首页 > 最新文献

Composites Part C Open Access最新文献

英文 中文
Characteristics and evaluation of recycled waste PVCs as a filler in composite structures: Validation through simulation and experimental methods 作为复合材料结构填充物的回收废聚氯乙烯的特性和评估:通过模拟和实验方法进行验证
IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100525
Eko Supriyanto , Nugroho Karya Yudha , Alvin Dio Nugroho , Muhammad Akhsin Muflikhun
Solar Cell as a renewable energy utilization in today's era is considered a suitable choice due to encompass sustainability, environmental preservation, and energy processing efficiency. Solar cells have a finite lifespan that need replacement to maintain energy absorption efficiency. Unfortunately, discarded materials are often underutilized or improperly disposed of. In this study, used photovoltaic solar cell materials are explored as reinforcements in composites. The results showed that 4 % cell filler specimen exhibited highest ultimate tensile strength (UTS) with 51.43 MPa. Followed by Compression strength with 35.38 MPa and flexural strength with 45.54 MPa. SEM/EDS analysis of PV filler specimens revealed the dominance of Carbon (C) and Silica (Si) materials, comprising over 60 %. FT-IR analysis indicated varying compound bond intensities affecting polymerization and material strength under applied forces. Simulation results showed a difference of <2 % when compared to experimental testing outcomes. The current study benefited in environmental conservation efforts through waste reduction and the reuse of recycled materials and are listed in several applications such as in wind turbine, structures, lightweight laminates, automotive structures, and sport equipment.
在当今时代,太阳能电池作为一种可再生能源,因其可持续性、环境保护和能源处理效率而被认为是一种合适的选择。太阳能电池的寿命有限,需要更换以保持能量吸收效率。遗憾的是,废弃材料往往没有得到充分利用或处理不当。在这项研究中,探讨了将废旧光伏太阳能电池材料作为复合材料的增强材料。结果表明,4% 电池填料试样的极限拉伸强度(UTS)最高,为 51.43 兆帕。其次是压缩强度(35.38 兆帕)和弯曲强度(45.54 兆帕)。光伏填料试样的 SEM/EDS 分析表明,碳(C)和硅(Si)材料占主导地位,超过 60%。傅立叶变换红外分析表明,不同的化合物键强度会影响聚合和材料在外力作用下的强度。模拟结果显示,与实验测试结果相比,差异为 2%。目前的研究通过减少废物和再利用回收材料,有利于环境保护工作,并被广泛应用于风力涡轮机、结构、轻质层压板、汽车结构和运动器材等领域。
{"title":"Characteristics and evaluation of recycled waste PVCs as a filler in composite structures: Validation through simulation and experimental methods","authors":"Eko Supriyanto ,&nbsp;Nugroho Karya Yudha ,&nbsp;Alvin Dio Nugroho ,&nbsp;Muhammad Akhsin Muflikhun","doi":"10.1016/j.jcomc.2024.100525","DOIUrl":"10.1016/j.jcomc.2024.100525","url":null,"abstract":"<div><div>Solar Cell as a renewable energy utilization in today's era is considered a suitable choice due to encompass sustainability, environmental preservation, and energy processing efficiency. Solar cells have a finite lifespan that need replacement to maintain energy absorption efficiency. Unfortunately, discarded materials are often underutilized or improperly disposed of. In this study, used photovoltaic solar cell materials are explored as reinforcements in composites. The results showed that 4 % cell filler specimen exhibited highest ultimate tensile strength (UTS) with 51.43 MPa. Followed by Compression strength with 35.38 MPa and flexural strength with 45.54 MPa. SEM/EDS analysis of PV filler specimens revealed the dominance of Carbon (C) and Silica (Si) materials, comprising over 60 %. FT-IR analysis indicated varying compound bond intensities affecting polymerization and material strength under applied forces. Simulation results showed a difference of &lt;2 % when compared to experimental testing outcomes. The current study benefited in environmental conservation efforts through waste reduction and the reuse of recycled materials and are listed in several applications such as in wind turbine, structures, lightweight laminates, automotive structures, and sport equipment.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100525"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plastic deformation assessment of sawdust-rPET composites under bending load
IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100538
S. Behnam Hosseini , Milan Gaff , Jerzy Smardzewski
Due to the scarcity of raw wood materials and the current state of the market's economic growth, the development of novel composite materials utilizing alternate raw material sources is crucial. Sawdust and waste polymers, such as empty bottles, are excellent sources of low-cost materials for making useful and cost-effective wood-plastic composites. This article's main goal is to ascertain how different filler contents and percentages, as well as two different types of polymer matrices, affect the mechanical properties of sawdust-reinforced composite in the plastic range of force-deflection diagram of bending test. Sawdust-plastic composites based on waste polyethylene terephthalate (PET) and biodegradable polymers were produced by the flat press method and prepared for mechanical testing. This study examined comprehensively the plastic range of the three-point bending test. The limit of proportionality (LOP), bending strength or modulus of rupture (MOR), plastic potential “PP”, four tangent moduli as well as approximated plastic work “AW”, total plastic work “BW” and the values of approximation error “ΔW” were measured using three-point bending test. The finite element method (FEM) analysis was also conducted to prepare a numerical model and compare its results with experimental results. According to the study's findings, the bending features of rPET-reinforced composites declined as the filler percentage increased. Among all the rPET-reinforced composites, the 40 % sawdust filled composite had the best mechanical performance. When compared to the rPET matrix, the biodegradable polymer demonstrated superior mechanical performance in the plastic zone of the bending test. However, both the 40 % sawdust-filled rPET composite and the biodegradable composites filled with 50 % sawdust fulfilled the ANSI standard as an appropriate replacement for medium-density fiberboard (MDF) for interior applications.
{"title":"Plastic deformation assessment of sawdust-rPET composites under bending load","authors":"S. Behnam Hosseini ,&nbsp;Milan Gaff ,&nbsp;Jerzy Smardzewski","doi":"10.1016/j.jcomc.2024.100538","DOIUrl":"10.1016/j.jcomc.2024.100538","url":null,"abstract":"<div><div>Due to the scarcity of raw wood materials and the current state of the market's economic growth, the development of novel composite materials utilizing alternate raw material sources is crucial. Sawdust and waste polymers, such as empty bottles, are excellent sources of low-cost materials for making useful and cost-effective wood-plastic composites. This article's main goal is to ascertain how different filler contents and percentages, as well as two different types of polymer matrices, affect the mechanical properties of sawdust-reinforced composite in the plastic range of force-deflection diagram of bending test. Sawdust-plastic composites based on waste polyethylene terephthalate (PET) and biodegradable polymers were produced by the flat press method and prepared for mechanical testing. This study examined comprehensively the plastic range of the three-point bending test. The limit of proportionality (LOP), bending strength or modulus of rupture (MOR), plastic potential “P<sub>P</sub>”, four tangent moduli as well as approximated plastic work “A<sub>W</sub>”, total plastic work “B<sub>W</sub>” and the values of approximation error “ΔW” were measured using three-point bending test. The finite element method (FEM) analysis was also conducted to prepare a numerical model and compare its results with experimental results. According to the study's findings, the bending features of rPET-reinforced composites declined as the filler percentage increased. Among all the rPET-reinforced composites, the 40 % sawdust filled composite had the best mechanical performance. When compared to the rPET matrix, the biodegradable polymer demonstrated superior mechanical performance in the plastic zone of the bending test. However, both the 40 % sawdust-filled rPET composite and the biodegradable composites filled with 50 % sawdust fulfilled the ANSI standard as an appropriate replacement for medium-density fiberboard (MDF) for interior applications.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100538"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143180019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The acoustic properties of FDM printed wood/PLA-based composites FDM 印刷木材/聚乳酸基复合材料的声学特性
IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100532
K. Vigneshwaran , N. Venkateshwaran , R. Shanthi , Gokul Kannan , B.Rajesh Kumar , Vigneshwaran Shanmugam , Oisik Das
The acoustic properties of the Fused Deposition Modelling (FDM) printed PLA wood composite was investigated. Initially tensile and flexural of wood PLA composite was studied with respect to varying layer thickness (0.15 mm, 0.20 mm, and 0.30 mm), infill density (30 %, 60 %, and 90 %), and pattern (Layer, Triangle, and Hexagon). The outcomes demonstrated that the specimen produced with a hexagonal pattern, 90% infill density, and 0.2 mm layer thickness had the highest tensile (16 MPa) and flexural strength (16 MPa). Utilizing this optimized parameter, micro-perforated panels were printed and acoustic properties were studied. Five specimens with a 3 mm thickness, various perforation diameters (5 mm, 4 mm, and 3 mm), and architecturally tapered perforations were fabricated. Using the impedance tube approach, the sound transmission loss and sound absorption coefficients were measured. The findings indicate that, in comparison to all the printed specimens, tapered type perforation with an exterior diameter of 5 mm and an internal diameter of 4.7 mm showed highest sound absorption coefficient of 0.60 Hz. A viscous loss is obtained by its convergent hole diameter reduction, which results in sound attenuations and is easily absorbed in the micro-perforated panel. Similar to this, the specimen printed with smaller perforation diameters (3 mm) had a high sound transmission loss of 79 dB. The small diameter of the perforations prevented the passage of sound waves. The current study is anticipated to lay the groundwork for extensive future research on these classes of materials, potentially serving as a catalyst for advancements in FDM based polymeric materials research and development.
研究了熔融沉积成型(FDM)印刷聚乳酸木材复合材料的声学特性。首先研究了不同层厚(0.15 毫米、0.20 毫米和 0.30 毫米)、填充密度(30%、60% 和 90%)和图案(层状、三角形和六边形)的聚乳酸木材复合材料的拉伸和弯曲性能。结果表明,采用六边形图案、90% 填充密度和 0.2 毫米层厚制作的试样具有最高的抗拉强度(16 兆帕)和抗弯强度(16 兆帕)。利用这一优化参数,印制了微穿孔板,并对其声学特性进行了研究。制作了五块厚度为 3 毫米、穿孔直径(5 毫米、4 毫米和 3 毫米)不同、穿孔呈建筑锥形的试样。使用阻抗管方法测量了声音传输损失和吸声系数。结果表明,与所有印刷试样相比,外部直径为 5 毫米、内部直径为 4.7 毫米的锥形穿孔的吸声系数最高,为 0.60 赫兹。由于其收敛孔直径减小,产生了粘性损失,从而导致声音衰减,并很容易被微穿孔板吸收。与此类似,用较小的穿孔直径(3 毫米)印制的试样的声音传输损失也高达 79 分贝。小直径穿孔阻碍了声波的通过。目前的研究预计将为今后对这些材料类别的广泛研究奠定基础,并有可能成为促进基于 FDM 的聚合物材料研究和开发的催化剂。
{"title":"The acoustic properties of FDM printed wood/PLA-based composites","authors":"K. Vigneshwaran ,&nbsp;N. Venkateshwaran ,&nbsp;R. Shanthi ,&nbsp;Gokul Kannan ,&nbsp;B.Rajesh Kumar ,&nbsp;Vigneshwaran Shanmugam ,&nbsp;Oisik Das","doi":"10.1016/j.jcomc.2024.100532","DOIUrl":"10.1016/j.jcomc.2024.100532","url":null,"abstract":"<div><div>The acoustic properties of the Fused Deposition Modelling (FDM) printed PLA wood composite was investigated. Initially tensile and flexural of wood PLA composite was studied with respect to varying layer thickness (0.15 mm, 0.20 mm, and 0.30 mm), infill density (30 %, 60 %, and 90 %), and pattern (Layer, Triangle, and Hexagon). The outcomes demonstrated that the specimen produced with a hexagonal pattern, 90% infill density, and 0.2 mm layer thickness had the highest tensile (16 MPa) and flexural strength (16 MPa). Utilizing this optimized parameter, micro-perforated panels were printed and acoustic properties were studied. Five specimens with a 3 mm thickness, various perforation diameters (5 mm, 4 mm, and 3 mm), and architecturally tapered perforations were fabricated. Using the impedance tube approach, the sound transmission loss and sound absorption coefficients were measured. The findings indicate that, in comparison to all the printed specimens, tapered type perforation with an exterior diameter of 5 mm and an internal diameter of 4.7 mm showed highest sound absorption coefficient of 0.60 Hz. A viscous loss is obtained by its convergent hole diameter reduction, which results in sound attenuations and is easily absorbed in the micro-perforated panel. Similar to this, the specimen printed with smaller perforation diameters (3 mm) had a high sound transmission loss of 79 dB. The small diameter of the perforations prevented the passage of sound waves. The current study is anticipated to lay the groundwork for extensive future research on these classes of materials, potentially serving as a catalyst for advancements in FDM based polymeric materials research and development.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100532"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Durability and compressive strength of composite polyolefin fiber-reinforced recycled aggregate concrete: An experimental study 复合聚烯烃纤维增强再生骨料混凝土的耐久性和抗压强度:实验研究
IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100533
Mojtaba Gorji Azandariani , Mehdi Vajdian , Mehrdad Javadi , Ali Parvari
This study investigates of using recycled concrete aggregates along with the reinforcement of polyolefin fibers to augment both the compressive strength and durability of concrete, in alignment with the principles of sustainable development. This study experimentally investigated the compressive strengths and durability of composite polyolefin fiber-reinforced recycled aggregate concrete (PFRRAC) exposed to chloride and acidic environments. For this purpose, 150 cubic concrete samples of 100 × 100 × 100 mm with various combinations of recycled aggregates and polyolefin fibers were made and subjected to axial compressive loading. The results show that the addition of fibers significantly enhances the compressive strength of concrete, with an increase of up to 34.36 % at 5 % fiber content. However, increasing the proportion of recycled aggregates reduces the compressive strength, with reductions ranging from 21.12 % to 43.85 % as the recycled aggregate content rises to 70 %. Moreover, the combination of fibers and recycled aggregates demonstrates potential for improving the sustainability and durability of concrete under challenging environmental conditions, particularly in chloride and acidic environments. In acidic environments, the inclusion of fibers significantly enhances the resistance to strength reduction. Furthermore, the study uncovers that a higher concentration of recycled aggregates exacerbates the reduction in strength in chloride-rich settings, emphasizing the imperative nature of meticulous mix design and material selection. The findings for the integration of even minor quantities of polyolefin fibers to amplify the performance and sustainability of concrete mixtures, especially when utilizing recycled aggregates, thus promoting eco-friendly construction practices.
本研究探讨了使用再生混凝土骨料和聚烯烃纤维增强材料来提高混凝土的抗压强度和耐久性,以符合可持续发展的原则。本研究通过实验研究了暴露在氯化物和酸性环境中的复合聚烯烃纤维增强再生骨料混凝土(PFRRAC)的抗压强度和耐久性。为此,我们制作了 150 个 100 × 100 × 100 毫米的立方体混凝土样品,其中包含不同组合的再生骨料和聚烯烃纤维,并对其进行轴向抗压加载。结果表明,添加纤维可显著提高混凝土的抗压强度,纤维含量为 5% 时,抗压强度最高可提高 34.36%。然而,增加再生骨料的比例会降低抗压强度,当再生骨料含量增加到 70% 时,抗压强度会降低 21.12% 到 43.85%。此外,纤维和再生骨料的组合还显示出在具有挑战性的环境条件下,特别是在氯化物和酸性环境中,改善混凝土可持续性和耐久性的潜力。在酸性环境中,纤维的加入大大增强了抗强度降低的能力。此外,研究还发现,在富含氯化物的环境中,较高浓度的再生骨料会加剧强度的降低,从而强调了精心设计混合料和选择材料的必要性。研究结果表明,即使是少量的聚烯烃纤维,也能提高混凝土混合物的性能和可持续性,尤其是在使用再生骨料的情况下,从而促进生态友好型建筑实践。
{"title":"Durability and compressive strength of composite polyolefin fiber-reinforced recycled aggregate concrete: An experimental study","authors":"Mojtaba Gorji Azandariani ,&nbsp;Mehdi Vajdian ,&nbsp;Mehrdad Javadi ,&nbsp;Ali Parvari","doi":"10.1016/j.jcomc.2024.100533","DOIUrl":"10.1016/j.jcomc.2024.100533","url":null,"abstract":"<div><div>This study investigates of using recycled concrete aggregates along with the reinforcement of polyolefin fibers to augment both the compressive strength and durability of concrete, in alignment with the principles of sustainable development. This study experimentally investigated the compressive strengths and durability of composite polyolefin fiber-reinforced recycled aggregate concrete (PFRRAC) exposed to chloride and acidic environments. For this purpose, 150 cubic concrete samples of 100 × 100 × 100 mm with various combinations of recycled aggregates and polyolefin fibers were made and subjected to axial compressive loading. The results show that the addition of fibers significantly enhances the compressive strength of concrete, with an increase of up to 34.36 % at 5 % fiber content. However, increasing the proportion of recycled aggregates reduces the compressive strength, with reductions ranging from 21.12 % to 43.85 % as the recycled aggregate content rises to 70 %. Moreover, the combination of fibers and recycled aggregates demonstrates potential for improving the sustainability and durability of concrete under challenging environmental conditions, particularly in chloride and acidic environments. In acidic environments, the inclusion of fibers significantly enhances the resistance to strength reduction. Furthermore, the study uncovers that a higher concentration of recycled aggregates exacerbates the reduction in strength in chloride-rich settings, emphasizing the imperative nature of meticulous mix design and material selection. The findings for the integration of even minor quantities of polyolefin fibers to amplify the performance and sustainability of concrete mixtures, especially when utilizing recycled aggregates, thus promoting eco-friendly construction practices.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100533"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Puck 3D-based modeling and validation of progressive failure in instrumented glass fiber-reinforced polypropylene via the split-disk test
IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100534
B. Meemary, D. Vasiukov, M. Lagardère, L. Rozova, S. Chaki
This study analyzes the mechanical behavior and damage progression of filament-wound thermoplastic composite rings, focusing on the effects of embedded fiber optic (FO) sensors. Utilizing a split-disk test, the study evaluates both experimental and numerical approaches to examine the impact of FO sensors in glass fiber-reinforced polypropylene composite rings. The split-disk test is employed to measure key mechanical properties such as hoop tensile strength, stiffness and failure strain using strain gauges and 3D Digital Image Correlation (DIC). The research specifically examines two extreme configurations of FO sensor placement: parallel and perpendicular to the reinforced fibers. The objective is to propose sensor integration that minimizes potential negative effects on the material's properties. Both instrumented and non-instrumented samples are analyzed numerically and experimentally. The experimental phase involves detailed mechanical characterization using the split-disk test, while the numerical approach uses a developed UMAT finite element model based on the 3D Puck failure criterion and an element weakening method for progressive failure analysis. The numerical models adopt real microstructural details according to optical microscopic analysis. The study concludes that parallel embedded FO sensors are preferable as they enhance the ultimate strength to failure and avoid creating resin-rich zones near the sensor, thereby improving the overall mechanical performance of the composite rings. The 3D Puck failure criterion combined with the element weakening method provides accurate predictions of fiber failure initiation and growth in the composite rings.
{"title":"Puck 3D-based modeling and validation of progressive failure in instrumented glass fiber-reinforced polypropylene via the split-disk test","authors":"B. Meemary,&nbsp;D. Vasiukov,&nbsp;M. Lagardère,&nbsp;L. Rozova,&nbsp;S. Chaki","doi":"10.1016/j.jcomc.2024.100534","DOIUrl":"10.1016/j.jcomc.2024.100534","url":null,"abstract":"<div><div>This study analyzes the mechanical behavior and damage progression of filament-wound thermoplastic composite rings, focusing on the effects of embedded fiber optic (FO) sensors. Utilizing a split-disk test, the study evaluates both experimental and numerical approaches to examine the impact of FO sensors in glass fiber-reinforced polypropylene composite rings. The split-disk test is employed to measure key mechanical properties such as hoop tensile strength, stiffness and failure strain using strain gauges and 3D Digital Image Correlation (DIC). The research specifically examines two extreme configurations of FO sensor placement: parallel and perpendicular to the reinforced fibers. The objective is to propose sensor integration that minimizes potential negative effects on the material's properties. Both instrumented and non-instrumented samples are analyzed numerically and experimentally. The experimental phase involves detailed mechanical characterization using the split-disk test, while the numerical approach uses a developed UMAT finite element model based on the 3D Puck failure criterion and an element weakening method for progressive failure analysis. The numerical models adopt real microstructural details according to optical microscopic analysis. The study concludes that parallel embedded FO sensors are preferable as they enhance the ultimate strength to failure and avoid creating resin-rich zones near the sensor, thereby improving the overall mechanical performance of the composite rings. The 3D Puck failure criterion combined with the element weakening method provides accurate predictions of fiber failure initiation and growth in the composite rings.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100534"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143180021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid lattice structure with micro graphite filler manufactured via additive manufacturing and growth foam polyurethane 通过增材制造和生长泡沫聚氨酯制造出带有微石墨填料的混合晶格结构
IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100516
Fefria Tanbar , Alvin Dio Nugroho , Ariyana Dwiputra Nugraha , Seno Darmanto , Djarot Widagdo , Gil N.C. Santos , Muhammad Akhsin Muflikhun
The utilisation of lightweight structures is a common practice across a range of disciplines, including the construction of light steel frames, sandwich panels, and transportation infrastructure, among others. The advantages of lightweight structures include design flexibility, weight reduction, and the sustainability of materials that can be easily recycled. However, these advantages also present significant weaknesses. Compared to solid materials with compact weight, lightweight structures do not have the same characteristics. With the reduction in material weight, the strength of the lightweight structure decreases significantly compared to solid materials. In this study, the lightweight structure was made using additive manufacturing and reinforced with solid Composite Polyurethane Foam reinforced with graphite filler expanded into the lightweight structure. The results showed that in the compression test, the mixture with 2 % graphite filler had the highest value of 2.5 kN. The highest hardness test on the specimen with a 2 % graphite mixture was 19.8 HA. FT-IR testing showed that the carbon bonds from graphite in the 2 % specimen had the highest intensity. The test results showed that the addition of Polyurethane Foam into the structure could enhance material strength effectively without adding significant material weight.
轻质结构的应用在各个领域都很普遍,包括轻钢结构、夹芯板和交通基础设施等。轻质结构的优点包括设计灵活、重量减轻以及材料易于回收的可持续性。然而,这些优点也存在明显的缺点。与重量紧凑的固体材料相比,轻质结构不具备相同的特性。随着材料重量的减轻,轻质结构的强度与实心材料相比明显下降。本研究利用增材制造技术制作了轻质结构,并用固体复合聚氨酯泡沫增强石墨填料膨胀到轻质结构中。结果表明,在压缩试验中,含有 2% 石墨填料的混合物的压缩值最高,为 2.5 kN。含有 2% 石墨混合物的试样的最高硬度测试值为 19.8 HA。傅立叶变换红外测试表明,2% 的试样中石墨的碳键强度最高。测试结果表明,在结构中添加聚氨酯泡沫可有效提高材料强度,而不会增加大量材料重量。
{"title":"Hybrid lattice structure with micro graphite filler manufactured via additive manufacturing and growth foam polyurethane","authors":"Fefria Tanbar ,&nbsp;Alvin Dio Nugroho ,&nbsp;Ariyana Dwiputra Nugraha ,&nbsp;Seno Darmanto ,&nbsp;Djarot Widagdo ,&nbsp;Gil N.C. Santos ,&nbsp;Muhammad Akhsin Muflikhun","doi":"10.1016/j.jcomc.2024.100516","DOIUrl":"10.1016/j.jcomc.2024.100516","url":null,"abstract":"<div><div>The utilisation of lightweight structures is a common practice across a range of disciplines, including the construction of light steel frames, sandwich panels, and transportation infrastructure, among others. The advantages of lightweight structures include design flexibility, weight reduction, and the sustainability of materials that can be easily recycled. However, these advantages also present significant weaknesses. Compared to solid materials with compact weight, lightweight structures do not have the same characteristics. With the reduction in material weight, the strength of the lightweight structure decreases significantly compared to solid materials. In this study, the lightweight structure was made using additive manufacturing and reinforced with solid Composite Polyurethane Foam reinforced with graphite filler expanded into the lightweight structure. The results showed that in the compression test, the mixture with 2 % graphite filler had the highest value of 2.5 kN. The highest hardness test on the specimen with a 2 % graphite mixture was 19.8 HA. FT-IR testing showed that the carbon bonds from graphite in the 2 % specimen had the highest intensity. The test results showed that the addition of Polyurethane Foam into the structure could enhance material strength effectively without adding significant material weight.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100516"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of repairing heat-damaged RC beams using externally bonded- and near-surface mounted-CFRP composites 使用外部粘接和近表面安装的纤维增强塑料复合材料修复热损伤 RC 梁的综述
IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100519
Mousa Shhabat , Mohammad Al-Zu'bi , Mu'tasim Abdel-Jaber
Despite numerous investigations conducted in the field and the evident importance of this area of study, comprehensive reviews are still lacking, resulting in a noticeable gap in comprehension. Therefore, this paper presents an in-depth review of repair methods for heat-damaged reinforced concrete (RC) beams utilizing carbon fibre-reinforced polymer (CFRP) composites through both externally bonded reinforcement (EBR) and near-surface mounted (NSM) techniques. The paper meticulously compiles and analyses relevant experimental data, examining flexural and shear repair mechanisms, associated failure modes and factors influencing the repair processes, such as the form, length, spacing, orientation and number of CFRP reinforcement layers, as well as the type of bonding agent. Thus, this review serves as a valuable resource and guide for engineers and researchers seeking to deepen their knowledge in this field.
The review concludes with recommendations for future research directions aimed at advancing the development and application of repair technologies for heat-damaged RC members.
尽管在该领域进行了大量研究,而且该研究领域的重要性显而易见,但仍然缺乏全面的综述,因此在理解方面存在明显差距。因此,本文通过外部粘接加固(EBR)和近表面安装(NSM)技术,对利用碳纤维增强聚合物(CFRP)复合材料修复热损伤钢筋混凝土(RC)梁的方法进行了深入评述。论文对相关实验数据进行了细致的汇编和分析,研究了弯曲和剪切修复机制、相关失效模式以及影响修复过程的因素,如 CFRP 加固层的形式、长度、间距、方向和数量,以及粘接剂的类型。因此,本综述可作为工程师和研究人员深化该领域知识的宝贵资源和指南。综述最后提出了未来研究方向的建议,旨在推进热损伤 RC 构件修复技术的开发和应用。
{"title":"A review of repairing heat-damaged RC beams using externally bonded- and near-surface mounted-CFRP composites","authors":"Mousa Shhabat ,&nbsp;Mohammad Al-Zu'bi ,&nbsp;Mu'tasim Abdel-Jaber","doi":"10.1016/j.jcomc.2024.100519","DOIUrl":"10.1016/j.jcomc.2024.100519","url":null,"abstract":"<div><div>Despite numerous investigations conducted in the field and the evident importance of this area of study, comprehensive reviews are still lacking, resulting in a noticeable gap in comprehension. Therefore, this paper presents an in-depth review of repair methods for heat-damaged reinforced concrete (RC) beams utilizing carbon fibre-reinforced polymer (CFRP) composites through both externally bonded reinforcement (EBR) and near-surface mounted (NSM) techniques. The paper meticulously compiles and analyses relevant experimental data, examining flexural and shear repair mechanisms, associated failure modes and factors influencing the repair processes, such as the form, length, spacing, orientation and number of CFRP reinforcement layers, as well as the type of bonding agent. Thus, this review serves as a valuable resource and guide for engineers and researchers seeking to deepen their knowledge in this field.</div><div>The review concludes with recommendations for future research directions aimed at advancing the development and application of repair technologies for heat-damaged RC members.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100519"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced FEA simulation of GFRP and CFRP responses to low velocity impact: Exploring impactor diameter variations and damage mechanisms 对 GFRP 和 CFRP 对低速冲击的响应进行高级有限元分析模拟:探索冲击器直径变化和损坏机制
IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100541
Muhamad Luthfi Hakim , Raihan Nafianto , Ariayana Dwiputra Nugraha , Ardi Wiranata , Eko Supriyanto , Gesang Nugroho , Muhammad Akhsin Muflikhun
In recent decades, the use of composite materials has experienced a significant increase in various fields. Fiber Reinforced Polymers Composite (FRPC) is one type of composite that is increasingly used due to its versatility and ability to improve product quality. However, FRPC materials have a high susceptibility to Low Velocity Impact (LVI) events, which can cause invisible internal damage such as delamination. LVI occurs when FRPC materials experience a sudden impact with a foreign object at a speed of 1–10 m/s, and can be identified through drop weight impact tests. This research addresses Finite Element Analysis (FEA) simulations to evaluate the mechanical properties of materials due to LVI, following the ASTM D7136 drop weight impact test standard. The variations studied include material types, namely Carbon Fiber Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP), as well as variations in the diameter of the impactor. The results showed that GFRP has more brittle properties than CFRP, which is indicated by the high absorption energy and larger maximum back surface displacement in CFRP. In addition, the damage in GFRP is more significant as CFRP requires a higher initiation force and energy to trigger and propagate the damage. The simulations also show that as the diameter of the impactor increases, the contact force increases, but the impact time is shorter. In contrast, a smaller diameter impactor penetrates the material more easily, with a smaller impact area and lower impact energy after contact occurs.
近几十年来,复合材料在各个领域的使用大幅增加。纤维增强聚合物复合材料(FRPC)是复合材料的一种,因其多功能性和提高产品质量的能力而被越来越多地使用。然而,FRPC 材料非常容易受到低速冲击 (LVI) 事件的影响,从而造成分层等看不见的内部损坏。当 FRPC 材料受到速度为 1-10 米/秒的外来物体的突然冲击时,就会发生低速冲击,并可通过落重冲击测试加以识别。本研究按照 ASTM D7136 落锤冲击试验标准,通过有限元分析(FEA)模拟来评估材料在 LVI 作用下的机械性能。研究的变化包括材料类型,即碳纤维增强聚合物(CFRP)和玻璃纤维增强聚合物(GFRP),以及冲击器直径的变化。结果表明,GFRP 比 CFRP 具有更强的脆性,这表现在 CFRP 具有更高的吸收能量和更大的最大背面位移。此外,GFRP 的损坏更为严重,因为 CFRP 需要更高的启动力和能量来触发和传播损坏。模拟结果还显示,随着撞击器直径的增大,接触力增大,但撞击时间缩短。相反,直径较小的撞击器更容易穿透材料,撞击面积更小,接触后的撞击能量更低。
{"title":"Advanced FEA simulation of GFRP and CFRP responses to low velocity impact: Exploring impactor diameter variations and damage mechanisms","authors":"Muhamad Luthfi Hakim ,&nbsp;Raihan Nafianto ,&nbsp;Ariayana Dwiputra Nugraha ,&nbsp;Ardi Wiranata ,&nbsp;Eko Supriyanto ,&nbsp;Gesang Nugroho ,&nbsp;Muhammad Akhsin Muflikhun","doi":"10.1016/j.jcomc.2024.100541","DOIUrl":"10.1016/j.jcomc.2024.100541","url":null,"abstract":"<div><div>In recent decades, the use of composite materials has experienced a significant increase in various fields. Fiber Reinforced Polymers Composite (FRPC) is one type of composite that is increasingly used due to its versatility and ability to improve product quality. However, FRPC materials have a high susceptibility to Low Velocity Impact (LVI) events, which can cause invisible internal damage such as delamination. LVI occurs when FRPC materials experience a sudden impact with a foreign object at a speed of 1–10 m/s, and can be identified through drop weight impact tests. This research addresses Finite Element Analysis (FEA) simulations to evaluate the mechanical properties of materials due to LVI, following the ASTM D7136 drop weight impact test standard. The variations studied include material types, namely Carbon Fiber Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP), as well as variations in the diameter of the impactor. The results showed that GFRP has more brittle properties than CFRP, which is indicated by the high absorption energy and larger maximum back surface displacement in CFRP. In addition, the damage in GFRP is more significant as CFRP requires a higher initiation force and energy to trigger and propagate the damage. The simulations also show that as the diameter of the impactor increases, the contact force increases, but the impact time is shorter. In contrast, a smaller diameter impactor penetrates the material more easily, with a smaller impact area and lower impact energy after contact occurs.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100541"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A machine learning enhanced characteristic length method for failure prediction of open hole tension composites 用于开孔拉伸复合材料失效预测的机器学习增强特征长度法
IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100524
Omar A.I. Azeem, Silvestre T. Pinho
The characteristic length method is a non-local approach to predicting the failure of open and closed-hole composite features. This method requires the determination of the linear elastic stress field of the composite laminate at its failure load. Typically, this requires computationally expensive progressive damage and linear elastic modelling and simulation with finite element analysis (FEA). In this study, we demonstrate the benefit of machine learning methods to efficiently and accurately predict characteristic lengths of composite laminates with open holes. We find that the prediction of the load-displacement profile usefully informs ultimate failure load prediction. We also find that linear elastic stress fields are more accurately predicted using a long-short term memory neural network rather than a convolutional decoder neural network. We show indirect prediction of characteristic length, via prediction of failure loads and linear elastic stress fields independently, results in more flexible, interpretable and accurate results than direct prediction of characteristic length, given sufficient training data. Our machine learning-assisted characteristic length method shows over five orders of magnitude of time-saving benefit compared to FEA-based methods.
特征长度法是一种预测开孔和闭孔复合材料失效的非局部方法。这种方法需要确定复合材料层压板在失效载荷下的线性弹性应力场。通常,这需要计算昂贵的渐进损伤和线性弹性建模,并通过有限元分析(FEA)进行模拟。在本研究中,我们展示了机器学习方法在高效、准确地预测开孔复合材料层压板特征长度方面的优势。我们发现,对载荷-位移曲线的预测有助于最终失效载荷的预测。我们还发现,使用长短期记忆神经网络而不是卷积解码器神经网络能更准确地预测线性弹性应力场。我们表明,在有足够训练数据的情况下,通过独立预测破坏载荷和线性弹性应力场来间接预测特征长度,比直接预测特征长度的结果更灵活、更可解释、更准确。与基于有限元分析的方法相比,我们的机器学习辅助特征长度方法可节省五个数量级以上的时间。
{"title":"A machine learning enhanced characteristic length method for failure prediction of open hole tension composites","authors":"Omar A.I. Azeem,&nbsp;Silvestre T. Pinho","doi":"10.1016/j.jcomc.2024.100524","DOIUrl":"10.1016/j.jcomc.2024.100524","url":null,"abstract":"<div><div>The characteristic length method is a non-local approach to predicting the failure of open and closed-hole composite features. This method requires the determination of the linear elastic stress field of the composite laminate at its failure load. Typically, this requires computationally expensive progressive damage and linear elastic modelling and simulation with finite element analysis (FEA). In this study, we demonstrate the benefit of machine learning methods to efficiently and accurately predict characteristic lengths of composite laminates with open holes. We find that the prediction of the load-displacement profile usefully informs ultimate failure load prediction. We also find that linear elastic stress fields are more accurately predicted using a long-short term memory neural network rather than a convolutional decoder neural network. We show indirect prediction of characteristic length, via prediction of failure loads and linear elastic stress fields independently, results in more flexible, interpretable and accurate results than direct prediction of characteristic length, given sufficient training data. Our machine learning-assisted characteristic length method shows over five orders of magnitude of time-saving benefit compared to FEA-based methods.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100524"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Damage detection in composite and plastic thin-wall beams by operational modal analysis: An experimental assessment 通过运行模态分析检测复合材料和塑料薄壁梁的损伤:实验评估
IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-10-01 DOI: 10.1016/j.jcomc.2024.100542
Josué Pacheco-Chérrez , Manuel Aenlle , Pelayo Fernández , Carlos Colchero , Oliver Probst
The detection and localization of different damage features in thin-wall beam composite and plastic beams using Operational Modal Analysis (OMA) has been demonstrated experimentally. The detection of small damage features using modal analysis techniques is an emerging field, with few experimental OMA-based assessments having been reported so far. The proposed method is based on OMA combined with Stochastic Subspace Identification (SSI) and the enhancement of damage features by Continuous Wavelet Transforms (CWT). A composite thin-wall beam (CTWB) structure in two measurement configurations and a PVC tube in a free-free configuration have been tested. Damage features detected include extra masses attached to the beam, with a range from 9.5 % to 14.0 % of the beam mass, and small cracks perpendicular to the beam axis with lengths of about 4 % of the perimeter of the cross section. Calibration curves relating the strength of the damage signal with the weight of the attached masses have been constructed. Two simultaneous cracks or two masses could be detected as well. The quantification and localization of damage feature along the beam was possible through the use of Gaussian fit surface applied to damage maps obtained with the CWT technique. The width of the Gaussian fit curve was of the order of the distance between accelerometers, but the accuracy, estimated to be around 3 % of the beam length, was found to have sub-grid resolution. The proposed method was shown to work reliably with a relatively coarse measurement grid, potentially allowing for cost-effective Structural Health Monitoring (SHM) approaches.
实验证明,使用运行模态分析(OMA)可以检测和定位薄壁梁复合材料和塑料梁中的不同损伤特征。使用模态分析技术检测微小损伤特征是一个新兴领域,迄今为止,基于运行模态分析的实验评估报告寥寥无几。所提出的方法基于 OMA 与随机子空间识别 (SSI) 的结合,并通过连续小波变换 (CWT) 增强损伤特征。测试了两种测量配置下的复合薄壁梁(CTWB)结构和自由配置下的 PVC 管。检测到的损伤特征包括附着在梁上的额外质量(占梁质量的 9.5% 到 14.0%),以及垂直于梁轴线的小裂缝(长度约为横截面周长的 4%)。已构建出损伤信号强度与所附质量重量的校准曲线。还可以同时检测到两条裂缝或两个质量块。通过将高斯拟合曲面应用于利用 CWT 技术获得的损伤图,可以对梁上的损伤特征进行量化和定位。高斯拟合曲线的宽度与加速度计之间的距离相当,但精度估计约为梁长度的 3%,具有亚网格分辨率。结果表明,所提出的方法可以在相对较粗的测量网格中可靠地工作,从而有可能实现具有成本效益的结构健康监测(SHM)方法。
{"title":"Damage detection in composite and plastic thin-wall beams by operational modal analysis: An experimental assessment","authors":"Josué Pacheco-Chérrez ,&nbsp;Manuel Aenlle ,&nbsp;Pelayo Fernández ,&nbsp;Carlos Colchero ,&nbsp;Oliver Probst","doi":"10.1016/j.jcomc.2024.100542","DOIUrl":"10.1016/j.jcomc.2024.100542","url":null,"abstract":"<div><div>The detection and localization of different damage features in thin-wall beam composite and plastic beams using Operational Modal Analysis (OMA) has been demonstrated experimentally. The detection of small damage features using modal analysis techniques is an emerging field, with few experimental OMA-based assessments having been reported so far. The proposed method is based on OMA combined with Stochastic Subspace Identification (SSI) and the enhancement of damage features by Continuous Wavelet Transforms (CWT). A composite thin-wall beam (CTWB) structure in two measurement configurations and a PVC tube in a free-free configuration have been tested. Damage features detected include extra masses attached to the beam, with a range from 9.5 % to 14.0 % of the beam mass, and small cracks perpendicular to the beam axis with lengths of about 4 % of the perimeter of the cross section. Calibration curves relating the strength of the damage signal with the weight of the attached masses have been constructed. Two simultaneous cracks or two masses could be detected as well. The quantification and localization of damage feature along the beam was possible through the use of Gaussian fit surface applied to damage maps obtained with the CWT technique. The width of the Gaussian fit curve was of the order of the distance between accelerometers, but the accuracy, estimated to be around 3 % of the beam length, was found to have sub-grid resolution. The proposed method was shown to work reliably with a relatively coarse measurement grid, potentially allowing for cost-effective Structural Health Monitoring (SHM) approaches.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100542"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Composites Part C Open Access
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1