Pub Date : 2024-01-04DOI: 10.1007/s42401-023-00265-y
Ke Yao, Xingyi Zhang, Xiaoqing Qiang
The compressor is a critical component of aero-engines. In order to improve the performance, the compressor ratio of single-stage compressor is getting higher and higher, which will lead to high back pressure gradient and losses. To solve this problem, there are many techniques applied, such as cantilevered stator, tip clearance and slotted airfoils. However, traditional design methods are experience-dependent and time-consuming. This paper proposes a hybrid optimization method to optimize the stacking line of compressor cascade and reduce total pressure loss on both design and off-design conditions. The approach employs various surrogate models and a multi-infill strategy, outperforming traditional optimization methods using a single surrogate model and a single infilling strategy. The results show that compared to the original blade, the optimized blade has a 34.6(%) lower mass-averaged total pressure loss at the design point, while the static pressure ratio increases by 2.43(%). This paper innovatively combines deep learning-based surrogate models, the hybrid optimization algorithm, and the curvature-based blade shaping method to optimize the blade shape, shorten the blade design time, and ultimately reduce the losses significantly.
{"title":"Hybrid optimization of curvature continuous stacking line on the highly loaded diffuser cascade","authors":"Ke Yao, Xingyi Zhang, Xiaoqing Qiang","doi":"10.1007/s42401-023-00265-y","DOIUrl":"10.1007/s42401-023-00265-y","url":null,"abstract":"<div><p>The compressor is a critical component of aero-engines. In order to improve the performance, the compressor ratio of single-stage compressor is getting higher and higher, which will lead to high back pressure gradient and losses. To solve this problem, there are many techniques applied, such as cantilevered stator, tip clearance and slotted airfoils. However, traditional design methods are experience-dependent and time-consuming. This paper proposes a hybrid optimization method to optimize the stacking line of compressor cascade and reduce total pressure loss on both design and off-design conditions. The approach employs various surrogate models and a multi-infill strategy, outperforming traditional optimization methods using a single surrogate model and a single infilling strategy. The results show that compared to the original blade, the optimized blade has a 34.6<span>(%)</span> lower mass-averaged total pressure loss at the design point, while the static pressure ratio increases by 2.43<span>(%)</span>. This paper innovatively combines deep learning-based surrogate models, the hybrid optimization algorithm, and the curvature-based blade shaping method to optimize the blade shape, shorten the blade design time, and ultimately reduce the losses significantly.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 3","pages":"585 - 597"},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139386247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-04DOI: 10.1007/s42401-023-00267-w
Elena Karpovich, Timur Kombaev, Djahid Gueraiche, Dmitriy Strelets
In this study, a rocket-based UAV and a solar wing-tail Martian UAV were designed and assessed against a set of criteria established using a house of quality chart. For the design, analysis, trade studies, and optimization, MATLAB and XFLR5 were used. The optimized versions of the two configurations feature the same wing and tail airfoils, the same wing and tail planforms, different dimensions, weight, and performance. Therefore, distinct types of scientific missions are suitable for these aircraft. The results of the study extend our understanding of the capabilities of a Martian fixed-wing airplane in terms of payload mass, hence its scientific value, as well as in terms of its planform geometry and airfoil shapes.
{"title":"Rocket-based versus solar wing-tail Martian UAVs: design, analysis, and trade studies","authors":"Elena Karpovich, Timur Kombaev, Djahid Gueraiche, Dmitriy Strelets","doi":"10.1007/s42401-023-00267-w","DOIUrl":"10.1007/s42401-023-00267-w","url":null,"abstract":"<div><p>In this study, a rocket-based UAV and a solar wing-tail Martian UAV were designed and assessed against a set of criteria established using a house of quality chart. For the design, analysis, trade studies, and optimization, MATLAB and XFLR5 were used. The optimized versions of the two configurations feature the same wing and tail airfoils, the same wing and tail planforms, different dimensions, weight, and performance. Therefore, distinct types of scientific missions are suitable for these aircraft. The results of the study extend our understanding of the capabilities of a Martian fixed-wing airplane in terms of payload mass, hence its scientific value, as well as in terms of its planform geometry and airfoil shapes.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 4","pages":"693 - 707"},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139385941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-20DOI: 10.1007/s42401-023-00262-1
Timofey Matyushev, Michael Dvornikov, Irina Maximova, Anastasia Rybina, Andrey Malyshev
The method presented in the article is based on a complex simulation model of gas-dynamic processes that take place in sectioned cabins during depressurization. This model allows the theoretical calculation of decompression parameters (decompression time, cabin pressure, gas leakage from the cabin) depending on flight parameters and design features of the aircraft pressurised cabin (height, cabin volume, defect area, etc.) and determine the interdependence of pressure control parameters in critical operating modes. In computational experiments simulating decompression during depressurisation, the rate of cabin pressure drop as a function of the defect area, residual overpressure, decompression time, values of drops between compartment sections and mass flow rate during pressure changes; safe descent height and other parameters were determined. On the basis of computational experiments, a methodology for assessing the portability of decompression was developed, taking into account different levels of impact tolerance, allowing for a rational choice of hermetic and gas dynamic parameters of the cabin, as well as flight performance characteristics, taking into account the possible decompression of the cabin in flight or, conversely, with the specified parameters of the cabin and flight data at the design stage of the aircraft to assess the degree of danger in case of depressurization and to provide in advance a set of security measures. The transition for decompression safety analysis along the Chadov V. I. curve has advantages since it is applicable for various types of aircraft from spacecraft to aircraft and for various atmospheres with different combinations of pressures and concentrations.
文章中介绍的方法基于减压过程中分段客舱内气体动力过程的复杂模拟模型。该模型可根据飞行参数和飞机加压舱的设计特点(高度、舱容积、缺陷面积等)对减压参数(减压时间、舱内压力、舱内气体泄漏量)进行理论计算,并确定关键运行模式下压力控制参数的相互依存关系。在模拟减压过程的计算实验中,确定了客舱压力下降率与缺陷面积、残余过压、减压时间、舱段之间的下降值和压力变化时的质量流量、安全下降高度和其他参数的函数关系。在计算实验的基础上,开发了一种评估减压便携性的方法,其中考虑到了不同程度的撞击耐受性,允许合理选择座舱的密封和气体动态参数以及飞行性能特征,同时考虑到座舱在飞行中可能发生的减压,或者相反,在飞机设计阶段利用指定的座舱参数和飞行数据来评估减压情况下的危险程度,并预先提供一套安全措施。减压安全分析沿 Chadov V. I. 曲线的过渡具有优势,因为它适用于从航天器到飞机的各种类型的飞机,以及具有不同压力和浓度组合的各种大气。
{"title":"Theoretical analysis of decompression tolerance based on a simulated depressurisation model of an aircraft’s pressurised cabin","authors":"Timofey Matyushev, Michael Dvornikov, Irina Maximova, Anastasia Rybina, Andrey Malyshev","doi":"10.1007/s42401-023-00262-1","DOIUrl":"10.1007/s42401-023-00262-1","url":null,"abstract":"<div><p>The method presented in the article is based on a complex simulation model of gas-dynamic processes that take place in sectioned cabins during depressurization. This model allows the theoretical calculation of decompression parameters (decompression time, cabin pressure, gas leakage from the cabin) depending on flight parameters and design features of the aircraft pressurised cabin (height, cabin volume, defect area, etc.) and determine the interdependence of pressure control parameters in critical operating modes. In computational experiments simulating decompression during depressurisation, the rate of cabin pressure drop as a function of the defect area, residual overpressure, decompression time, values of drops between compartment sections and mass flow rate during pressure changes; safe descent height and other parameters were determined. On the basis of computational experiments, a methodology for assessing the portability of decompression was developed, taking into account different levels of impact tolerance, allowing for a rational choice of hermetic and gas dynamic parameters of the cabin, as well as flight performance characteristics, taking into account the possible decompression of the cabin in flight or, conversely, with the specified parameters of the cabin and flight data at the design stage of the aircraft to assess the degree of danger in case of depressurization and to provide in advance a set of security measures. The transition for decompression safety analysis along the Chadov V. I. curve has advantages since it is applicable for various types of aircraft from spacecraft to aircraft and for various atmospheres with different combinations of pressures and concentrations.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 3","pages":"575 - 584"},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139168720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-13DOI: 10.1007/s42401-023-00258-x
Christopher J. Damaren
The paper considers control system design for linearized three-dimensional perturbations about a nominal laminar boundary layer over a flat plate (the Blasius profile). The objective is prevention of the laminar to turbulent transition using appropriate inputs, outputs, and feedback controllers. They are synthesized with a view to reducing transient energy growth, a known precursor to important transition scenarios. The linearized Navier–Stokes equations are reduced to the Orr–Sommerfeld and Squire equations with wall-normal velocity actuation entering through the boundary conditions on the wall. The sensor output is taken to be the wall-normal derivative of the wall-normal vorticity measured on the plate. Several multivariable output controllers are examined, including simple constant gain output feedback, loop transfer recovery, and (H_{infty }) loop shaping. Reduced order compensators are developed using balanced truncation and analyzed for robustness using the gap metric between reduced order models and full order models. It is demonstrated that the level of minimum transient energy growth that can be achieved is similar for these diverse controller methodologies but falls short of that which can be achieved using optimal state feedback.
{"title":"Transition control of the blasius boundary layer using linear robust control theory","authors":"Christopher J. Damaren","doi":"10.1007/s42401-023-00258-x","DOIUrl":"10.1007/s42401-023-00258-x","url":null,"abstract":"<div><p>The paper considers control system design for linearized three-dimensional perturbations about a nominal laminar boundary layer over a flat plate (the Blasius profile). The objective is prevention of the laminar to turbulent transition using appropriate inputs, outputs, and feedback controllers. They are synthesized with a view to reducing transient energy growth, a known precursor to important transition scenarios. The linearized Navier–Stokes equations are reduced to the Orr–Sommerfeld and Squire equations with wall-normal velocity actuation entering through the boundary conditions on the wall. The sensor output is taken to be the wall-normal derivative of the wall-normal vorticity measured on the plate. Several multivariable output controllers are examined, including simple constant gain output feedback, loop transfer recovery, and <span>(H_{infty })</span> loop shaping. Reduced order compensators are developed using balanced truncation and analyzed for robustness using the gap metric between reduced order models and full order models. It is demonstrated that the level of minimum transient energy growth that can be achieved is similar for these diverse controller methodologies but falls short of that which can be achieved using optimal state feedback.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 2","pages":"279 - 292"},"PeriodicalIF":0.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42401-023-00258-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138976884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The objective of this study is to design a Ku-band tracking, command, and ranging (TCR) antenna for small satellite communications applications. The proposed design combines the conical log spiral antenna (CLSA) with the discone antenna, which is an omnidirectional antenna suitable for installation in next-generation small communication satellites. The novelty of this TCR antenna lies in the selection of parameters to enhance its structure. Consequently, the radiating element and feeding system are optimized to reduce the antenna's size. As a result, the proposed antenna achieves a gain exceeding 6 dBi for uplink frequencies in the Ku-band and it reaches up to 7 dBi for the downlink range which is responsive to the system requirement's to achieve mission objectives.
本研究旨在为小型卫星通信应用设计一种 Ku 波段跟踪、指令和测距(TCR)天线。所提出的设计结合了锥形对数螺旋天线(CLSA)和碟形天线,是一种适合安装在下一代小型通信卫星上的全向天线。这种 TCR 天线的新颖之处在于选择参数来增强其结构。因此,对辐射元件和馈电系统进行了优化,以减小天线的尺寸。因此,拟议的天线在 Ku 波段的上行链路频率上增益超过 6 dBi,在下行链路范围内增益高达 7 dBi,满足了系统实现任务目标的要求。
{"title":"Ku-band tracking, command and ranging antenna design for small satellites communications applications","authors":"Zakarya Kourdi, Mohammed Amin Rabah, Ahmed-Ali Kanoun, Faiza Merad, Youcef Benabdellah","doi":"10.1007/s42401-023-00261-2","DOIUrl":"10.1007/s42401-023-00261-2","url":null,"abstract":"<div><p>The objective of this study is to design a Ku-band tracking, command, and ranging (TCR) antenna for small satellite communications applications. The proposed design combines the conical log spiral antenna (CLSA) with the discone antenna, which is an omnidirectional antenna suitable for installation in next-generation small communication satellites. The novelty of this TCR antenna lies in the selection of parameters to enhance its structure. Consequently, the radiating element and feeding system are optimized to reduce the antenna's size. As a result, the proposed antenna achieves a gain exceeding 6 dBi for uplink frequencies in the Ku-band and it reaches up to 7 dBi for the downlink range which is responsive to the system requirement's to achieve mission objectives.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 2","pages":"271 - 277"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139007922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper aims to figure out the robust zero-sum differential game problem using an off-policy reinforcement learning technique. The robust system model is first established based on the nominal one. The control strategy is proposed with the asymptotic stability and optimality being strictly proved. The off-policy reinforcement learning technique is built from the Bellman equation to generate the control policy. A potentially inaccurate system dynamic model’s influence is avoided because the outcome is attained from the system data set obtained. It is the first-time application of the off-policy RL algorithm on this robust two-player zero-sum differential game problem. Additionally, the final algorithm’s convergence is demonstrated, and a simulation example is run to confirm its efficacy.
{"title":"Robust control design for zero-sum differential games problem based on off-policy reinforcement learning technique","authors":"Hongji Zhuang, Hongxu Zhu, Shufan Wu, Xiaoliang Wang, Zhongcheng Mu, Qiang Shen","doi":"10.1007/s42401-023-00263-0","DOIUrl":"10.1007/s42401-023-00263-0","url":null,"abstract":"<div><p>This paper aims to figure out the robust zero-sum differential game problem using an off-policy reinforcement learning technique. The robust system model is first established based on the nominal one. The control strategy is proposed with the asymptotic stability and optimality being strictly proved. The off-policy reinforcement learning technique is built from the Bellman equation to generate the control policy. A potentially inaccurate system dynamic model’s influence is avoided because the outcome is attained from the system data set obtained. It is the first-time application of the off-policy RL algorithm on this robust two-player zero-sum differential game problem. Additionally, the final algorithm’s convergence is demonstrated, and a simulation example is run to confirm its efficacy.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 2","pages":"261 - 269"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139009822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-08DOI: 10.1007/s42401-023-00259-w
Chao Chen, Zhongliang Jing, Han Pan, Xiangming Dun, Jianzhe Huang, Hailei Wu, Shuqing Cao
Spacecraft pose estimation plays an important role in an increasing number of on-orbit services: rendezvous and docking, formation flights, debris removal, and so on. Current solutions achieve excellent performance at the cost of a huge number of model parameters and are not applicable in space environments where computational resources are limited. In this paper, we present the Squeeze-and-Excitation based Spacecraft Pose Network (SESPNet). Our primary objective is to make a trade-off between minimizing model parameters and preserving performance to be more applicable to edge computing in space environments. Our contributions are primarily manifested in three aspects: first, we adapt the lightweight PeleeNet as the backbone network; second, we incorporate the SE attention mechanism to bolster the network’s feature extraction capabilities; third, we adopt the Smooth L1 loss function for position regression, which significantly enhances the accuracy of position estimation.
航天器姿态估计在越来越多的在轨服务中发挥着重要作用:交会对接、编队飞行、碎片清除等。目前的解决方案性能卓越,但代价是需要大量的模型参数,不适用于计算资源有限的太空环境。在本文中,我们提出了基于挤压和激励的航天器姿态网络(SESPNet)。我们的主要目标是在最小化模型参数和保持性能之间做出权衡,使其更适用于太空环境中的边缘计算。我们的贡献主要体现在三个方面:第一,我们采用轻量级的 PeleeNet 作为骨干网络;第二,我们采用 SE attention 机制来增强网络的特征提取能力;第三,我们采用 Smooth L1 损失函数进行位置回归,从而显著提高了位置估计的准确性。
{"title":"SESPnet: a lightweight network with attention mechanism for spacecraft pose estimation","authors":"Chao Chen, Zhongliang Jing, Han Pan, Xiangming Dun, Jianzhe Huang, Hailei Wu, Shuqing Cao","doi":"10.1007/s42401-023-00259-w","DOIUrl":"10.1007/s42401-023-00259-w","url":null,"abstract":"<div><p>Spacecraft pose estimation plays an important role in an increasing number of on-orbit services: rendezvous and docking, formation flights, debris removal, and so on. Current solutions achieve excellent performance at the cost of a huge number of model parameters and are not applicable in space environments where computational resources are limited. In this paper, we present the Squeeze-and-Excitation based Spacecraft Pose Network (SESPNet). Our primary objective is to make a trade-off between minimizing model parameters and preserving performance to be more applicable to edge computing in space environments. Our contributions are primarily manifested in three aspects: first, we adapt the lightweight PeleeNet as the backbone network; second, we incorporate the SE attention mechanism to bolster the network’s feature extraction capabilities; third, we adopt the Smooth L1 loss function for position regression, which significantly enhances the accuracy of position estimation.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 1","pages":"1 - 10"},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138586647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-08DOI: 10.1007/s42401-023-00260-3
Mohamed Ahmed Mokhtar, H. Amer Fawzy ElTohamy, Z. Elhalwagy Yehia, E. Hanafy Mohamed
The electrical power system (EPS) of a spacecraft (SC) plays a crucial role in the mission's success. This system provides electrical power to all loads of SC until its end of life (EOL). The primary power source onboard for the SC is the solar array (SA), while the storage battery serves as the secondary power source. We have developed a software program called the SC Charging Analysis Tool with Battery Management Algorithm (BMA) to address the challenges associated with the SC battery's charging and discharging processes. This tool fulfills two main objectives: first, to develop a BMA that effectively controls the battery charging and discharging processes through all modes of SC operation; second, to create a battery management environment with SC energy budget calculation capabilities to simulate the dynamic behavior of the SC battery using the developed BMA, thereby ensuring battery health. The battery management environment is specifically designed to verify the proper performance of the battery throughout the SC's lifetime and to execute operations during nominal conditions and throughout worst-case scenarios. Moreover, through the SC energy budget calculation, we can optimize the requirements of the chosen scenario to fit with the selected battery. However, during worst-case scenarios, the battery's vital parameters, including state of charge (SOC), thermal emission, voltage, and pressure, are calculated to verify its proper operation under the developed BMA. The dynamic behavior of the battery, in conjunction with the developed algorithms, will be validated using real telemetry data. The key result of this paper is the invention of a BMA, which contributes to the advanced management of SC battery systems and, consequently, better durability during challenging operational scenarios.
{"title":"Developing a novel battery management algorithm with energy budget calculation for low Earth orbit (LEO) spacecraft","authors":"Mohamed Ahmed Mokhtar, H. Amer Fawzy ElTohamy, Z. Elhalwagy Yehia, E. Hanafy Mohamed","doi":"10.1007/s42401-023-00260-3","DOIUrl":"10.1007/s42401-023-00260-3","url":null,"abstract":"<div><p>The electrical power system (EPS) of a spacecraft (SC) plays a crucial role in the mission's success. This system provides electrical power to all loads of SC until its end of life (EOL). The primary power source onboard for the SC is the solar array (SA), while the storage battery serves as the secondary power source. We have developed a software program called the SC Charging Analysis Tool with Battery Management Algorithm (BMA) to address the challenges associated with the SC battery's charging and discharging processes. This tool fulfills two main objectives: first, to develop a BMA that effectively controls the battery charging and discharging processes through all modes of SC operation; second, to create a battery management environment with SC energy budget calculation capabilities to simulate the dynamic behavior of the SC battery using the developed BMA, thereby ensuring battery health. The battery management environment is specifically designed to verify the proper performance of the battery throughout the SC's lifetime and to execute operations during nominal conditions and throughout worst-case scenarios. Moreover, through the SC energy budget calculation, we can optimize the requirements of the chosen scenario to fit with the selected battery. However, during worst-case scenarios, the battery's vital parameters, including state of charge (SOC), thermal emission, voltage, and pressure, are calculated to verify its proper operation under the developed BMA. The dynamic behavior of the battery, in conjunction with the developed algorithms, will be validated using real telemetry data. The key result of this paper is the invention of a BMA, which contributes to the advanced management of SC battery systems and, consequently, better durability during challenging operational scenarios.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 1","pages":"143 - 157"},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138588999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-08DOI: 10.1007/s42401-023-00257-y
V. M. Jyothy, G. Jims John Wessley, A. Brusly Solomon
This work explores the thrust vector control in a 2D convergent divergent nozzle with wedge shaped jet tab. The Computational analysis has been carried out with different thickness and height of jet tabs. The flow topology analysis is carried out qualitatively and quantitatively. The wedge-shaped jet tabs with 10%, 20%, 30% and 40% of height and 10 mm, 12 mm, 14 mm, 16 mm thickness are considered for right isosceles, left isosceles and isosceles shapes. The deflection angle is calculated to identify the best effective thrust deflection configuration. Results indicate that, when thickness and height of jet tab increases the deflection angle reduces due to the formation of mixing layer and shock wave generation. Also, depending on the shape of jet tab the oblique shock formation and angle of shock varied. The thickness-based CFD optimization shows that a 4.66° deflection angle with 10 mm thickness and 40% height isosceles tab produces the best deflection. The right jet tab with 12 mm and 14 mm thickness with 30% and 20% height shows 4.75° and 4.14° deflection angle. In the case of 16 mm thickness tab, left isosceles jet tab with 10% height shows 4.14° of deflection angle. It is concluded form the study that, the highest rate of deflection was produced by the right isosceles tab with 12 mm thickness and 30% height. This can be used for thrust deflection in supersonic aircrafts and missiles.
{"title":"Study of wedge-shaped Jet tabs for effective Thrust vector control in Supersonic vehicles","authors":"V. M. Jyothy, G. Jims John Wessley, A. Brusly Solomon","doi":"10.1007/s42401-023-00257-y","DOIUrl":"10.1007/s42401-023-00257-y","url":null,"abstract":"<div><p>This work explores the thrust vector control in a 2D convergent divergent nozzle with wedge shaped jet tab. The Computational analysis has been carried out with different thickness and height of jet tabs. The flow topology analysis is carried out qualitatively and quantitatively. The wedge-shaped jet tabs with 10%, 20%, 30% and 40% of height and 10 mm, 12 mm, 14 mm, 16 mm thickness are considered for right isosceles, left isosceles and isosceles shapes. The deflection angle is calculated to identify the best effective thrust deflection configuration. Results indicate that, when thickness and height of jet tab increases the deflection angle reduces due to the formation of mixing layer and shock wave generation. Also, depending on the shape of jet tab the oblique shock formation and angle of shock varied. The thickness-based CFD optimization shows that a 4.66° deflection angle with 10 mm thickness and 40% height isosceles tab produces the best deflection. The right jet tab with 12 mm and 14 mm thickness with 30% and 20% height shows 4.75° and 4.14° deflection angle. In the case of 16 mm thickness tab, left isosceles jet tab with 10% height shows 4.14° of deflection angle. It is concluded form the study that, the highest rate of deflection was produced by the right isosceles tab with 12 mm thickness and 30% height. This can be used for thrust deflection in supersonic aircrafts and missiles.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 3","pages":"565 - 573"},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138587460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1007/s42401-023-00256-z
J. Anish, G. M. Joselin Herbert, K. Balaji
The objective of this paper is to enhance the aerodynamic performance of trainer aircraft wing using active flow control method of co flow jet (CFJ). In this numerical study, free stream velocity of 20 m/s and k epsilon turbulence model is used to compare baseline and CFJ aerofoils with different angles of attack (AOA). This work introduced CFJ method into the trainer aircraft wing to improve the aerodynamic performance by controlling the boundary layer over it at different AOA and at the same time to reduce the take-off landing distance. The obtained results show that the stalling AOA improved by 40% and lift coefficient increased by 52%. The same method could be used to all trainer aircrafts.
本文旨在利用共流喷气(CFJ)的主动流控制方法提高教练机机翼的气动性能。在这项数值研究中,采用 20 m/s 的自由流速度和 k epsilon 湍流模型,比较了不同攻角 (AOA) 下的基线气膜和 CFJ 气膜。这项工作将 CFJ 方法引入到教练机机翼中,通过控制不同 AOA 下机翼上的边界层来改善气动性能,同时缩短起飞着陆距离。结果表明,失速 AOA 提高了 40%,升力系数提高了 52%。同样的方法可用于所有教练机。
{"title":"Improvement in aerodynamic efficiency of trainer aircraft wing using co flow jet method","authors":"J. Anish, G. M. Joselin Herbert, K. Balaji","doi":"10.1007/s42401-023-00256-z","DOIUrl":"10.1007/s42401-023-00256-z","url":null,"abstract":"<div><p>The objective of this paper is to enhance the aerodynamic performance of trainer aircraft wing using active flow control method of co flow jet (CFJ). In this numerical study, free stream velocity of 20 m/s and k epsilon turbulence model is used to compare baseline and CFJ aerofoils with different angles of attack (AOA). This work introduced CFJ method into the trainer aircraft wing to improve the aerodynamic performance by controlling the boundary layer over it at different AOA and at the same time to reduce the take-off landing distance. The obtained results show that the stalling AOA improved by 40% and lift coefficient increased by 52%. The same method could be used to all trainer aircrafts.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 3","pages":"559 - 564"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138611767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}