator as a frequency discriminator to clean up the PM noise of a commercial 10 GHz dielectric resonator oscillator (DRO) multiplied by four. The main features of this design incorporate (1) unloaded cavity quality factor (Q) of 30,000, (2) high coupling coefficient, (3) large carrier suppression by use of interferometric signal processing, (4) large operating signal power of approximately 1 Watt (W), and (5) relatively small size.
{"title":"High spectral purity oscillator at 40 GHz: Design using air-dielectric cavity","authors":"A. Hati, C. Nelson, B. Riddle, D. Howe","doi":"10.1109/FREQ.2010.5556293","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556293","url":null,"abstract":"We describe the design of a low-phase modulated (PM) noise 40 GHz oscillator that uses a conventional air-dielectric cavity resonator as a frequency discriminator to clean up the PM noise of a commercial 10 GHz dielectric resonator oscillator (DRO) multiplied by four. The main features of this design incorporate (1) unloaded cavity quality factor (Q) of 30,000, (2) high coupling coefficient, (3) large carrier suppression by use of interferometric signal processing, (4) large operating signal power of approximately 1 Watt (W), and (5) relatively small size.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122160355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556331
P. Davulis, M. Pereira da Cunha
There are a large number of high-temperature sensing and frequency control applications that can be addressed using acoustic wave devices capable of operation at high-temperatures. For those applications, it is important to characterize the acoustic properties of the piezoelectric crystal used as substrate at elevated temperatures. Langatate (LGT) is one of the crystals which allow the fabrication of SAW devices at elevated temperatures. In a previous work, the authors measured and discussed the LGT elastic constants up to 900°C. This paper reports the langatate complex dielectric permittivity and conductivity from 25 to 900°C. The constants were extracted from impedance measurements of parallel-plate capacitors fabricated with Pt/Rh/ZrO2 electrodes on LGT wafers aligned along the X and Z crystalline axes. The real permittivities, έ11 and έ33, were found to change significantly in the range from 25 to 900°C with a 38% increase and a 49% decrease of their room temperature values, respectively. Thus, it is important to include the extracted high temperature permittivities when designing LGT acoustic wave devices and not simply to use extrapolated low temperature data. Both LGT conductivity and imaginary permittivity are necessary to quantify the electrical losses of sensors, signal-processing, and frequency-control devices operating with this substrate at high-temperatures.
{"title":"Conductivity and complex permittivity of langatate at high temperature up to 900°C","authors":"P. Davulis, M. Pereira da Cunha","doi":"10.1109/FREQ.2010.5556331","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556331","url":null,"abstract":"There are a large number of high-temperature sensing and frequency control applications that can be addressed using acoustic wave devices capable of operation at high-temperatures. For those applications, it is important to characterize the acoustic properties of the piezoelectric crystal used as substrate at elevated temperatures. Langatate (LGT) is one of the crystals which allow the fabrication of SAW devices at elevated temperatures. In a previous work, the authors measured and discussed the LGT elastic constants up to 900°C. This paper reports the langatate complex dielectric permittivity and conductivity from 25 to 900°C. The constants were extracted from impedance measurements of parallel-plate capacitors fabricated with Pt/Rh/ZrO2 electrodes on LGT wafers aligned along the X and Z crystalline axes. The real permittivities, έ11 and έ33, were found to change significantly in the range from 25 to 900°C with a 38% increase and a 49% decrease of their room temperature values, respectively. Thus, it is important to include the extracted high temperature permittivities when designing LGT acoustic wave devices and not simply to use extrapolated low temperature data. Both LGT conductivity and imaginary permittivity are necessary to quantify the electrical losses of sensors, signal-processing, and frequency-control devices operating with this substrate at high-temperatures.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"146 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116457516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556330
S. Tallur, S. Sridaran, S. Bhave, T. Carmon
We build upon and derive a precise far from carrier phase noise model for radiation pressure driven opto-mechanical oscillators and show that calculations based on our model accurately match published phase noise data for such oscillators. Furthermore, we derive insights based on the equations presented and calculate phase noise for an array of coupled disk resonators, showing that it is possible to achieve phase noise as low as −80 dBc/Hz at 1 kHz offset for a 54 MHz opto-mechanical oscillator.
{"title":"Phase noise modeling of opto-mechanical oscillators","authors":"S. Tallur, S. Sridaran, S. Bhave, T. Carmon","doi":"10.1109/FREQ.2010.5556330","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556330","url":null,"abstract":"We build upon and derive a precise far from carrier phase noise model for radiation pressure driven opto-mechanical oscillators and show that calculations based on our model accurately match published phase noise data for such oscillators. Furthermore, we derive insights based on the equations presented and calculate phase noise for an array of coupled disk resonators, showing that it is possible to achieve phase noise as low as −80 dBc/Hz at 1 kHz offset for a 54 MHz opto-mechanical oscillator.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124440939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}