首页 > 最新文献

Composites Part C Open Access最新文献

英文 中文
Mechanical analysis of a carbon fibre composite woven composite laminate for ultra-light applications in aeronautics 用于航空领域超轻型应用的碳纤维复合材料编织层压板的力学分析
IF 4.2 Q2 Engineering Pub Date : 2024-03-07 DOI: 10.1016/j.jcomc.2024.100447
Nicholas Fantuzzi , Antoine Dib , Sajjad Babamohammadi , Silvio Campigli , David Benedetti , Jacopo Agnelli

Carbon fiber composites have emerged as a transformative technology, offering a fascinating alternative to traditional materials like aluminum and steel. Their unique combination of high strength, stiffness, and reduced density makes them an ideal choice for lightweight structural components, an attribute that aligns with the pursuit of fuel-efficient and eco-friendly aircraft designs. With the continuous race between countries and research organizations to find new materials that satisfies the above-mentioned characteristics, this article highlights the utilization of a new Ultra-Light Carbon-based Composite (ULCC) in the aeronautical sector developed within the industrial research project TERSA (Radar technologies for autonomus flying vehicles or TEcnologie Radar per Sistemi aerei a pilotaggio remoto (SAPR) Autonomi in italian). The composite material has been developed with the aim of achieving superior performance and efficiency compared to existing products on the market. To evaluate its effectiveness, first, the mechanical properties of the ULCC have been compared to T300/Epoxy and T1000/Epoxy, two of the materials commonly used in aeronautical industry and unmanned aerial vehicle (UAV). Second, finite element models were employed to verify and analyze the dynamic properties of aeronautical structural components made of ULCC. The results indicate that the new carbon-based composite exhibits remarkable strength-to-weight ratio, enhanced durability, and offering significant advantages in terms of weight reduction and overall performance. These findings validate its potential as a viable alternative in aeronautical industry.

碳纤维复合材料已成为一种变革性技术,为铝和钢等传统材料提供了一种令人着迷的替代材料。碳纤维复合材料集高强度、高刚度和低密度于一身,是轻质结构组件的理想选择,这与飞机设计追求节油和环保的理念不谋而合。随着各国和研究机构不断努力寻找满足上述特性的新材料,本文重点介绍了一种新型超轻碳基复合材料(ULCC)在航空领域的应用,该材料是在工业研究项目 TERSA(自主飞行器雷达技术,意大利语为 TEcnologie Radar per Sistemi aerei a pilotaggio remoto (SAPR) Autonomi)中开发的。开发这种复合材料的目的是使其性能和效率优于市场上的现有产品。为了评估其有效性,首先将 ULCC 的机械性能与 T300/Epoxy 和 T1000/Epoxy 进行了比较,这两种材料常用于航空工业和无人驾驶飞行器(UAV)。其次,采用有限元模型验证和分析了 ULCC 制成的航空结构部件的动态特性。结果表明,这种新型碳基复合材料具有出色的强度重量比、更高的耐久性,在减重和整体性能方面具有显著优势。这些研究结果验证了其作为航空工业可行替代品的潜力。
{"title":"Mechanical analysis of a carbon fibre composite woven composite laminate for ultra-light applications in aeronautics","authors":"Nicholas Fantuzzi ,&nbsp;Antoine Dib ,&nbsp;Sajjad Babamohammadi ,&nbsp;Silvio Campigli ,&nbsp;David Benedetti ,&nbsp;Jacopo Agnelli","doi":"10.1016/j.jcomc.2024.100447","DOIUrl":"10.1016/j.jcomc.2024.100447","url":null,"abstract":"<div><p>Carbon fiber composites have emerged as a transformative technology, offering a fascinating alternative to traditional materials like aluminum and steel. Their unique combination of high strength, stiffness, and reduced density makes them an ideal choice for lightweight structural components, an attribute that aligns with the pursuit of fuel-efficient and eco-friendly aircraft designs. With the continuous race between countries and research organizations to find new materials that satisfies the above-mentioned characteristics, this article highlights the utilization of a new Ultra-Light Carbon-based Composite (ULCC) in the aeronautical sector developed within the industrial research project TERSA (Radar technologies for autonomus flying vehicles or TEcnologie Radar per Sistemi aerei a pilotaggio remoto (SAPR) Autonomi in italian). The composite material has been developed with the aim of achieving superior performance and efficiency compared to existing products on the market. To evaluate its effectiveness, first, the mechanical properties of the ULCC have been compared to T300/Epoxy and T1000/Epoxy, two of the materials commonly used in aeronautical industry and unmanned aerial vehicle (UAV). Second, finite element models were employed to verify and analyze the dynamic properties of aeronautical structural components made of ULCC. The results indicate that the new carbon-based composite exhibits remarkable strength-to-weight ratio, enhanced durability, and offering significant advantages in terms of weight reduction and overall performance. These findings validate its potential as a viable alternative in aeronautical industry.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000185/pdfft?md5=e196d25badf8ae89dfc7014a4795f6bd&pid=1-s2.0-S2666682024000185-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140090623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing additive manufacturing precision: Intelligent inspection and optimization for defect-free continuous carbon fiber-reinforced polymer 提高增材制造精度:无缺陷连续碳纤维增强聚合物的智能检测和优化
IF 4.2 Q2 Engineering Pub Date : 2024-03-06 DOI: 10.1016/j.jcomc.2024.100451
Md Hasib Zubayer , Yi Xiong , Yafei Wang , Haque Md Imdadul

Artificial intelligence (AI) has emerged as a pivotal tool in managing extensive datasets, enabling pattern recognition, and deriving solutions, particularly revolutionizing additive manufacturing (AM). This study intends to develop AI deep machine learning image processing techniques for real-time defects detection in additively manufactured continuous carbon fiber-reinforced polymer(cCFRP) specimens. Leveraging YOLOv8- a state-of-the-art, single-stage object detection algorithm, this study focuses on the relationship between printing parameters and defect occurrences, specifically misalignment errors. The research delineates a methodological advancement by correlating detected defects with parameter optimization, leading to significant quality improvements in cCFRP specimens. An impressive 94 % accuracy in detecting misalignments was achieved through fine-tuning the nozzle temperature adjustment, resulting in significant reductions in misalignment errors, while minimal impact is observed from print bed temperature, feed amount, and feed rate/sec on refining the proposed model for identifying optimal parameters.

人工智能(AI)已成为管理大量数据集、实现模式识别和推导解决方案的重要工具,尤其是在增材制造(AM)领域带来了革命性的变化。本研究旨在开发人工智能深度机器学习图像处理技术,用于实时检测增材制造连续碳纤维增强聚合物(cCFRP)试样中的缺陷。本研究利用 YOLOv8(一种最先进的单阶段物体检测算法),重点研究打印参数与缺陷发生(特别是不对齐误差)之间的关系。该研究将检测到的缺陷与参数优化联系起来,在方法上取得了进步,从而显著提高了 cCFRP 试样的质量。通过微调喷嘴温度,错位检测的准确率达到了令人印象深刻的 94%,从而显著降低了错位误差,同时观察到打印床温度、进料量和进料速度/秒对完善所提出的最佳参数识别模型的影响微乎其微。
{"title":"Enhancing additive manufacturing precision: Intelligent inspection and optimization for defect-free continuous carbon fiber-reinforced polymer","authors":"Md Hasib Zubayer ,&nbsp;Yi Xiong ,&nbsp;Yafei Wang ,&nbsp;Haque Md Imdadul","doi":"10.1016/j.jcomc.2024.100451","DOIUrl":"https://doi.org/10.1016/j.jcomc.2024.100451","url":null,"abstract":"<div><p>Artificial intelligence (AI) has emerged as a pivotal tool in managing extensive datasets, enabling pattern recognition, and deriving solutions, particularly revolutionizing additive manufacturing (AM). This study intends to develop AI deep machine learning image processing techniques for real-time defects detection in additively manufactured continuous carbon fiber-reinforced polymer(cCFRP) specimens. Leveraging YOLOv8- a state-of-the-art, single-stage object detection algorithm, this study focuses on the relationship between printing parameters and defect occurrences, specifically misalignment errors. The research delineates a methodological advancement by correlating detected defects with parameter optimization, leading to significant quality improvements in cCFRP specimens. An impressive 94 % accuracy in detecting misalignments was achieved through fine-tuning the nozzle temperature adjustment, resulting in significant reductions in misalignment errors, while minimal impact is observed from print bed temperature, feed amount, and feed rate/<em>sec</em> on refining the proposed model for identifying optimal parameters.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000227/pdfft?md5=32bad56242b9e6f7f2a3faaef927359b&pid=1-s2.0-S2666682024000227-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140141868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on thermal expansion coefficient and absorbing properties of fiber reinforced resin-based absorbing composites 纤维增强树脂基吸水复合材料的热膨胀系数和吸水特性研究
IF 4.2 Q2 Engineering Pub Date : 2024-03-04 DOI: 10.1016/j.jcomc.2024.100449
By Zhuohui Zhou , Yanli Wang , Wanqi Zhao , Zhiyong Wang , Yan Zhao

In this paper, non-woven fabric and glass fiber fabric were used to prepare resin-based absorbing composite. The thermal expansion coefficient and the microwave absorbing properties of the absorbing composites with different glass fiber volume fraction were studied. The results show that the simulation results of the thermal expansion coefficient calculated by Schapery model are inconsistent with the experimental results, the metallographic results were studied to reveal that it is the added absorbent in the composite that partially replaced the resin at the interface between resin and fiber bundle causes the parameters of the material substituted in the Schapery model to be improper. A different simulation model was proposed to introduce a set of different parameters of the material to reduce the error between simulation and experiment results and the simulation results show that the error is reduced from a maximum of 53 % to a minimum of 3 %. Meanwhile the microwave absorbing properties show that the absorbing peaks of the composite materials move to low frequency with the increasing glass fiber volume fraction and the minimum reflection loss (RL) first increase and then decrease. The metallographic results show that the different distribution of absorbent in the composites within different reinforced fibers causes the movement of the absorbing peaks and the change of its minimum RL. Those research results lay a foundation for the further popularization and application of the absorbing composites.

本文采用无纺布和玻璃纤维织物制备树脂基吸波复合材料。研究了不同玻璃纤维体积分数的吸波复合材料的热膨胀系数和微波吸收性能。结果表明,Schapery 模型计算出的热膨胀系数模拟结果与实验结果不一致,研究金相结果发现,是复合材料中添加的吸波材料在树脂与纤维束界面处部分取代了树脂,导致 Schapery 模型中替代材料的参数不正确。为了减小模拟和实验结果之间的误差,我们提出了一种不同的模拟模型,引入一组不同的材料参数,模拟结果表明,误差从最大的 53% 减小到最小的 3%。同时,微波吸收特性表明,随着玻璃纤维体积分数的增加,复合材料的吸收峰向低频移动,最小反射损耗(RL)先增大后减小。金相结果表明,复合材料中不同增强纤维的吸波物质分布不同,导致了吸波峰值的移动及其最小反射损耗的变化。这些研究成果为吸波复合材料的进一步推广和应用奠定了基础。
{"title":"Study on thermal expansion coefficient and absorbing properties of fiber reinforced resin-based absorbing composites","authors":"By Zhuohui Zhou ,&nbsp;Yanli Wang ,&nbsp;Wanqi Zhao ,&nbsp;Zhiyong Wang ,&nbsp;Yan Zhao","doi":"10.1016/j.jcomc.2024.100449","DOIUrl":"10.1016/j.jcomc.2024.100449","url":null,"abstract":"<div><p>In this paper, non-woven fabric and glass fiber fabric were used to prepare resin-based absorbing composite. The thermal expansion coefficient and the microwave absorbing properties of the absorbing composites with different glass fiber volume fraction were studied. The results show that the simulation results of the thermal expansion coefficient calculated by Schapery model are inconsistent with the experimental results, the metallographic results were studied to reveal that it is the added absorbent in the composite that partially replaced the resin at the interface between resin and fiber bundle causes the parameters of the material substituted in the Schapery model to be improper. A different simulation model was proposed to introduce a set of different parameters of the material to reduce the error between simulation and experiment results and the simulation results show that the error is reduced from a maximum of 53 % to a minimum of 3 %. Meanwhile the microwave absorbing properties show that the absorbing peaks of the composite materials move to low frequency with the increasing glass fiber volume fraction and the minimum reflection loss (RL) first increase and then decrease. The metallographic results show that the different distribution of absorbent in the composites within different reinforced fibers causes the movement of the absorbing peaks and the change of its minimum RL. Those research results lay a foundation for the further popularization and application of the absorbing composites.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000203/pdfft?md5=4f04e7936d30ab4e2f3daa3a0b65537a&pid=1-s2.0-S2666682024000203-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140056732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiaxial loading of aeronautic composite structures at intermediate scale: A review of VERTEX developments 中尺度航空复合材料结构的多轴加载:VERTEX 发展回顾
IF 4.2 Q2 Engineering Pub Date : 2024-03-01 DOI: 10.1016/j.jcomc.2024.100439
Bruno Castanié, Jean-Charles Passieux, Jean-Noel Périé, Christophe Bouvet, John-Eric Dufour, Joël Serra

The certification of aeronautical composite structures is based on a pragmatic approach, which is intended to be safe and essentially experimental but with a strong test/calculation dialogue called the “Test Pyramid”. However, this has proved to be extremely expensive and it appears necessary to reduce its cost either by developing Virtual testing, or by developing richer tests on an intermediate scale between coupon specimens and structural parts. It was in the aim of meeting this objective that the VERTEX program (French acronym for “Experimental modeling and Validation of compositE strucTures under complEX loading”) was launched in 2012. After positioning the VERTEX program in relation to the literature, this review will explain the methodology and present the measurement methods specifically developed for this scale. Then, three scientific themes that have been studied will be detailed (large notches, impact and wrinkling case studies). Finally, a proposal for validating the structures using envelope curves will be put forward, an assessment made, and perspectives presented.

航空复合材料结构的认证基于一种务实的方法,其目的是安全的,基本上是实验性的,但有一个强大的测试/计算对话,称为 "测试金字塔"。然而,事实证明这种方法成本极高,看来有必要通过开发虚拟测试或在试样和结构部件之间的中间尺度上开发更丰富的测试来降低成本。为了实现这一目标,2012 年启动了 VERTEX 计划(法文首字母缩写词,意为 "复合材料结构在碰撞加载下的实验建模和验证")。在根据文献对 VERTEX 计划进行定位后,本综述将解释其方法论,并介绍专门为此量表开发的测量方法。然后,将详细介绍已研究的三个科学主题(大缺口、冲击和起皱案例研究)。最后,将提出利用包络曲线验证结构的建议,并进行评估和展望。
{"title":"Multiaxial loading of aeronautic composite structures at intermediate scale: A review of VERTEX developments","authors":"Bruno Castanié,&nbsp;Jean-Charles Passieux,&nbsp;Jean-Noel Périé,&nbsp;Christophe Bouvet,&nbsp;John-Eric Dufour,&nbsp;Joël Serra","doi":"10.1016/j.jcomc.2024.100439","DOIUrl":"https://doi.org/10.1016/j.jcomc.2024.100439","url":null,"abstract":"<div><p>The certification of aeronautical composite structures is based on a pragmatic approach, which is intended to be safe and essentially experimental but with a strong test/calculation dialogue called the “Test Pyramid”. However, this has proved to be extremely expensive and it appears necessary to reduce its cost either by developing Virtual testing, or by developing richer tests on an intermediate scale between coupon specimens and structural parts. It was in the aim of meeting this objective that the VERTEX program (French acronym for “Experimental modeling and Validation of compositE strucTures under complEX loading”) was launched in 2012. After positioning the VERTEX program in relation to the literature, this review will explain the methodology and present the measurement methods specifically developed for this scale. Then, three scientific themes that have been studied will be detailed (large notches, impact and wrinkling case studies). Finally, a proposal for validating the structures using envelope curves will be put forward, an assessment made, and perspectives presented.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000100/pdfft?md5=8094d47d10aad094f329065492f0904a&pid=1-s2.0-S2666682024000100-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139992950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stress-strain behavior of square concrete columns confined with hybrid B-CSM composites and development of novel prediction models 使用混合 B-CSM 复合材料加固的方形混凝土柱的应力-应变行为及新型预测模型的开发
IF 4.2 Q2 Engineering Pub Date : 2024-02-29 DOI: 10.1016/j.jcomc.2024.100448
Phromphat Thansirichaisree , Hisham Mohamad , Ali Ejaz , Panumas Saingam , Qudeer Hussain , Suniti Suparp

This paper presents a comprehensive investigation into the behavior of concrete confined with hybrid Basalt and Chopped Strand Mat (B-CSM) fibers. The newly proposed B-CSM confinement technique substantially enhances the brittle compressive stress-strain behavior, leading to a noteworthy increase in peak strength (approximately 90%) and ultimate strain (approximately 461 %). The efficiency of B-CSM confinement is affected by the strength of plain concrete, with lower-strength specimens indicating a more pronounced enhancement. The performance of existing analytical models for FRP confinement in predicting ultimate strength and strain in B-CSM confined concrete is assessed, highlighting the need for tailored models. Regression-based equations are proposed for characteristic points along the stress-strain curve, enabling accurate prediction of material behavior. The predicted stress-strain curves exhibit a high level of agreement with experimental results. These findings provide valuable insights for the design and application of B-CSM confinement techniques in structural engineering, facilitating improved performance and ductility of concrete structures under compressive loading conditions.

本文对使用混合玄武岩和短切刨花纤维(B-CSM)约束混凝土的行为进行了全面研究。新提出的 B-CSM 约束技术大大增强了脆性抗压应力-应变行为,显著提高了峰值强度(约 90%)和极限应变(约 461%)。B-CSM 约束的效率受素混凝土强度的影响,强度较低的试件会有更明显的增强。评估了现有 FRP 约束分析模型在预测 B-CSM 约束混凝土极限强度和应变方面的性能,强调了对定制模型的需求。针对应力-应变曲线上的特征点提出了基于回归的方程,从而能够准确预测材料行为。预测的应力-应变曲线与实验结果高度吻合。这些发现为 B-CSM 约束技术在结构工程中的设计和应用提供了宝贵的见解,有助于提高混凝土结构在抗压加载条件下的性能和延展性。
{"title":"Stress-strain behavior of square concrete columns confined with hybrid B-CSM composites and development of novel prediction models","authors":"Phromphat Thansirichaisree ,&nbsp;Hisham Mohamad ,&nbsp;Ali Ejaz ,&nbsp;Panumas Saingam ,&nbsp;Qudeer Hussain ,&nbsp;Suniti Suparp","doi":"10.1016/j.jcomc.2024.100448","DOIUrl":"10.1016/j.jcomc.2024.100448","url":null,"abstract":"<div><p>This paper presents a comprehensive investigation into the behavior of concrete confined with hybrid Basalt and Chopped Strand Mat (B-CSM) fibers. The newly proposed B-CSM confinement technique substantially enhances the brittle compressive stress-strain behavior, leading to a noteworthy increase in peak strength (approximately 90%) and ultimate strain (approximately 461 %). The efficiency of B-CSM confinement is affected by the strength of plain concrete, with lower-strength specimens indicating a more pronounced enhancement. The performance of existing analytical models for FRP confinement in predicting ultimate strength and strain in B-CSM confined concrete is assessed, highlighting the need for tailored models. Regression-based equations are proposed for characteristic points along the stress-strain curve, enabling accurate prediction of material behavior. The predicted stress-strain curves exhibit a high level of agreement with experimental results. These findings provide valuable insights for the design and application of B-CSM confinement techniques in structural engineering, facilitating improved performance and ductility of concrete structures under compressive loading conditions.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000197/pdfft?md5=22d228c0e271f3a4fbe471edf55e5807&pid=1-s2.0-S2666682024000197-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140044038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fracture toughness determination for epoxy-based polymer concrete mixtures: Applicability of different rectangular beam and circular disc specimens 环氧基聚合物混凝土混合物的断裂韧性测定:不同矩形梁和圆盘试样的适用性
IF 4.2 Q2 Engineering Pub Date : 2024-02-29 DOI: 10.1016/j.jcomc.2024.100446
M.R.M. Aliha , H.G. Kouchaki , M.H. Mohammadi , P.J. Haghighatpour , N. Choupani , P. Asadi , M. Akbari , M.G. Darvish , T. Sadowski

The purpose of this study was to examine the potential impact of the testing procedure, the shape of the test sample, loading method and sample size on the KIc value of polymer concrete (PC) materials. The research involved experimental investigations using five different testing techniques and specimen types, namely the single edge notched beam (SENB), short bend beam (SBB), semi-circular bend (SCB), edge notch disc bend (ENDB), and center cracked Brazilian disc (CCBD). A typical PC mixture made of mineral silicious aggregate, ML506 epoxy resin, chopped E-glass, and foundry sand filler. Despite the difference in the shape and loading type of the tested samples, the KIc data obtained from all groups of specimens are in good agreement with together and with the SENB proposed by RILEM. Depending on the test type, the KIc value varied from 1.43 to 1.74 MPa.m0.5 and the discrepancy between the data was mainly attributed to the type of loading (compression or bending) and the crack type (center crack or edge crack). The T-stress affects the fracture toughness for different testing samples and configurations. The lowest fracture toughness corresponds to the CCBD specimen (the center cracked disc loaded diametrically). The other test samples with edge cracks and loaded by a three-point bend setup showed KIc = 1.7 - 1.74 MPa.m0.5. Moreover, the fracture toughness data for PC mixtures can be achieved by utilizing sub-sized samples like SBB (for smaller amounts of PC material) instead of larger beam samples (i.e., SENB).

本研究旨在考察测试程序、测试样本形状、加载方法和样本大小对聚合物混凝土(PC)材料价值的潜在影响。研究使用了五种不同的测试技术和试样类型,即单边缺口梁(SENB)、短弯梁(SBB)、半圆弯梁(SCB)、边缘缺口圆盘弯梁(ENDB)和中心开裂巴西圆盘(CCBD)。典型的 PC 混合物由矿物硅质骨料、ML506 环氧树脂、切碎的 E 玻璃和铸造砂填料制成。尽管测试样品的形状和加载类型各不相同,但从各组试样中获得的数据与 RILEM 提出的 SENB 一致。根据测试类型的不同,数值从 1.43 到 1.74 MPa.m 不等,数据之间的差异主要归因于加载类型(压缩或弯曲)和裂纹类型(中心裂纹或边缘裂纹)。应力会影响不同测试样品和结构的断裂韧性。断裂韧性最低的是 CCBD 试样(中心裂纹圆盘直径加载)。此外,PC 混合物的断裂韧性数据可通过使用 SBB(用于较少量的 PC 材料)等次尺寸试样而非较大的梁试样(即 SENB)来获得。
{"title":"Fracture toughness determination for epoxy-based polymer concrete mixtures: Applicability of different rectangular beam and circular disc specimens","authors":"M.R.M. Aliha ,&nbsp;H.G. Kouchaki ,&nbsp;M.H. Mohammadi ,&nbsp;P.J. Haghighatpour ,&nbsp;N. Choupani ,&nbsp;P. Asadi ,&nbsp;M. Akbari ,&nbsp;M.G. Darvish ,&nbsp;T. Sadowski","doi":"10.1016/j.jcomc.2024.100446","DOIUrl":"10.1016/j.jcomc.2024.100446","url":null,"abstract":"<div><p>The purpose of this study was to examine the potential impact of the testing procedure, the shape of the test sample, loading method and sample size on the <em>K</em><sub>Ic</sub> value of polymer concrete (PC) materials. The research involved experimental investigations using five different testing techniques and specimen types, namely the single edge notched beam (SENB), short bend beam (SBB), semi-circular bend (SCB), edge notch disc bend (ENDB), and center cracked Brazilian disc (CCBD). A typical PC mixture made of mineral silicious aggregate, ML506 epoxy resin, chopped E-glass, and foundry sand filler. Despite the difference in the shape and loading type of the tested samples, the <em>K</em><sub>Ic</sub> data obtained from all groups of specimens are in good agreement with together and with the SENB proposed by RILEM. Depending on the test type, the <em>K</em><sub>Ic</sub> value varied from 1.43 to 1.74 MPa.m<sup>0.5</sup> and the discrepancy between the data was mainly attributed to the type of loading (compression or bending) and the crack type (center crack or edge crack). The <em>T</em>-stress affects the fracture toughness for different testing samples and configurations. The lowest fracture toughness corresponds to the CCBD specimen (the center cracked disc loaded diametrically). The other test samples with edge cracks and loaded by a three-point bend setup showed <em>K</em><sub>Ic</sub> = 1.7 - 1.74 MPa.m<sup>0.5</sup>. Moreover, the fracture toughness data for PC mixtures can be achieved by utilizing sub-sized samples like SBB (for smaller amounts of PC material) instead of larger beam samples (i.e., SENB).</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000173/pdfft?md5=60e8cd568c1e5017fb88a7877802a160&pid=1-s2.0-S2666682024000173-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140044037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexural strengthening of reinforced concrete beams with CFRP laminates and spike anchors 用 CFRP 层压材料和尖头锚栓加固钢筋混凝土梁的抗弯强度
IF 4.2 Q2 Engineering Pub Date : 2024-02-14 DOI: 10.1016/j.jcomc.2024.100443
Maha Assad, Rami A. Hawileh, Jamal A. Abdalla

Carbon fiber-reinforced polymers (CFRP) are widely used to strengthen reinforced concrete (RC) beams. Its major drawback is the brittle failure mode in the form of debonding of the CFRP laminate. The use of CFRP spike anchors demonstrated positive outcomes in mitigating the debonding failure in small-scale concrete prisms in previous studies. However, the real-life behavior of anchored RC beams was rarely studied . This study aims to investigate the flexural behavior of externally strengthened RC beams with CFRP laminates and anchored at end with CFRP spike anchors. The results of anchored beams was compared with unanchored specimens in terms of load-deflection response, strain in the FRP laminates, and failure modes. Results showed that anchorage of CFRP laminates with CFRP splay anchors positively affected the flexural capacity of the specimens. An average increase in the load-carrying capacity of 19 % was portrayed in the anchored specimens compared to the unanchored specimen. Anchorage of FRP laminates resulted in the mitigation of debonding failure and thus, enhanced strain utilization in laminates. A considerable improvement in strain utilization is exhibited by the specimen anchored with two anchors at each end. Moreover, increasing the anchor's dowel diameter significantly improved the load-carrying capacity but lowered the ultimate strain reached in the laminate. Results indicated that larger diameter anchors provide strengthening effect similar to increasing the number of FRP layers instead of providing anchorage to the FRP sheet. This is primarily due to the increase in the fan length and thickness as the anchor's dowel diameter increases.

碳纤维增强聚合物(CFRP)被广泛用于加固钢筋混凝土(RC)梁。其主要缺点是 CFRP 层压板以脱落的形式出现脆性破坏模式。在以往的研究中,使用 CFRP 尖头锚固件在减轻小型混凝土棱柱体的脱粘失效方面取得了积极成果。然而,对锚固 RC 梁的实际行为却鲜有研究。本研究旨在探讨采用 CFRP 层压材料并在端部使用 CFRP 钉锚进行锚固的外部加固 RC 梁的抗弯行为。锚固梁的结果与未锚固试样的结果在荷载-挠度响应、玻璃钢层板应变和破坏模式方面进行了比较。结果表明,用 CFRP 斜面锚栓锚固 CFRP 层压板对试样的抗弯能力有积极影响。与未锚固的试样相比,锚固试样的承载能力平均提高了 19%。玻璃钢层压板的锚固减轻了脱粘故障,从而提高了层压板的应变利用率。两端各用两个锚固件锚固的试样在应变利用率方面有显著提高。此外,增加锚栓的锚钉直径可显著提高承载能力,但会降低层压板达到的极限应变。结果表明,直径较大的锚固件提供的强化效果类似于增加玻璃钢层数,而不是为玻璃钢板材提供锚固。这主要是由于随着锚栓直径的增加,扇形长度和厚度也会增加。
{"title":"Flexural strengthening of reinforced concrete beams with CFRP laminates and spike anchors","authors":"Maha Assad,&nbsp;Rami A. Hawileh,&nbsp;Jamal A. Abdalla","doi":"10.1016/j.jcomc.2024.100443","DOIUrl":"10.1016/j.jcomc.2024.100443","url":null,"abstract":"<div><p>Carbon fiber-reinforced polymers (CFRP) are widely used to strengthen reinforced concrete (RC) beams. Its major drawback is the brittle failure mode in the form of debonding of the CFRP laminate. The use of CFRP spike anchors demonstrated positive outcomes in mitigating the debonding failure in small-scale concrete prisms in previous studies. However, the real-life behavior of anchored RC beams was rarely studied . This study aims to investigate the flexural behavior of externally strengthened RC beams with CFRP laminates and anchored at end with CFRP spike anchors. The results of anchored beams was compared with unanchored specimens in terms of load-deflection response, strain in the FRP laminates, and failure modes. Results showed that anchorage of CFRP laminates with CFRP splay anchors positively affected the flexural capacity of the specimens. An average increase in the load-carrying capacity of 19 % was portrayed in the anchored specimens compared to the unanchored specimen. Anchorage of FRP laminates resulted in the mitigation of debonding failure and thus, enhanced strain utilization in laminates. A considerable improvement in strain utilization is exhibited by the specimen anchored with two anchors at each end. Moreover, increasing the anchor's dowel diameter significantly improved the load-carrying capacity but lowered the ultimate strain reached in the laminate. Results indicated that larger diameter anchors provide strengthening effect similar to increasing the number of FRP layers instead of providing anchorage to the FRP sheet. This is primarily due to the increase in the fan length and thickness as the anchor's dowel diameter increases.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000148/pdfft?md5=62c6a666abc140cb3586c61df9b1cbe4&pid=1-s2.0-S2666682024000148-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139818428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated behavioural analysis of FRP-confined circular columns using FEM and machine learning 利用有限元和机器学习对 FRP 承压圆柱进行综合行为分析
IF 4.2 Q2 Engineering Pub Date : 2024-02-12 DOI: 10.1016/j.jcomc.2024.100444
Liaqat Ali , Haytham F. Isleem , Alireza Bahrami , Ishan Jha , Guang Zou , Rakesh Kumar , Abdellatif M. Sadeq , Ali Jahami

This study investigates the structural behaviour of double-skin columns, introducing novel double-skin double filled tubular (DSDFT) columns, which utilise double steel tubes and concrete to enhance the load-carrying capacity and ductility beyond conventional double-skin hollow tubular (DSHT) columns, employing a combination of finite element model (FEM) and machine learning (ML) techniques. A total of 48 columns (DSHT+DSDFT) were created to examine the impact of various parameters, such as double steel tube configurations, thickness of fibre-reinforced polymer (FRP) layer, type of FRP material, and steel tube diameter, on the load-carrying capacity and ductility of the columns. The results were validated against the experimental findings to ensure their accuracy. Key findings highlight the advantages of the DSDFT configuration. Compared to the DSHT columns, the DSDFT columns exhibited remarkable 19.54 % to 101.21 % increases in the load-carrying capacity, demonstrating improved ductility and load-bearing capabilities. Thicker FRP layers enhanced the load-carrying capacity up to 15 %, however at the expense of the reduced axial strain. It was also observed that glass FRP wrapping displayed 25 % superior ultimate axial strain than aramid FRP wrapping. Four different ML models were assessed to predict the axial load-carrying capacity of the columns, with long short-term memory (LSTM) and bidirectional LSTM models emerging as superior choices indicating exceptional predictive capabilities. This interdisciplinary approach offers valuable insights into designing and optimising confined column systems. It sheds light on both double-tube and single-tube configurations, propelling advancements in structural engineering practices for new constructions and retrofitting. Further, it lays out a blueprint for maximising the performance of the confined columns under the axial compression.

本研究采用有限元模型 (FEM) 和机器学习 (ML) 技术相结合的方法,对双层柱的结构行为进行了研究,并引入了新型双层双填充管柱 (DSDFT),该柱利用双层钢管和混凝土提高了承载能力和延性,超过了传统的双层空心管柱 (DSHT)。共创建了 48 根支柱(DSHT+DSDFT),以研究各种参数(如双钢管配置、纤维增强聚合物(FRP)层厚度、FRP 材料类型和钢管直径)对支柱承载能力和延性的影响。研究结果与实验结果进行了验证,以确保其准确性。主要研究结果凸显了 DSDFT 结构的优势。与 DSHT 柱相比,DSDFT 柱的承载能力显著提高了 19.54 % 到 101.21 %,这表明延展性和承载能力得到了改善。较厚的玻璃钢层可将承载能力提高 15%,但这是以降低轴向应变为代价的。此外,还观察到玻璃玻璃钢包覆层的极限轴向应变比芳纶玻璃钢包覆层高 25%。对四种不同的 ML 模型进行了评估,以预测柱子的轴向承载能力,其中长短期记忆 (LSTM) 和双向 LSTM 模型成为最佳选择,显示出卓越的预测能力。这种跨学科方法为设计和优化密闭支柱系统提供了宝贵的见解。它揭示了双管和单管配置,推动了新建筑和改造的结构工程实践的进步。此外,它还为最大限度地提高受限柱在轴向压缩下的性能绘制了蓝图。
{"title":"Integrated behavioural analysis of FRP-confined circular columns using FEM and machine learning","authors":"Liaqat Ali ,&nbsp;Haytham F. Isleem ,&nbsp;Alireza Bahrami ,&nbsp;Ishan Jha ,&nbsp;Guang Zou ,&nbsp;Rakesh Kumar ,&nbsp;Abdellatif M. Sadeq ,&nbsp;Ali Jahami","doi":"10.1016/j.jcomc.2024.100444","DOIUrl":"10.1016/j.jcomc.2024.100444","url":null,"abstract":"<div><p>This study investigates the structural behaviour of double-skin columns, introducing novel double-skin double filled tubular (DSDFT) columns, which utilise double steel tubes and concrete to enhance the load-carrying capacity and ductility beyond conventional double-skin hollow tubular (DSHT) columns, employing a combination of finite element model (FEM) and machine learning (ML) techniques. A total of 48 columns (DSHT+DSDFT) were created to examine the impact of various parameters, such as double steel tube configurations, thickness of fibre-reinforced polymer (FRP) layer, type of FRP material, and steel tube diameter, on the load-carrying capacity and ductility of the columns. The results were validated against the experimental findings to ensure their accuracy. Key findings highlight the advantages of the DSDFT configuration. Compared to the DSHT columns, the DSDFT columns exhibited remarkable 19.54 % to 101.21 % increases in the load-carrying capacity, demonstrating improved ductility and load-bearing capabilities. Thicker FRP layers enhanced the load-carrying capacity up to 15 %, however at the expense of the reduced axial strain. It was also observed that glass FRP wrapping displayed 25 % superior ultimate axial strain than aramid FRP wrapping. Four different ML models were assessed to predict the axial load-carrying capacity of the columns, with long short-term memory (LSTM) and bidirectional LSTM models emerging as superior choices indicating exceptional predictive capabilities. This interdisciplinary approach offers valuable insights into designing and optimising confined column systems. It sheds light on both double-tube and single-tube configurations, propelling advancements in structural engineering practices for new constructions and retrofitting. Further, it lays out a blueprint for maximising the performance of the confined columns under the axial compression.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266668202400015X/pdfft?md5=cf42cd5a006f05d6eee6fb26feb403a7&pid=1-s2.0-S266668202400015X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139873435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crashworthiness optimization of composite hexagonal ring system using random forest classification and artificial neural network 利用随机森林分类和人工神经网络优化复合材料六角环系统的耐撞性
IF 4.2 Q2 Engineering Pub Date : 2024-02-03 DOI: 10.1016/j.jcomc.2024.100440
Monzure-Khoda Kazi , E. Mahdi

This research aims to enhance the safety level and crash resiliency of targeted woven roving glass/epoxy composite material for various industry 4.0 applications. Advanced machine learning algorithms are used in this study to figure out the complicated relationship between the crashworthiness parameters of the hexagonal composite ring specimens under lateral compressive, energy absorption, and failure modes. These algorithms include random forest (RF) classification and artificial neural networks (ANN). The ultimate target is to develop a robust multi-modal machine learning method to predict the optimum geometry (i.e., hexagonal ring angle) and suitable in-plane crushing arrangements of the hexagonal ring system for targeted crashworthiness parameters. The results demonstrate that the suggested RF-ANN-based technique can predict the optimal composite design with high accuracy (precision, recall, and f1-score for test and train dataset were 1). Furthermore, the confusion matrix validates the random forest classification model's accuracy. At the same time, the mean square error value serves as the loss function for the ANN model (i.e., the loss function values were 2.84 × 10−7 and 6.40 × 10−7, respectively, for X1 and X2 loading conditions at 45° angle). Furthermore, the developed models can predict crashworthiness parameters for any hexagonal ring angle within the range of the trained dataset, requiring no additional experimental effort.

本研究旨在提高目标编织无捻玻璃/环氧复合材料的安全等级和碰撞回弹性,使其适用于各种工业 4.0 应用。本研究采用了先进的机器学习算法,以找出六边形复合材料环试样在横向压缩、能量吸收和失效模式下的耐撞性参数之间的复杂关系。这些算法包括随机森林(RF)分类和人工神经网络(ANN)。最终目标是开发出一种稳健的多模式机器学习方法,以预测六角环系统的最佳几何形状(即六角环角度)和合适的面内挤压安排,从而达到目标耐撞性参数。结果表明,所建议的基于 RF-ANN 的技术可以高精度预测最佳复合材料设计(测试和训练数据集的精度、召回率和 f1 分数均为 1)。此外,混淆矩阵验证了随机森林分类模型的准确性。同时,均方误差值可作为 ANN 模型的损失函数(即在 45o 角的 X1 和 X2 加载条件下,损失函数值分别为 2.84 × 10-7 和 6.40 × 10-7)。此外,所开发的模型可以预测训练数据集范围内任何六角环角度的耐撞性参数,无需额外的实验工作。
{"title":"Crashworthiness optimization of composite hexagonal ring system using random forest classification and artificial neural network","authors":"Monzure-Khoda Kazi ,&nbsp;E. Mahdi","doi":"10.1016/j.jcomc.2024.100440","DOIUrl":"10.1016/j.jcomc.2024.100440","url":null,"abstract":"<div><p>This research aims to enhance the safety level and crash resiliency of targeted woven roving glass/epoxy composite material for various industry 4.0 applications. Advanced machine learning algorithms are used in this study to figure out the complicated relationship between the crashworthiness parameters of the hexagonal composite ring specimens under lateral compressive, energy absorption, and failure modes. These algorithms include random forest (RF) classification and artificial neural networks (ANN). The ultimate target is to develop a robust multi-modal machine learning method to predict the optimum geometry (i.e., hexagonal ring angle) and suitable in-plane crushing arrangements of the hexagonal ring system for targeted crashworthiness parameters. The results demonstrate that the suggested RF-ANN-based technique can predict the optimal composite design with high accuracy (precision, recall, and f1-score for test and train dataset were 1). Furthermore, the confusion matrix validates the random forest classification model's accuracy. At the same time, the mean square error value serves as the loss function for the ANN model (i.e., the loss function values were 2.84 × 10<sup>−7</sup> and 6.40 × 10<sup>−7,</sup> respectively, for X1 and X2 loading conditions at 45° angle). Furthermore, the developed models can predict crashworthiness parameters for any hexagonal ring angle within the range of the trained dataset, requiring no additional experimental effort.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000112/pdfft?md5=c7d60980ba155747803ffedd733cd936&pid=1-s2.0-S2666682024000112-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139689421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing carbon-storing materials through grapevine char/polybutylene succinate green bio-composites 通过葡萄炭/聚丁烯琥珀酸绿色生物复合材料开发碳储存材料
IF 4.2 Q2 Engineering Pub Date : 2024-02-01 DOI: 10.1016/j.jcomc.2024.100442
Chien-Chung Huang, Chun-Wei Chang, Ching Chen, Yeng-Fong Shih

The mass production of grapevines, an agricultural waste, has imposed burdens on farmers and the environment. This study aims to address this issue by utilizing biochar derived from grapevines (GVC) in combination with polybutylene succinate (PBS) to develop an environmentally friendly bio-composite. To enhance the compatibility between GVC and PBS, maleic anhydride grafted PBS (MAPBS) was synthesized and incorporated into the bio-composite. Moreover, surface modification of GVC was conducted using a silane coupling agent to enhance its adhesion to the PBS matrix. The effects of GVC size, MAPBS content, and surface modification on the mechanical and thermal properties of PBS were investigated. The findings indicate that GVC sieved through a 200 mesh screen exhibited a better reinforcing effect compared to GVC sieved through a 120 mesh screen. The tensile test results indicated that the incorporation of 20 wt% GVC led to a reduction in the tensile strength of PBS. However, the introduction of silane-modified GVC resulted in a substantial enhancement of tensile strength, elevating it from 33.40 MPa to 40.16 MPa. Furthermore, when the composites contained both MAPBS and a lubrication agent, the tensile strength increased even further to 41.04 MPa. The thermal analysis results of the bio-composites revealed that the addition of GVC contributed to an increase in the char yield and heat resistance of PBS. Therefore, these GVC/PBS green bio-composites not only enhance the mechanical and thermal properties of PBS but also reuse the waste grapevines, and produce the high value-added green composites with carbon-storing and biodegradability characteristics.

葡萄藤是一种农业废弃物,其大规模生产给农民和环境造成了负担。本研究旨在利用从葡萄藤中提取的生物炭(GVC)与聚丁二酸丁二醇酯(PBS)结合,开发一种环境友好型生物复合材料,从而解决这一问题。为了增强 GVC 与 PBS 的相容性,合成了马来酸酐接枝 PBS(MAPBS)并将其加入生物复合材料中。此外,还使用硅烷偶联剂对 GVC 进行了表面改性,以增强其与 PBS 基质的粘附性。研究了 GVC 尺寸、MAPBS 含量和表面改性对 PBS 机械性能和热性能的影响。研究结果表明,与通过 120 目筛网筛分的 GVC 相比,通过 200 目筛网筛分的 GVC 具有更好的增强效果。拉伸试验结果表明,加入 20 wt% 的 GVC 会降低 PBS 的拉伸强度。然而,引入硅烷改性 GVC 后,拉伸强度大幅提高,从 33.40 兆帕提高到 40.16 兆帕。此外,当复合材料同时含有 MAPBS 和润滑剂时,拉伸强度进一步提高到 41.04 兆帕。生物复合材料的热分析结果表明,添加 GVC 有助于提高 PBS 的炭产量和耐热性。因此,这些 GVC/PBS 绿色生物复合材料不仅提高了 PBS 的机械性能和热性能,还对废弃葡萄藤进行了再利用,生产出了具有储碳和生物降解特性的高附加值绿色复合材料。
{"title":"Developing carbon-storing materials through grapevine char/polybutylene succinate green bio-composites","authors":"Chien-Chung Huang,&nbsp;Chun-Wei Chang,&nbsp;Ching Chen,&nbsp;Yeng-Fong Shih","doi":"10.1016/j.jcomc.2024.100442","DOIUrl":"10.1016/j.jcomc.2024.100442","url":null,"abstract":"<div><p>The mass production of grapevines, an agricultural waste, has imposed burdens on farmers and the environment. This study aims to address this issue by utilizing biochar derived from grapevines (GVC) in combination with polybutylene succinate (PBS) to develop an environmentally friendly bio-composite. To enhance the compatibility between GVC and PBS, maleic anhydride grafted PBS (MAPBS) was synthesized and incorporated into the bio-composite. Moreover, surface modification of GVC was conducted using a silane coupling agent to enhance its adhesion to the PBS matrix. The effects of GVC size, MAPBS content, and surface modification on the mechanical and thermal properties of PBS were investigated. The findings indicate that GVC sieved through a 200 mesh screen exhibited a better reinforcing effect compared to GVC sieved through a 120 mesh screen. The tensile test results indicated that the incorporation of 20 wt% GVC led to a reduction in the tensile strength of PBS. However, the introduction of silane-modified GVC resulted in a substantial enhancement of tensile strength, elevating it from 33.40 MPa to 40.16 MPa. Furthermore, when the composites contained both MAPBS and a lubrication agent, the tensile strength increased even further to 41.04 MPa. The thermal analysis results of the bio-composites revealed that the addition of GVC contributed to an increase in the char yield and heat resistance of PBS. Therefore, these GVC/PBS green bio-composites not only enhance the mechanical and thermal properties of PBS but also reuse the waste grapevines, and produce the high value-added green composites with carbon-storing and biodegradability characteristics.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000136/pdfft?md5=f0309db4f58c3ff7572e2b5ddb45a0e5&pid=1-s2.0-S2666682024000136-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139659372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Composites Part C Open Access
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1