Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556309
J. Fochtmann, Christian Peters, R. Diaz, R. Lucklum, J. McGann, J. Vetelino, A. Arnau
The focus of this work is the measurement of viscous liquids with lateral field excited (LFE) resonators. Since a large electromechanical coupling factor k is supposed to be favourable for decreased sensitivity to the adjacent media's viscosity, different materials (LiNbO3, LiTaO3 and quartz) having larger electromechanical coupling factors have been applied and compared. Additionally, an electrode configuration different to the standard coplanar LFE pattern has been investigated. Simulations have been performed concerning changes in mechanical and electrical properties of quartz crystals with the variation of the permittivity of the surrounding media. Corresponding electronic circuits for impedance analysis has been developed.
{"title":"Simulation and measurement of low permittivity media with LiNbO3 and LiTaO3 LFE resonators","authors":"J. Fochtmann, Christian Peters, R. Diaz, R. Lucklum, J. McGann, J. Vetelino, A. Arnau","doi":"10.1109/FREQ.2010.5556309","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556309","url":null,"abstract":"The focus of this work is the measurement of viscous liquids with lateral field excited (LFE) resonators. Since a large electromechanical coupling factor k is supposed to be favourable for decreased sensitivity to the adjacent media's viscosity, different materials (LiNbO3, LiTaO3 and quartz) having larger electromechanical coupling factors have been applied and compared. Additionally, an electrode configuration different to the standard coplanar LFE pattern has been investigated. Simulations have been performed concerning changes in mechanical and electrical properties of quartz crystals with the variation of the permittivity of the surrounding media. Corresponding electronic circuits for impedance analysis has been developed.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"328 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116939654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556353
S. Houri, J. Raskin, L. Francis
This paper introduces MEMS filters based on the use of traveling flexural waves. The underlying concept of these devices draws on an analogy with SAW devices, while replacing the surface elastic wave with a flexural wave on a suspended beam. This is in contrast with traditional flexural MEMS devices whereby all signal processing is done via a resonating element corresponding to a standing flexural wave. As far as the authors are aware this is the first study regarding traveling flexural wave devices and their frequency domain behavior.
{"title":"MEMS filters based on traveling flexural waves","authors":"S. Houri, J. Raskin, L. Francis","doi":"10.1109/FREQ.2010.5556353","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556353","url":null,"abstract":"This paper introduces MEMS filters based on the use of traveling flexural waves. The underlying concept of these devices draws on an analogy with SAW devices, while replacing the surface elastic wave with a flexural wave on a suspended beam. This is in contrast with traditional flexural MEMS devices whereby all signal processing is done via a resonating element corresponding to a standing flexural wave. As far as the authors are aware this is the first study regarding traveling flexural wave devices and their frequency domain behavior.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124447964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556272
O. Okusaga, E. Adles, Weimin Zhou, C. Menyuk, G. Carter, E. Levy, M. Horowitz
Optoelectronic oscillators (OEOs) are promising low phase noise radio frequency sources. However, the long fiber loops required for a high Oscillator Q also lead to spurious modes (spurs) spaced too narrowly to be filtered by standard electronic devices. As a solution to this problem, the dual injection-locked OEo (DIL-OEO) has been proposed and studied. Previously, we presented experimental data demonstrating spur suppression in the DIL-OEO. We also developed theoretical models enabling us to optimize the DIL-OEO. In this work, we present data demonstrating 60 dB suppression of the nearest-neighbour spur in a high-Q OEO without increasing the phase noise within 1 kHz of the 10 GHz oscillating mode.
{"title":"Spurious-mode suppression in optoelectronic oscillators","authors":"O. Okusaga, E. Adles, Weimin Zhou, C. Menyuk, G. Carter, E. Levy, M. Horowitz","doi":"10.1109/FREQ.2010.5556272","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556272","url":null,"abstract":"Optoelectronic oscillators (OEOs) are promising low phase noise radio frequency sources. However, the long fiber loops required for a high Oscillator Q also lead to spurious modes (spurs) spaced too narrowly to be filtered by standard electronic devices. As a solution to this problem, the dual injection-locked OEo (DIL-OEO) has been proposed and studied. Previously, we presented experimental data demonstrating spur suppression in the DIL-OEO. We also developed theoretical models enabling us to optimize the DIL-OEO. In this work, we present data demonstrating 60 dB suppression of the nearest-neighbour spur in a high-Q OEO without increasing the phase noise within 1 kHz of the 10 GHz oscillating mode.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126675926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556271
A. T. Lin, Jize Yan, A. Seshia
Silicon microresonators are increasingly viewed as attractive candidates for a variety of frequency selective signal processing applications due to miniaturization and potential for integration with CMOS. In this work, we present a new electrostatically transduced face-shear (FS) mode square plate single crystal silicon resonator that rivals previously reported bulk mode resonator topologies and demonstrates good frequency scaling. A microfabricated face-shear mode resonator with 800 µm side length demonstrates a resonant frequency of 3.638 MHz, Q of 11193 in air and 836283 in vacuum as well as a TCF of −19ppm/K.
{"title":"Electrostatically transduced face-shear mode silicon MEMS microresonator","authors":"A. T. Lin, Jize Yan, A. Seshia","doi":"10.1109/FREQ.2010.5556271","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556271","url":null,"abstract":"Silicon microresonators are increasingly viewed as attractive candidates for a variety of frequency selective signal processing applications due to miniaturization and potential for integration with CMOS. In this work, we present a new electrostatically transduced face-shear (FS) mode square plate single crystal silicon resonator that rivals previously reported bulk mode resonator topologies and demonstrates good frequency scaling. A microfabricated face-shear mode resonator with 800 µm side length demonstrates a resonant frequency of 3.638 MHz, Q of 11193 in air and 836283 in vacuum as well as a TCF of −19ppm/K.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115799878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556250
Q. Zou, D. Lee, F. Bi, R. Ruby, M. Small, S. Ortiz, Y. Oshmyansky, J. Kaitila
This paper demonstrates two variations of Temperature compensated (TempCo) FBAR resonators with high Kt2. One 1.5 GHz non-symmetric stack design TempCo FBAR resonator has a Kt2 of 4.28% and linear TCF of 0 ppm/°C. A second, quasi-symmetric stack design 1.5GHz TempCo FBAR resonator has Kt2 as high as 5.6% and linear TCF of −6 ppm/°C. Significant Kt2 improvement comes from optimal design of stack film, interposer electrode effect and novel process development of a sealant for the oxide to protect it from HF etching. This paper also discusses the trade-off between two parameters (linear TCF vs. Kt2). High Kt2 TempCo FBAR resonator is ideal for FBAR oscillator application with wide frequency pulling range.
{"title":"High coupling coefficient Temperature compensated FBAR resonator for oscillator application with wide pulling range","authors":"Q. Zou, D. Lee, F. Bi, R. Ruby, M. Small, S. Ortiz, Y. Oshmyansky, J. Kaitila","doi":"10.1109/FREQ.2010.5556250","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556250","url":null,"abstract":"This paper demonstrates two variations of Temperature compensated (TempCo) FBAR resonators with high Kt<sup>2</sup>. One 1.5 GHz non-symmetric stack design TempCo FBAR resonator has a Kt<sup>2</sup> of 4.28% and linear TCF of 0 ppm/°C. A second, quasi-symmetric stack design 1.5GHz TempCo FBAR resonator has Kt<sup>2</sup> as high as 5.6% and linear TCF of −6 ppm/°C. Significant Kt<sup>2</sup> improvement comes from optimal design of stack film, interposer electrode effect and novel process development of a sealant for the oxide to protect it from HF etching. This paper also discusses the trade-off between two parameters (linear TCF vs. Kt<sup>2</sup>). High Kt<sup>2</sup> TempCo FBAR resonator is ideal for FBAR oscillator application with wide frequency pulling range.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127767892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556176
Jennifer A. Taylor, F. Quinlan, A. Hati, C. Nelson, S. Diddams, S. Datta, A. Joshi
Femtosecond laser frequency combs provide an effective and efficient way to take an ultra-stable optical frequency reference and divide the signal down into the microwave region. In order to convert optical pulses into a usable RF signal, one must use high-speed photodetection; unfortunately, excess phase noise from both technical and fundamental sources can arise in the photodetection process. In order to ultimately minimize the noise effects of the photodetector, we must first characterize some of the known sources for noise arising in these devices. In this paper, we will study two sources of excess noise in high-speed photodiodes—power-to-phase conversion and shot noise. The noise performance of each device will give us clues as to the nature of the sources, their effect on the output signal, and what design features of the photodiode minimize these noise effects.
{"title":"Phase noise in the photodetection of ultrashort optical pulses","authors":"Jennifer A. Taylor, F. Quinlan, A. Hati, C. Nelson, S. Diddams, S. Datta, A. Joshi","doi":"10.1109/FREQ.2010.5556176","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556176","url":null,"abstract":"Femtosecond laser frequency combs provide an effective and efficient way to take an ultra-stable optical frequency reference and divide the signal down into the microwave region. In order to convert optical pulses into a usable RF signal, one must use high-speed photodetection; unfortunately, excess phase noise from both technical and fundamental sources can arise in the photodetection process. In order to ultimately minimize the noise effects of the photodetector, we must first characterize some of the known sources for noise arising in these devices. In this paper, we will study two sources of excess noise in high-speed photodiodes—power-to-phase conversion and shot noise. The noise performance of each device will give us clues as to the nature of the sources, their effect on the output signal, and what design features of the photodiode minimize these noise effects.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131371202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556335
A. Mensah-Brown, D. Mlambo, F. Josse, J. Hossenlopp
Rapid detection of organophosphates pesticides (OPs) in groundwater is necessary to allow for real-time monitoring and cleanup. Detection of OPs in the liquid phase has already been demonstrated using poly(epichlorohydrin) [PECH] and polyurethane as the sensing layer. However, the response times are relatively long, on the order of hours. In this work, a hybrid organic/inorganic chemically sensitive layer [bisphenol A-hexamethyltrisiloxane (BPA-HMTS)] is synthesized and investigated for the rapid detection and analysis of organophosphate pesticides. Direct chemical sensing in aqueous solutions is performed using the guided shear horizontal surface acoustic wave sensor platform on 36° rotated Y-cut LiTaO3. It is shown that, for the same coating thickness, a 60% reduction in sensor response time is achieved without a significant reduction in sensitivity when compared with PECH. Considering the glass transition temperature, Tg, for the polymers, it is seen that the faster sensor response exhibited by the BPA-HMTS coating is due to the porous siloxane backbone, HMTS. Furthermore, sensor signal analysis in the form of the extended Kalman filter (EKF) is employed on-line during the detection process. This allows for the steady-state sensor response and absorption time constant to be extracted on-line well before equilibrium, thus further reducing the time required for analyte identification and quantification. 500 µg/L of parathion has been detected and a limit of detection of 20 µg/L (ppb) for parathion and 100 µg/L (ppb) of paraoxon is reported for the present non-optimized sensor.
{"title":"Rapid detection of organophosphates in aqueous solution using a hybrid organic/inorganic coating on SH-SAW devices","authors":"A. Mensah-Brown, D. Mlambo, F. Josse, J. Hossenlopp","doi":"10.1109/FREQ.2010.5556335","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556335","url":null,"abstract":"Rapid detection of organophosphates pesticides (OPs) in groundwater is necessary to allow for real-time monitoring and cleanup. Detection of OPs in the liquid phase has already been demonstrated using poly(epichlorohydrin) [PECH] and polyurethane as the sensing layer. However, the response times are relatively long, on the order of hours. In this work, a hybrid organic/inorganic chemically sensitive layer [bisphenol A-hexamethyltrisiloxane (BPA-HMTS)] is synthesized and investigated for the rapid detection and analysis of organophosphate pesticides. Direct chemical sensing in aqueous solutions is performed using the guided shear horizontal surface acoustic wave sensor platform on 36° rotated Y-cut LiTaO3. It is shown that, for the same coating thickness, a 60% reduction in sensor response time is achieved without a significant reduction in sensitivity when compared with PECH. Considering the glass transition temperature, Tg, for the polymers, it is seen that the faster sensor response exhibited by the BPA-HMTS coating is due to the porous siloxane backbone, HMTS. Furthermore, sensor signal analysis in the form of the extended Kalman filter (EKF) is employed on-line during the detection process. This allows for the steady-state sensor response and absorption time constant to be extracted on-line well before equilibrium, thus further reducing the time required for analyte identification and quantification. 500 µg/L of parathion has been detected and a limit of detection of 20 µg/L (ppb) for parathion and 100 µg/L (ppb) of paraoxon is reported for the present non-optimized sensor.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"84 17","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131472332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556355
V. C. Ayala, D. Eisele, L. Reindl, F. Josse
New piezoelectric materials such as Langasite (La3Ga5SiO14, LGS), are of particular interest for bio-chemical sensor applications because of their temperature compensated characteristics. For liquid phase sensing applications, acoustic devices operating in shear horizontal surface acoustic waves (SH-SAW) mode are desired due to their low wave attenuation. A LGS substrate with an Euler angle (0°, 220°, 900°), which supports SH-SAW and also exhibits zero-temperature coefficient of frequency (TCF), is chosen and electrically characterized. In this paper, the temperature characteristics are analyzed over a range from 50°C up to 720°C. The first three harmonics of a SH-SAW delay line (DL) device are analyzed in the experiments. The DL devices are also tested with a polymer coating layer. The polymer layers are used to investigate and assess the effect of temperature fluctuations in typical biochemical sensor applications. Variations in the frequency-temperature-characteristics (FTC) are observed, indicating the effects of thick polymer layers and high temperatures on the device response. The results show that the coated devices exhibit larger fractional frequency changes near room temperature. As a result, the use of a temperature compensating system or the use of differential measurements scheme with a dual delay line is necessary when using this substrate for biological and chemical sensing applications.
{"title":"Temperature stability analysis of LGS for SH-SAW sensor applications","authors":"V. C. Ayala, D. Eisele, L. Reindl, F. Josse","doi":"10.1109/FREQ.2010.5556355","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556355","url":null,"abstract":"New piezoelectric materials such as Langasite (La3Ga5SiO14, LGS), are of particular interest for bio-chemical sensor applications because of their temperature compensated characteristics. For liquid phase sensing applications, acoustic devices operating in shear horizontal surface acoustic waves (SH-SAW) mode are desired due to their low wave attenuation. A LGS substrate with an Euler angle (0°, 220°, 900°), which supports SH-SAW and also exhibits zero-temperature coefficient of frequency (TCF), is chosen and electrically characterized. In this paper, the temperature characteristics are analyzed over a range from 50°C up to 720°C. The first three harmonics of a SH-SAW delay line (DL) device are analyzed in the experiments. The DL devices are also tested with a polymer coating layer. The polymer layers are used to investigate and assess the effect of temperature fluctuations in typical biochemical sensor applications. Variations in the frequency-temperature-characteristics (FTC) are observed, indicating the effects of thick polymer layers and high temperatures on the device response. The results show that the coated devices exhibit larger fractional frequency changes near room temperature. As a result, the use of a temperature compensating system or the use of differential measurements scheme with a dual delay line is necessary when using this substrate for biological and chemical sensing applications.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"274 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134421877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556281
Zhitian Zhang, T. Ma, Chao Zhang, Wenyan Wang, G. Feng
Thickness extension mode excited by electric field across the thickness of piezoelectric substrate has long been used for various applications. In the present study, the properties of thickness extension mode excited by lateral electric field on LiTaO3 have been investigated using the extended Christoffel-Bechmann method. It is found that the Lateral field excitation (LFE) coupling factors for a-mode (quasi-extensional mode) reaches its maximum value of 17.4% on X-cut LiTaO3. The characteristics of an LFE device made of X-cut LiTaO3 have been investigated and the LFE device was used for the design of a high frequency ultrasonic transducer. The characteristic of the LiTaO3 LFE ultrasonic transducer was analyzed with the traditional KLM model and tested using traditional pulse/echo method. A LiTaO3 LFE ultrasonic with the center frequency of 33.18MHz and the −6dB bandwidth of 29.99% was acquired, which was well in agreement with the results of the KLM model. Further analysis suggests that the LiTaO3 LFE device has great potential in the design of broadband high frequency ultrasonic transducers.
{"title":"LiTaO3 ultrasonic transducer excited by lateral electric field","authors":"Zhitian Zhang, T. Ma, Chao Zhang, Wenyan Wang, G. Feng","doi":"10.1109/FREQ.2010.5556281","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556281","url":null,"abstract":"Thickness extension mode excited by electric field across the thickness of piezoelectric substrate has long been used for various applications. In the present study, the properties of thickness extension mode excited by lateral electric field on LiTaO3 have been investigated using the extended Christoffel-Bechmann method. It is found that the Lateral field excitation (LFE) coupling factors for a-mode (quasi-extensional mode) reaches its maximum value of 17.4% on X-cut LiTaO3. The characteristics of an LFE device made of X-cut LiTaO3 have been investigated and the LFE device was used for the design of a high frequency ultrasonic transducer. The characteristic of the LiTaO3 LFE ultrasonic transducer was analyzed with the traditional KLM model and tested using traditional pulse/echo method. A LiTaO3 LFE ultrasonic with the center frequency of 33.18MHz and the −6dB bandwidth of 29.99% was acquired, which was well in agreement with the results of the KLM model. Further analysis suggests that the LiTaO3 LFE device has great potential in the design of broadband high frequency ultrasonic transducers.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132948236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1109/FREQ.2010.5556318
A. Ionescu
This paper reports advances in the field of vibrating body transistors (VBTs) made on silicon-on-insulator substrates, compatible with CMOS. We review various vibrating transistor principles and present new results on scaled vibrating body FETs, resulting in resonant body Fin-FET architectures with two lateral air-gaps, showing resonance frequencies from 10MHz to 150MHz. These devices are expected to enable novel radio-frequency and sensing performance by their co-integration and co-design with CMOS.
{"title":"Vibrating body transistors: Enabling Fin-FET nano-electro-mechanical resonators","authors":"A. Ionescu","doi":"10.1109/FREQ.2010.5556318","DOIUrl":"https://doi.org/10.1109/FREQ.2010.5556318","url":null,"abstract":"This paper reports advances in the field of vibrating body transistors (VBTs) made on silicon-on-insulator substrates, compatible with CMOS. We review various vibrating transistor principles and present new results on scaled vibrating body FETs, resulting in resonant body Fin-FET architectures with two lateral air-gaps, showing resonance frequencies from 10MHz to 150MHz. These devices are expected to enable novel radio-frequency and sensing performance by their co-integration and co-design with CMOS.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130743931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}