The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels. This review explores the intricate challenges and opportunities for transitioning to sustainable renewable energy sources such as solar, wind, and hydrogen. This transition economically challenges traditional energy sectors while fostering new industries, promoting job growth, and sustainable economic development. The transition to renewable energy demands social equity, ensuring universal access to affordable energy, and considering community impact. The environmental benefits include a significant reduction in greenhouse gas emissions and a lesser ecological footprint. This study highlights the rapid growth of the global wind power market, which is projected to increase from $112.23 billion in 2022 to $278.43 billion by 2030, with a compound annual growth rate of 13.67%. In addition, the demand for hydrogen is expected to increase, significantly impacting the market with potential cost reductions and making it a critical renewable energy source owing to its affordability and zero emissions. By 2028, renewables are predicted to account for 42% of global electricity generation, with significant contributions from wind and solar photovoltaic (PV) technology, particularly in China, the European Union, the United States, and India. These developments signify a global commitment to diversifying energy sources, reducing emissions, and moving toward cleaner and more sustainable energy solutions. This review offers stakeholders the insights required to smoothly transition to sustainable energy, setting the stage for a resilient future.
Global energy and environmental issues are becoming increasingly problematic, and the vibration and noise problem of 110 kV transformers, which are the most widely distributed, have attracted widespread attention from both inside and outside the industry. DC bias is one of the main contributing factors to vibration noise during the normal operation of transformers. To clarify the vibration and noise mechanism of a 110 kV transformer under a DC bias, a multi-field coupling model of a 110 kV transformer was established using the finite element method. The electromagnetic, vibration, and noise characteristics during the DC bias process were compared and quantified through field circuit coupling in parallel with the power frequency of AC, harmonic, and DC power sources. It was found that a DC bias can cause significant distortions in the magnetic flux density, force, and displacement distributions of the core and winding. The contributions of the DC bias effect to the core and winding are different at Kdc = 0.85. At this point, the core approached saturation, and the increase in the core force and displacement slowed. However, the saturation of the core increased the leakage flux, and the stress and displacement of the winding increased faster. The sound field distribution characteristics of the 110 kV transformer under a DC bias are related to the force characteristics. When the DC bias coefficient was 1.25, the noise sound pressure level reached 73.6 dB.
The launch of the carbon-allowance trading market has changed the cost structure of the power industry. There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch. In this study, a data-driven model of the uncertainty in the annual carbon price was created. Subsequently, a collaborative, robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation. The model is solved using the column-and-constraint generation algorithm. An operation and cost model of a carbon-capture power plant (CCPP) that couples the carbon market and the economic operation of the power system is also established. The critical, profitable conditions for the economic operation of the CCPP were derived. Case studies demonstrated that the proposed low-carbon, robust dispatch model reduced carbon emissions by 2.67% compared with the traditional, economic, dispatch method. The total fuel cost of generation decreases with decreasing, conservative, carbon-price-uncertainty levels, while total carbon emissions continue to increase. When the carbon-quota coefficient decreases, the system dispatch tends to increase low-carbon unit output. This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies.
In this study, the present situation and characteristics of power supply in remote areas are summarized. By studying the cases of power supply projects in remote areas, the experience is analyzed and described, and the applicability of related technologies, such as grid-forming storage and power load management, is studied, including grid-connection technologies, such as grid-forming converters and power load management. On this basis, three power-supply modes were proposed. The application scenarios and advantages of the three modes were compared and analyzed. Based on the local development situation, the temporal sequences of the three schemes are described, and a case study was conducted. The study of the heavy-load power supply mode in remote areas contributes to solving the problem of heavy-load green power consumption in remote areas and promoting the further development of renewable energy.