首页 > 最新文献

Advances in Applied Energy最新文献

英文 中文
Advancing state of health estimation for electric vehicles: Transformer-based approach leveraging real-world data 推进电动汽车的健康状况评估:基于变压器的利用真实世界数据的方法
IF 13 Q1 ENERGY & FUELS Pub Date : 2024-09-04 DOI: 10.1016/j.adapen.2024.100188
Kosaku Nakano , Sophia Vögler , Kenji Tanaka

The widespread adoption of electric vehicles (EVs) underscores the urgent need for innovative approaches to estimate their lithium-ion batteries’ state of health (SOH), which is crucial for ensuring safety and efficiency. This study introduces SOH-TEC, a transformer encoder-based model that processes raw time-series battery and vehicle-related data from a single EV trip to estimate the SOH. Unlike conventional methods that rely on lab-experimented battery cycle data, SOH-TEC utilizes real-world EV operation data, enhancing practical application. The model is trained and evaluated on a real-world dataset collected over nearly three years from three EVs. This dataset includes reliable SOH labels obtained through periodic constant-current full-discharge tests using a chassis dynamometer. Despite the challenges posed by noisy EV real-world data, the model shows high accuracy, with a mean absolute error of 0.72% and a root mean square error of 1.17%. Moreover, our proposed pre-training strategies with unlabeled data, particularly SOH ordinal comparison, significantly enhance the model’s performance; using only 50% of the labeled data achieves results nearly identical to those obtained with the full dataset. Self-attention map analysis reveals that the model primarily focuses on stationary or consistent driving periods to estimate SOH. While the study is constrained by a dataset featuring repetitive driving patterns, it highlights the significant potential of transformer for SOH estimation in EVs and offers valuable insights for future data collection and model development.

电动汽车(EV)的广泛应用凸显了对创新方法的迫切需求,以估算其锂离子电池的健康状况(SOH),这对确保安全和效率至关重要。本研究介绍了 SOH-TEC,这是一种基于变压器编码器的模型,可处理来自单次电动汽车行程的原始时间序列电池和车辆相关数据,以估算 SOH。与依赖实验室实验电池循环数据的传统方法不同,SOH-TEC 利用真实世界的电动汽车运行数据,提高了实际应用能力。该模型在近三年来从三辆电动汽车收集的真实世界数据集上进行了训练和评估。该数据集包括通过使用底盘测功机进行定期恒流全放电测试获得的可靠 SOH 标签。尽管嘈杂的电动汽车真实世界数据带来了挑战,但该模型显示出很高的准确性,平均绝对误差为 0.72%,均方根误差为 1.17%。此外,我们提出的使用未标注数据进行预训练的策略,尤其是 SOH 排序比较,显著提高了模型的性能;仅使用 50%的标注数据就能获得与使用完整数据集几乎相同的结果。自我注意力图分析表明,该模型主要侧重于静止或持续驾驶时段来估计 SOH。虽然这项研究受到以重复驾驶模式为特征的数据集的限制,但它强调了变压器在电动汽车 SOH 估算方面的巨大潜力,并为未来的数据收集和模型开发提供了宝贵的见解。
{"title":"Advancing state of health estimation for electric vehicles: Transformer-based approach leveraging real-world data","authors":"Kosaku Nakano ,&nbsp;Sophia Vögler ,&nbsp;Kenji Tanaka","doi":"10.1016/j.adapen.2024.100188","DOIUrl":"10.1016/j.adapen.2024.100188","url":null,"abstract":"<div><p>The widespread adoption of electric vehicles (EVs) underscores the urgent need for innovative approaches to estimate their lithium-ion batteries’ state of health (SOH), which is crucial for ensuring safety and efficiency. This study introduces SOH-TEC, a transformer encoder-based model that processes raw time-series battery and vehicle-related data from a single EV trip to estimate the SOH. Unlike conventional methods that rely on lab-experimented battery cycle data, SOH-TEC utilizes real-world EV operation data, enhancing practical application. The model is trained and evaluated on a real-world dataset collected over nearly three years from three EVs. This dataset includes reliable SOH labels obtained through periodic constant-current full-discharge tests using a chassis dynamometer. Despite the challenges posed by noisy EV real-world data, the model shows high accuracy, with a mean absolute error of 0.72% and a root mean square error of 1.17%. Moreover, our proposed pre-training strategies with unlabeled data, particularly SOH ordinal comparison, significantly enhance the model’s performance; using only 50% of the labeled data achieves results nearly identical to those obtained with the full dataset. Self-attention map analysis reveals that the model primarily focuses on stationary or consistent driving periods to estimate SOH. While the study is constrained by a dataset featuring repetitive driving patterns, it highlights the significant potential of transformer for SOH estimation in EVs and offers valuable insights for future data collection and model development.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"16 ","pages":"Article 100188"},"PeriodicalIF":13.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266679242400026X/pdfft?md5=d77f0e82e70762f99f4b385e9253c7d3&pid=1-s2.0-S266679242400026X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active learning concerning sampling cost for enhancing AI-enabled building energy system modeling 关于采样成本的主动学习,以提高人工智能建筑能源系统建模能力
IF 13 Q1 ENERGY & FUELS Pub Date : 2024-09-02 DOI: 10.1016/j.adapen.2024.100189
Ao Li , Fu Xiao , Ziwei Xiao , Rui Yan , Anbang Li , Yan Lv , Bing Su

Machine learning is widely recognized as a promising data-driven modeling technique for the model-based control and optimization of building energy systems. However, the generalizability of data-driven models often faces significant challenges, as the available training data from building operations usually only covers a limited range of working conditions. Active learning can proactively test unseen and informative working conditions to enrich the training set by adding new data samples, leading to improved generalization performance of data-driven models. A novel distance and information density-based sample strategy is developed that accounts for the real-time status of building operation and outdoor environment. Based on Mahalanobis distance, this strategy determines the sampling value of an unlabeled sample (unseen working condition) by assessing its similarity to both the training samples and other unlabeled samples. As collecting sufficiently representative samples can be difficult, costly, and time-consuming, a distance-based sampling cost metric is proposed to compare the efficiency of different sampling methods, considering the detrimental effects of the actively sampling process on the normal operation of building energy systems. This paper presents a comprehensive and in-depth comparison of five active learning methods, including one incorporating the distance-based sampling strategy, by conducting data experiments on the data collected from the cooling towers of a real high-rise building. The results show that active learning can effectively identify informative data samples and improve the generalization performance of data-driven models. The research outcomes are valuable for enhancing AI-enabled data-driven modeling of building energy systems with substantial decreases in costs on data sampling.

机器学习被广泛认为是一种有前途的数据驱动建模技术,可用于基于模型的建筑能源系统控制和优化。然而,数据驱动模型的普适性往往面临重大挑战,因为来自建筑运行的可用训练数据通常只涵盖有限的工作条件范围。主动学习可以主动测试未见过的、信息量大的工作条件,通过添加新的数据样本来丰富训练集,从而提高数据驱动模型的泛化性能。本研究开发了一种基于距离和信息密度的新型样本策略,该策略考虑了建筑物运行和室外环境的实时状态。基于马哈拉诺比斯距离,该策略通过评估未标注样本(未见工作状态)与训练样本和其他未标注样本的相似度来确定其采样值。考虑到主动采样过程对建筑能源系统正常运行的不利影响,本文提出了一种基于距离的采样成本指标,用于比较不同采样方法的效率。本文通过对实际高层建筑冷却塔采集的数据进行数据实验,对五种主动学习方法进行了全面深入的比较,其中包括一种结合了基于距离的采样策略的方法。结果表明,主动学习能有效识别信息数据样本,提高数据驱动模型的泛化性能。这些研究成果对于提高人工智能数据驱动的建筑能源系统建模具有重要价值,同时还能大幅降低数据采样成本。
{"title":"Active learning concerning sampling cost for enhancing AI-enabled building energy system modeling","authors":"Ao Li ,&nbsp;Fu Xiao ,&nbsp;Ziwei Xiao ,&nbsp;Rui Yan ,&nbsp;Anbang Li ,&nbsp;Yan Lv ,&nbsp;Bing Su","doi":"10.1016/j.adapen.2024.100189","DOIUrl":"10.1016/j.adapen.2024.100189","url":null,"abstract":"<div><p>Machine learning is widely recognized as a promising data-driven modeling technique for the model-based control and optimization of building energy systems. However, the generalizability of data-driven models often faces significant challenges, as the available training data from building operations usually only covers a limited range of working conditions. Active learning can proactively test unseen and informative working conditions to enrich the training set by adding new data samples, leading to improved generalization performance of data-driven models. A novel distance and information density-based sample strategy is developed that accounts for the real-time status of building operation and outdoor environment. Based on Mahalanobis distance, this strategy determines the sampling value of an unlabeled sample (unseen working condition) by assessing its similarity to both the training samples and other unlabeled samples. As collecting sufficiently representative samples can be difficult, costly, and time-consuming, a distance-based sampling cost metric is proposed to compare the efficiency of different sampling methods, considering the detrimental effects of the actively sampling process on the normal operation of building energy systems. This paper presents a comprehensive and in-depth comparison of five active learning methods, including one incorporating the distance-based sampling strategy, by conducting data experiments on the data collected from the cooling towers of a real high-rise building. The results show that active learning can effectively identify informative data samples and improve the generalization performance of data-driven models. The research outcomes are valuable for enhancing AI-enabled data-driven modeling of building energy systems with substantial decreases in costs on data sampling.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"16 ","pages":"Article 100189"},"PeriodicalIF":13.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666792424000271/pdfft?md5=0f782334db1159003891c4cf1c77159d&pid=1-s2.0-S2666792424000271-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A probabilistic model for real-time quantification of building energy flexibility 实时量化建筑能源灵活性的概率模型
IF 13 Q1 ENERGY & FUELS Pub Date : 2024-08-21 DOI: 10.1016/j.adapen.2024.100186
Binglong Han , Hangxin Li , Shengwei Wang

Buildings have great energy flexibility potential to manage supply-demand imbalance in power grids with high renewable penetration. Accurate and real-time quantification of building energy flexibility is essential not only for engaging buildings in electricity and grid service markets, but also for ensuring the reliable and optimal operation of power grids. This paper proposes a probabilistic model for rapidly quantifying the aggregated flexibility of buildings under uncertainties. An explicit equation is derived as the analytical solution of a commonly used second-order building thermodynamic model to quantify the flexibility of individual buildings, eliminating the need of time-consuming iterative and finite difference computations. A sampling-based uncertainty analysis is performed to obtain the distribution of aggregated building flexibility, considering major uncertainties comprehensively. Validation tests are conducted using 150 commercial buildings in Hong Kong. The results show that the proposed model not only quantifies the aggregated flexibility with high accuracy, but also dramatically reduces the computation time from 3605 s to 6.7 s, about 537 times faster than the existing probabilistic model solved numerically. Moreover, the proposed model is 8 times faster than the archetype-based model and achieves significantly higher accuracy.

在可再生能源渗透率较高的电网中,建筑物在管理供需失衡方面具有巨大的能源灵活性潜力。准确、实时地量化建筑物的能源灵活性不仅对建筑物参与电力和电网服务市场至关重要,而且对确保电网的可靠和优化运行也至关重要。本文提出了一种概率模型,用于在不确定情况下快速量化建筑物的综合灵活性。通过对常用的二阶建筑热力学模型进行分析求解,推导出一个显式方程来量化单个建筑的灵活性,从而省去了耗时的迭代和有限差分计算。在全面考虑主要不确定性的情况下,通过基于抽样的不确定性分析,获得了建筑物总体柔性的分布。利用香港 150 幢商业建筑进行了验证测试。结果表明,所提出的模型不仅能高精度地量化总体柔性,还能将计算时间从 3605 秒大幅缩短至 6.7 秒,比现有的数值概率模型快约 537 倍。此外,所提出的模型比基于原型的模型快 8 倍,而且精度明显更高。
{"title":"A probabilistic model for real-time quantification of building energy flexibility","authors":"Binglong Han ,&nbsp;Hangxin Li ,&nbsp;Shengwei Wang","doi":"10.1016/j.adapen.2024.100186","DOIUrl":"10.1016/j.adapen.2024.100186","url":null,"abstract":"<div><p>Buildings have great energy flexibility potential to manage supply-demand imbalance in power grids with high renewable penetration. Accurate and real-time quantification of building energy flexibility is essential not only for engaging buildings in electricity and grid service markets, but also for ensuring the reliable and optimal operation of power grids. This paper proposes a probabilistic model for rapidly quantifying the aggregated flexibility of buildings under uncertainties. An explicit equation is derived as the analytical solution of a commonly used second-order building thermodynamic model to quantify the flexibility of individual buildings, eliminating the need of time-consuming iterative and finite difference computations. A sampling-based uncertainty analysis is performed to obtain the distribution of aggregated building flexibility, considering major uncertainties comprehensively. Validation tests are conducted using 150 commercial buildings in Hong Kong. The results show that the proposed model not only quantifies the aggregated flexibility with high accuracy, but also dramatically reduces the computation time from 3605 s to 6.7 s, about 537 times faster than the existing probabilistic model solved numerically. Moreover, the proposed model is 8 times faster than the archetype-based model and achieves significantly higher accuracy.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"15 ","pages":"Article 100186"},"PeriodicalIF":13.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666792424000246/pdfft?md5=5103629f1a558de886b8f7db3d5993e4&pid=1-s2.0-S2666792424000246-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Planning reliable wind- and solar-based electricity systems 规划可靠的风能和太阳能发电系统
IF 13 Q1 ENERGY & FUELS Pub Date : 2024-08-10 DOI: 10.1016/j.adapen.2024.100185
Tyler H. Ruggles , Edgar Virgüez , Natasha Reich , Jacqueline Dowling , Hannah Bloomfield , Enrico G.A. Antonini , Steven J. Davis , Nathan S. Lewis , Ken Caldeira

Resource adequacy, or ensuring that electricity supply reliably meets demand, is more challenging for wind- and solar-based electricity systems than fossil-fuel-based ones. Here, we investigate how the number of years of past weather data used in designing least-cost systems relying on wind, solar, and energy storage affects resource adequacy. We find that nearly 40 years of weather data are required to plan highly reliable systems (e.g., zero lost load over a decade). In comparison, this same adequacy could be attained with 15 years of weather data when additionally allowing traditional dispatchable generation to supply 5 % of electricity demand. We further observe that the marginal cost of improving resource adequacy increased as more years, and thus more weather variability, were considered for planning. Our results suggest that ensuring the reliability of wind- and solar-based systems will require using considerably more weather data in system planning than is the current practice. However, when considering the potential costs associated with unmet electricity demand, fewer planning years may suffice to balance costs against operational reliability.

资源充足性,即确保电力供应可靠地满足需求,对于风能和太阳能发电系统来说比化石燃料发电系统更具挑战性。在此,我们研究了在设计依靠风能、太阳能和储能的最低成本系统时,过去气象数据的年数对资源充足性的影响。我们发现,需要近 40 年的天气数据才能规划出高度可靠的系统(例如,十年内零负荷损失)。相比之下,如果允许传统的可调度发电供应 5% 的电力需求,则只需 15 年的气象数据即可达到同样的充足性。我们进一步观察到,随着规划考虑的年份越多,天气变异性越大,提高资源充足性的边际成本也就越高。我们的研究结果表明,要确保风能和太阳能系统的可靠性,就需要在系统规划中使用比目前多得多的天气数据。然而,如果考虑到与未满足电力需求相关的潜在成本,较少的规划年可能就足以平衡成本与运行可靠性之间的关系。
{"title":"Planning reliable wind- and solar-based electricity systems","authors":"Tyler H. Ruggles ,&nbsp;Edgar Virgüez ,&nbsp;Natasha Reich ,&nbsp;Jacqueline Dowling ,&nbsp;Hannah Bloomfield ,&nbsp;Enrico G.A. Antonini ,&nbsp;Steven J. Davis ,&nbsp;Nathan S. Lewis ,&nbsp;Ken Caldeira","doi":"10.1016/j.adapen.2024.100185","DOIUrl":"10.1016/j.adapen.2024.100185","url":null,"abstract":"<div><p>Resource adequacy, or ensuring that electricity supply reliably meets demand, is more challenging for wind- and solar-based electricity systems than fossil-fuel-based ones. Here, we investigate how the number of years of past weather data used in designing least-cost systems relying on wind, solar, and energy storage affects resource adequacy. We find that nearly 40 years of weather data are required to plan highly reliable systems (e.g., zero lost load over a decade). In comparison, this same adequacy could be attained with 15 years of weather data when additionally allowing traditional dispatchable generation to supply 5 % of electricity demand. We further observe that the marginal cost of improving resource adequacy increased as more years, and thus more weather variability, were considered for planning. Our results suggest that ensuring the reliability of wind- and solar-based systems will require using considerably more weather data in system planning than is the current practice. However, when considering the potential costs associated with unmet electricity demand, fewer planning years may suffice to balance costs against operational reliability.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"15 ","pages":"Article 100185"},"PeriodicalIF":13.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666792424000234/pdfft?md5=a1828cdb491a3fbda3e3e4a773b1bcba&pid=1-s2.0-S2666792424000234-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The potential of radiative cooling enhanced photovoltaic systems in China 辐射冷却增强型光伏系统在中国的潜力
IF 13 Q1 ENERGY & FUELS Pub Date : 2024-07-26 DOI: 10.1016/j.adapen.2024.100184
Maoquan Huang , Hewen Zhou , G.H. Tang , Mu Du , Qie Sun

Soaring solar cell temperature hindered photovoltaic (PV) efficiency, but a novel radiative cooling (RC) cover developed in this study offered a cost-effective solution. Using a randomly particle-doping structure, the radiative cooling cover achieved a high “sky window” emissivity of 95.3% while maintaining a high solar transmittance of 94.8%. The RC-PV system reached a peak power output of 147.6 W/m2. A field study to explore its potential in various provinces in China revealed significant efficiency improvements, with yearly electricity outputs surpassing those of ordinary PV systems by a relative improvement of 2.78%–3.72%. The largest increases were observed under clear skies and in dry, cool climates, highlighting the potential of RC-PV systems under real weather and environmental conditions. This work provided the theoretical foundation for designing scalable radiative cooling films for PV systems, unlocking the full potential of solar energy.

太阳能电池温度的飙升阻碍了光伏(PV)效率的提高,但本研究开发的新型辐射冷却(RC)罩提供了一种经济有效的解决方案。辐射冷却罩采用随机颗粒掺杂结构,实现了 95.3% 的高 "天窗 "发射率,同时保持了 94.8% 的高太阳能透过率。RC-PV 系统的峰值功率输出为 147.6 W/m2。在中国各省进行的一项探索其潜力的实地研究表明,该系统的效率显著提高,年发电量超过了普通光伏系统,相对提高了 2.78% 至 3.72%。在晴朗的天气和干燥凉爽的气候条件下,效率提高幅度最大,凸显了 RC-PV 系统在实际天气和环境条件下的潜力。这项工作为设计可扩展的光伏系统辐射冷却薄膜提供了理论基础,从而释放了太阳能的全部潜力。
{"title":"The potential of radiative cooling enhanced photovoltaic systems in China","authors":"Maoquan Huang ,&nbsp;Hewen Zhou ,&nbsp;G.H. Tang ,&nbsp;Mu Du ,&nbsp;Qie Sun","doi":"10.1016/j.adapen.2024.100184","DOIUrl":"10.1016/j.adapen.2024.100184","url":null,"abstract":"<div><p>Soaring solar cell temperature hindered photovoltaic (PV) efficiency, but a novel radiative cooling (RC) cover developed in this study offered a cost-effective solution. Using a randomly particle-doping structure, the radiative cooling cover achieved a high “sky window” emissivity of 95.3% while maintaining a high solar transmittance of 94.8%. The RC-PV system reached a peak power output of 147.6 W/m<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>. A field study to explore its potential in various provinces in China revealed significant efficiency improvements, with yearly electricity outputs surpassing those of ordinary PV systems by a relative improvement of 2.78%–3.72%. The largest increases were observed under clear skies and in dry, cool climates, highlighting the potential of RC-PV systems under real weather and environmental conditions. This work provided the theoretical foundation for designing scalable radiative cooling films for PV systems, unlocking the full potential of solar energy.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"15 ","pages":"Article 100184"},"PeriodicalIF":13.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666792424000222/pdfft?md5=0a129a711e045cc4c3d88283b1dec009&pid=1-s2.0-S2666792424000222-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141848674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of forecasting on energy system optimization 预测对能源系统优化的影响
IF 13 Q1 ENERGY & FUELS Pub Date : 2024-07-14 DOI: 10.1016/j.adapen.2024.100181
Florian Peterssen , Marlon Schlemminger , Clemens Lohr , Raphael Niepelt , Richard Hanke-Rauschenbach , Rolf Brendel

Linear programs are frequently employed to optimize national energy system models, which are used to find a minimum-cost energy system. For the operation, they assume perfect forecasting of the weather and demands over the whole optimization horizon and can therefore perfectly fit the energy systems’ design and operation. Therefore, they will yield lower costs than any real energy system that only has partial forecasting available. We compare linear programming with a priority list, a heuristic operation strategy which uses no forecasting at all, in a model of a climate-neutral German energy system. We find a 28% more expensive energy system under the priority list. Optimizing the same energy system model with both strategies envelopes the cost and design of any energy system that has partial forecasting. We demonstrate this by incorporating some rudimentary forecasting into a modified priority list, which actually reduces the gap to 22%. This is thus an approach to find an upper bound for how much a linear program possibly underestimates the costs of a real energy system in Germany in regard to imperfect forecasting. We also find that the two approaches differ mainly in the dimensioning and operation of energy storage. The priority list yields 63% less batteries, 73% less thermal storage and 54% more hydrogen storage. The use of renewables and other components in the system is very similar.

线性程序经常被用于优化国家能源系统模型,以找到成本最低的能源系统。在运行过程中,它们假定在整个优化范围内对天气和需求都有完美的预测,因此可以完美地适应能源系统的设计和运行。因此,它们所产生的成本将低于任何只有部分预测功能的实际能源系统。在一个气候中和的德国能源系统模型中,我们比较了线性规划和优先列表(一种完全不使用预测的启发式运行策略)。我们发现,优先级列表下的能源系统成本要高出 28%。使用这两种策略对同一能源系统模型进行优化后,任何采用部分预测的能源系统的成本和设计都会大打折扣。我们通过在修改后的优先级列表中加入一些基本预测来证明这一点,这实际上将差距缩小到了 22%。因此,我们可以通过这种方法,找到线性规划在不完全预测的情况下可能低估德国实际能源系统成本的上限。我们还发现,这两种方法主要在储能的尺寸和操作方面存在差异。优先列表中的电池数量减少了 63%,热存储减少了 73%,氢存储增加了 54%。系统中可再生能源和其他组件的使用情况非常相似。
{"title":"Impact of forecasting on energy system optimization","authors":"Florian Peterssen ,&nbsp;Marlon Schlemminger ,&nbsp;Clemens Lohr ,&nbsp;Raphael Niepelt ,&nbsp;Richard Hanke-Rauschenbach ,&nbsp;Rolf Brendel","doi":"10.1016/j.adapen.2024.100181","DOIUrl":"10.1016/j.adapen.2024.100181","url":null,"abstract":"<div><p>Linear programs are frequently employed to optimize national energy system models, which are used to find a minimum-cost energy system. For the operation, they assume perfect forecasting of the weather and demands over the whole optimization horizon and can therefore perfectly fit the energy systems’ design and operation. Therefore, they will yield lower costs than any real energy system that only has partial forecasting available. We compare linear programming with a priority list, a heuristic operation strategy which uses no forecasting at all, in a model of a climate-neutral German energy system. We find a 28% more expensive energy system under the priority list. Optimizing the same energy system model with both strategies envelopes the cost and design of any energy system that has partial forecasting. We demonstrate this by incorporating some rudimentary forecasting into a modified priority list, which actually reduces the gap to 22%. This is thus an approach to find an upper bound for how much a linear program possibly underestimates the costs of a real energy system in Germany in regard to imperfect forecasting. We also find that the two approaches differ mainly in the dimensioning and operation of energy storage. The priority list yields 63% less batteries, 73% less thermal storage and 54% more hydrogen storage. The use of renewables and other components in the system is very similar.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"15 ","pages":"Article 100181"},"PeriodicalIF":13.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666792424000192/pdfft?md5=fbba7e83b4274182667c200c1582b508&pid=1-s2.0-S2666792424000192-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Techno–Economic Modeling and Safe Operational Optimization of Multi-Network Constrained Integrated Community Energy Systems 多网络受限综合社区能源系统的技术经济建模与安全运行优化
IF 13 Q1 ENERGY & FUELS Pub Date : 2024-07-14 DOI: 10.1016/j.adapen.2024.100183
Ze Hu , Ka Wing Chan , Ziqing Zhu , Xiang Wei , Weiye Zheng , Siqi Bu

The integrated community energy system (ICES) has emerged as a promising solution for enhancing the efficiency of the distribution system by effectively coordinating multiple energy sources. However, the concept and modeling of ICES still remain unclear, and operational optimization of ICES is hindered by the physical constraints of heterogeneous integrated energy networks. This paper, therefore, provides an overview of the state-of-the-art concepts for techno–economic modeling of ICES by establishing a Multi-Network Constrained ICES (MNC-ICES) model. The proposed model underscores the diverse energy devices at community and consumer levels and multiple networks for power, gas, and heat in a privacy-protection manner, providing a basis for practical network-constrained community operation tools. The corresponding operational optimization in the proposed model is formulated into a constrained Markov decision process (C-MDP) and solved by a Safe Reinforcement Learning (RL) approach. A novel Safe RL algorithm, Primal-Dual Twin Delayed Deep Deterministic Policy Gradient (PD-TD3), is developed to solve the C-MDP. By optimizing operations and maintaining network safety simultaneously, the proposed PD-TD3 method provides a solid backup for the ICESO and has great potential in real-world implementation. The non-convex modeling of MNC-ICES and the optimization performance of PD-TD3 is demonstrated in various scenarios. Compared with benchmark approaches, the proposed algorithm merits training speed, higher operational profits, and lower violations of multi-network constraints. Potential beneficiaries of this work include ICES operators and residents who could be benefited from improved ICES operation efficiency, as well as reinforcement learning researchers and practitioners who could be inspired for safe RL applications in real-world industry.

社区综合能源系统(ICES)是通过有效协调多种能源来提高配电系统效率的一种有前途的解决方案。然而,ICES 的概念和建模仍不清晰,异构综合能源网络的物理限制也阻碍了 ICES 的运行优化。因此,本文通过建立多网络约束 ICES(MNC-ICES)模型,概述了 ICES 技术经济建模的最新概念。该模型以保护隐私的方式强调了社区和消费者层面的各种能源设备以及电力、燃气和热力的多重网络,为实用的网络约束社区运营工具提供了基础。建议模型中相应的操作优化被表述为受限马尔可夫决策过程(C-MDP),并通过安全强化学习(RL)方法解决。为解决 C-MDP 问题,开发了一种新型安全 RL 算法--Primal-Dual Twin Delayed Deep Deterministic Policy Gradient (PD-TD3)。通过同时优化运营和维护网络安全,所提出的 PD-TD3 方法为 ICESO 提供了坚实的后盾,在实际应用中具有巨大潜力。PD-TD3 对 MNC-ICES 的非凸建模和优化性能在各种场景中进行了演示。与基准方法相比,所提出的算法具有训练速度快、运行利润高、违反多网络约束条件少等优点。这项工作的潜在受益者包括 ICES 运营商和居民,他们可以从 ICES 运营效率的提高中获益;也包括强化学习研究人员和从业人员,他们可以从实际工业中的安全 RL 应用中得到启发。
{"title":"Techno–Economic Modeling and Safe Operational Optimization of Multi-Network Constrained Integrated Community Energy Systems","authors":"Ze Hu ,&nbsp;Ka Wing Chan ,&nbsp;Ziqing Zhu ,&nbsp;Xiang Wei ,&nbsp;Weiye Zheng ,&nbsp;Siqi Bu","doi":"10.1016/j.adapen.2024.100183","DOIUrl":"10.1016/j.adapen.2024.100183","url":null,"abstract":"<div><p>The integrated community energy system (ICES) has emerged as a promising solution for enhancing the efficiency of the distribution system by effectively coordinating multiple energy sources. However, the concept and modeling of ICES still remain unclear, and operational optimization of ICES is hindered by the physical constraints of heterogeneous integrated energy networks. This paper, therefore, provides an overview of the state-of-the-art concepts for techno–economic modeling of ICES by establishing a Multi-Network Constrained ICES (MNC-ICES) model. The proposed model underscores the diverse energy devices at community and consumer levels and multiple networks for power, gas, and heat in a privacy-protection manner, providing a basis for practical network-constrained community operation tools. The corresponding operational optimization in the proposed model is formulated into a constrained Markov decision process (C-MDP) and solved by a Safe Reinforcement Learning (RL) approach. A novel Safe RL algorithm, Primal-Dual Twin Delayed Deep Deterministic Policy Gradient (PD-TD3), is developed to solve the C-MDP. By optimizing operations and maintaining network safety simultaneously, the proposed PD-TD3 method provides a solid backup for the ICESO and has great potential in real-world implementation. The non-convex modeling of MNC-ICES and the optimization performance of PD-TD3 is demonstrated in various scenarios. Compared with benchmark approaches, the proposed algorithm merits training speed, higher operational profits, and lower violations of multi-network constraints. Potential beneficiaries of this work include ICES operators and residents who could be benefited from improved ICES operation efficiency, as well as reinforcement learning researchers and practitioners who could be inspired for safe RL applications in real-world industry.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"15 ","pages":"Article 100183"},"PeriodicalIF":13.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666792424000210/pdfft?md5=cd536c4a02a001e229c11a6ef7a1a59a&pid=1-s2.0-S2666792424000210-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141711958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal scheduling of smart home energy systems: A user-friendly and adaptive home intelligent agent with self-learning capability 智能家居能源系统的优化调度:具有自学习能力的用户友好型自适应家庭智能代理
IF 13 Q1 ENERGY & FUELS Pub Date : 2024-07-11 DOI: 10.1016/j.adapen.2024.100182
Zhengyi Luo , Jinqing Peng , Xuefen Zhang , Haihao Jiang , Rongxin Yin , Yutong Tan , Mengxin Lv

This paper proposed a user-friendly and adaptive home intelligent agent with self-learning capability for optimal scheduling of smart home energy systems. The intelligent agent autonomously identifies model parameters based on system operation data, eliminating the need for manual input and making it more user-friendly and practical to implement. It can also self-learn the latest energy consumption information from an updated dataset and adaptively adjust model parameters to accommodate changing conditions. Utilizing these determined models as input, the intelligent agent performs day-ahead optimal scheduling using the proposed many-objective integer nonlinear optimization model and automatically controls system operation. Experimental studies were conducted on a laboratory-based smart home energy system to verify the effectiveness of the developed intelligent agent in different scenarios. The results consistently demonstrate Mean Absolute Percentage Errors below -12.7 % across all three scenarios, indicating the accuracy of the intelligent agent. Furthermore, the optimal scheduling significantly enhances system performances. After optimization, daily operational costs, peak-valley differences, and CO2 emissions were reduced by 34.1 % to 81.6 %, 29.2 % to 36.7 %, and 19.6 % to 43.2 %, respectively. Moreover, the PV generation self-consumption rate and self-sufficiency rate improved by 29.6 % to 38.0 % and 40.5 % to 49.4 %, respectively. The proposed intelligent agent provides invaluable guidance for optimal dispatch of smart home energy systems in real-world settings.

本文针对智能家居能源系统的优化调度,提出了一种具有自学习能力的用户友好型自适应家庭智能代理。该智能代理可根据系统运行数据自主确定模型参数,无需人工输入,因而更加方便实用。它还能从更新的数据集中自我学习最新的能源消耗信息,并自适应地调整模型参数,以适应不断变化的条件。利用这些确定的模型作为输入,智能代理使用所提出的多目标整数非线性优化模型执行日前优化调度,并自动控制系统运行。在实验室智能家居能源系统上进行了实验研究,以验证所开发的智能代理在不同场景下的有效性。结果表明,在所有三个场景中,平均绝对百分比误差均低于-12.7%,这表明了智能代理的准确性。此外,优化调度大大提高了系统性能。优化后,日常运营成本、峰谷差和二氧化碳排放量分别降低了 34.1% 至 81.6%、29.2% 至 36.7%、19.6% 至 43.2%。此外,光伏发电的自消耗率和自给率分别提高了 29.6% 至 38.0%,以及 40.5% 至 49.4%。所提出的智能代理为现实世界中智能家居能源系统的优化调度提供了宝贵的指导。
{"title":"Optimal scheduling of smart home energy systems: A user-friendly and adaptive home intelligent agent with self-learning capability","authors":"Zhengyi Luo ,&nbsp;Jinqing Peng ,&nbsp;Xuefen Zhang ,&nbsp;Haihao Jiang ,&nbsp;Rongxin Yin ,&nbsp;Yutong Tan ,&nbsp;Mengxin Lv","doi":"10.1016/j.adapen.2024.100182","DOIUrl":"10.1016/j.adapen.2024.100182","url":null,"abstract":"<div><p>This paper proposed a user-friendly and adaptive home intelligent agent with self-learning capability for optimal scheduling of smart home energy systems. The intelligent agent autonomously identifies model parameters based on system operation data, eliminating the need for manual input and making it more user-friendly and practical to implement. It can also self-learn the latest energy consumption information from an updated dataset and adaptively adjust model parameters to accommodate changing conditions. Utilizing these determined models as input, the intelligent agent performs day-ahead optimal scheduling using the proposed many-objective integer nonlinear optimization model and automatically controls system operation. Experimental studies were conducted on a laboratory-based smart home energy system to verify the effectiveness of the developed intelligent agent in different scenarios. The results consistently demonstrate Mean Absolute Percentage Errors below -12.7 % across all three scenarios, indicating the accuracy of the intelligent agent. Furthermore, the optimal scheduling significantly enhances system performances. After optimization, daily operational costs, peak-valley differences, and CO<sub>2</sub> emissions were reduced by 34.1 % to 81.6 %, 29.2 % to 36.7 %, and 19.6 % to 43.2 %, respectively. Moreover, the PV generation self-consumption rate and self-sufficiency rate improved by 29.6 % to 38.0 % and 40.5 % to 49.4 %, respectively. The proposed intelligent agent provides invaluable guidance for optimal dispatch of smart home energy systems in real-world settings.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"15 ","pages":"Article 100182"},"PeriodicalIF":13.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666792424000209/pdfft?md5=1cedc846099a911397ba821e7c77e286&pid=1-s2.0-S2666792424000209-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141623286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Risk-aware microgrid operation and participation in the day-ahead electricity market 具有风险意识的微电网运行和参与日前电力市场
IF 13 Q1 ENERGY & FUELS Pub Date : 2024-06-22 DOI: 10.1016/j.adapen.2024.100180
Robert Herding , Emma Ross , Wayne R. Jones , Elizabeth Endler , Vassilis M. Charitopoulos , Lazaros G. Papageorgiou

This work examines the daily bidding problem of a grid-connected microgrid with locally deployed resources for electricity generation, storage and its own electricity demand. Trading electricity in energy markets may offer economic incentives but exposes the microgrid to financial risk caused by market commitments. Hence, a multi-objective, two-stage stochastic mixed integer linear programming (MILP) model is formulated, extending prior work of a risk-neutral microgrid bidding approach. The multi-objective model minimises both expected total cost of day-ahead microgrid operations and financial risk from bidding measured by conditional value-at-risk (CVaR). Bidding curves derived as first stage decisions are always feasible under present market rules – including a limitation on the number of break points per submitted curve – while being near optimal for the microgrid’s day-ahead recourse schedule. The proposed optimisation model is embedded in a variant of the ɛ-constrained method to generate bidding curve candidates with different trade-offs between the two conflicting objectives. Moreover, scenario reduction is used to compromise accuracy of the uncertainty set for better computational performance. Particularly, the marginal relative probability distance between initial and reduced scenario set is suggested to make a decision on the extent of scenario reduction. The proposed solution procedure is tested in a computational study to demonstrate its applicability to generate optimal microgrid bidding curve candidates with different emphasis between total cost and CVaR in reasonable computational time.

这项研究探讨了一个并网微电网的日常竞标问题,该微电网拥有本地部署的发电、储能和自身电力需求资源。在能源市场上进行电力交易可能会带来经济激励,但也会使微电网面临市场承诺带来的财务风险。因此,我们制定了一个多目标、两阶段随机混合整数线性规划(MILP)模型,扩展了之前的风险中性微电网竞标方法。该多目标模型最大限度地降低了日前微电网运行的预期总成本和以条件风险值(CVaR)衡量的投标财务风险。根据目前的市场规则(包括对每条提交曲线的断点数量的限制),作为第一阶段决策得出的竞价曲线总是可行的,同时接近微电网日前追索计划的最优值。建议的优化模型被嵌入到ɛ-约束方法的变体中,以生成在两个相互冲突的目标之间进行不同权衡的投标曲线候选方案。此外,为了获得更好的计算性能,还采用了情景缩减法来降低不确定性集的精确度。特别是,建议使用初始情景集与缩减情景集之间的边际相对概率距离来决定情景缩减的程度。建议的求解程序在计算研究中进行了测试,以证明其适用于在合理的计算时间内生成总成本和 CVaR 之间不同侧重点的最佳微电网投标曲线候选方案。
{"title":"Risk-aware microgrid operation and participation in the day-ahead electricity market","authors":"Robert Herding ,&nbsp;Emma Ross ,&nbsp;Wayne R. Jones ,&nbsp;Elizabeth Endler ,&nbsp;Vassilis M. Charitopoulos ,&nbsp;Lazaros G. Papageorgiou","doi":"10.1016/j.adapen.2024.100180","DOIUrl":"https://doi.org/10.1016/j.adapen.2024.100180","url":null,"abstract":"<div><p>This work examines the daily bidding problem of a grid-connected microgrid with locally deployed resources for electricity generation, storage and its own electricity demand. Trading electricity in energy markets may offer economic incentives but exposes the microgrid to financial risk caused by market commitments. Hence, a multi-objective, two-stage stochastic mixed integer linear programming (MILP) model is formulated, extending prior work of a risk-neutral microgrid bidding approach. The multi-objective model minimises both expected total cost of day-ahead microgrid operations and financial risk from bidding measured by conditional value-at-risk (CVaR). Bidding curves derived as first stage decisions are always feasible under present market rules – including a limitation on the number of break points per submitted curve – while being near optimal for the microgrid’s day-ahead recourse schedule. The proposed optimisation model is embedded in a variant of the <span><math><mi>ɛ</mi></math></span>-constrained method to generate bidding curve candidates with different trade-offs between the two conflicting objectives. Moreover, scenario reduction is used to compromise accuracy of the uncertainty set for better computational performance. Particularly, the marginal relative probability distance between initial and reduced scenario set is suggested to make a decision on the extent of scenario reduction. The proposed solution procedure is tested in a computational study to demonstrate its applicability to generate optimal microgrid bidding curve candidates with different emphasis between total cost and CVaR in reasonable computational time.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"15 ","pages":"Article 100180"},"PeriodicalIF":13.0,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666792424000180/pdfft?md5=96b7a1215928fbf42c89bb54f97b0164&pid=1-s2.0-S2666792424000180-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141540414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Life cycle assessment of ammonia co-firing power plants: A comprehensive review and analysis from a whole industrial chain perspective 氨联合燃烧发电厂的生命周期评估:从全产业链角度进行全面审查和分析
Q1 ENERGY & FUELS Pub Date : 2024-05-20 DOI: 10.1016/j.adapen.2024.100178
Hui Kong , Yueqiao Sun , Hongsheng Wang , Jian Wang , Liping Sun , Jun Shen

Ammonia, a reliable low-carbon alternative fuel with energy storage capabilities, has garnered increasing attention for its application of co-firing in coal-fired power plants as a strategy to mitigate direct carbon emissions. However, various types of ammonia production technologies result in diverse economic feasibility and emission intensities. Simultaneously, each stage, spanning from upstream processes such as raw material extraction to downstream applications, contributes to carbon emissions, which cannot be ignored. It is crucial to select the appropriate assessment method to determine the transformation pathways for co-firing systems. To this end, this review presents a comprehensive life cycle assessment of ammonia co-firing systems from a whole industrial chain perspective, encompassing the entire gamut of processes from fuel production and transportation to co-firing. Studies of the industrial chain perspective and of life cycle assessment methodology that are uniquely tailored for co-firing systems are presented. A nuanced exploration of distinct technologies across the spectrum of system processes ensues, including the advantages, limitations, and trends in advancement, based on carbon emissions and economic criteria. Considering the diverse fuel production, especially ammonia, typologies and intricate processes have undergone comprehensive review. The combustion characteristics, emissions, and economic factors associated with the co-firing process are systematically summarized, drawing upon aspects such as dynamics, experiments, simulations, and demonstration projects. This study illuminates the progression and technology selection of co-firing systems across multiple stages of the whole industry chain, thereby furnishing insights relevant to the low-carbon transformation of ammonia co-firing with coal in power plants.

氨是一种可靠的低碳替代燃料,具有储能功能,在燃煤电厂中作为一种减少直接碳排放的战略,其联合燃烧的应用日益受到关注。然而,各种类型的合成氨生产技术导致了不同的经济可行性和排放强度。同时,从原材料提取等上游工艺到下游应用,每个阶段都会造成碳排放,这一点不容忽视。选择适当的评估方法来确定联合燃烧系统的转化途径至关重要。为此,本综述从整个产业链的角度对氨气联合燃烧系统进行了全面的生命周期评估,包括从燃料生产、运输到联合燃烧的整个过程。文中介绍了对产业链视角和生命周期评估方法的研究,这些都是为联合燃烧系统量身定制的。随后,根据碳排放和经济标准,对整个系统过程中的不同技术进行了细致的探讨,包括优势、局限性和发展趋势。考虑到燃料生产的多样性,特别是氨的生产,对类型和复杂工艺进行了全面审查。通过动态、实验、模拟和示范项目等方面,系统地总结了与联合燃烧工艺相关的燃烧特性、排放和经济因素。这项研究揭示了整个产业链多个阶段中联合燃烧系统的发展和技术选择,从而为电厂氨与煤联合燃烧的低碳转型提供了启示。
{"title":"Life cycle assessment of ammonia co-firing power plants: A comprehensive review and analysis from a whole industrial chain perspective","authors":"Hui Kong ,&nbsp;Yueqiao Sun ,&nbsp;Hongsheng Wang ,&nbsp;Jian Wang ,&nbsp;Liping Sun ,&nbsp;Jun Shen","doi":"10.1016/j.adapen.2024.100178","DOIUrl":"10.1016/j.adapen.2024.100178","url":null,"abstract":"<div><p>Ammonia, a reliable low-carbon alternative fuel with energy storage capabilities, has garnered increasing attention for its application of co-firing in coal-fired power plants as a strategy to mitigate direct carbon emissions. However, various types of ammonia production technologies result in diverse economic feasibility and emission intensities. Simultaneously, each stage, spanning from upstream processes such as raw material extraction to downstream applications, contributes to carbon emissions, which cannot be ignored. It is crucial to select the appropriate assessment method to determine the transformation pathways for co-firing systems. To this end, this review presents a comprehensive life cycle assessment of ammonia co-firing systems from a whole industrial chain perspective, encompassing the entire gamut of processes from fuel production and transportation to co-firing. Studies of the industrial chain perspective and of life cycle assessment methodology that are uniquely tailored for co-firing systems are presented. A nuanced exploration of distinct technologies across the spectrum of system processes ensues, including the advantages, limitations, and trends in advancement, based on carbon emissions and economic criteria. Considering the diverse fuel production, especially ammonia, typologies and intricate processes have undergone comprehensive review. The combustion characteristics, emissions, and economic factors associated with the co-firing process are systematically summarized, drawing upon aspects such as dynamics, experiments, simulations, and demonstration projects. This study illuminates the progression and technology selection of co-firing systems across multiple stages of the whole industry chain, thereby furnishing insights relevant to the low-carbon transformation of ammonia co-firing with coal in power plants.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"14 ","pages":"Article 100178"},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666792424000167/pdfft?md5=2eee1ae8953fb0299668fa2c01a83efe&pid=1-s2.0-S2666792424000167-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141138685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in Applied Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1