An electret-based electrostatic energy harvester featuring tuneable resonance frequency, small size, light weight, and high output power was designed and its performance predicted by the finite element method and verified by experiment. The device consists of a resilient fluorinated polyethylene propylene (FEP) electret film that is metallised on one side with a small seismic mass attached to its centre and an arc-shaped counter electrode. In principle, such an energy harvester is mechanically a mass-spring system and electrically a self-bias voltage variable capacitor and converts vibrational energy into electrical energy by electromechanical coupling. For an energy harvester sample with dimensions of 30 × 10 × 9 mm for which the last dimension denotes the initial depth of the centre of the harvester, the resonance frequency can be tuned from 17 to 70 Hz by stretching the length of the FEP film loaded with a given seismic mass of 0.06 g. For a seismic mass of 0.1 g, the harvester generated a power up to 797 μW to a matching resistor at its resonance frequency of 17 Hz at an acceleration of 1×g, where g is the gravity of the earth. Such energy harvesters are promising candidates for use in self-powered electronic devices and wireless sensor network nodes.
The authors report the key findings from an experimental study that explored the use of activated bentonite for the reclamation of thermally aged ester-based transformer nanofluids to improve their insulation performance. Bentonite activated with acid treatment caused an increase in the specific surface area and pore volume of bentonite compared to the bentonite sample before treatment, thus imparting an improved adsorption capability. Physico-chemical diagnostic studies were carried out to characterise the activated bentonite. The insulation performance of the reclaimed natural ester and nano-filled ester fluid samples was assessed by measuring the corona inception voltage and breakdown voltage of each fluid sample, apart form measuring the flow electrification current using the spinning disk method. The results revealed that the reclamation process improved the corona inception voltage, dissipation factor and the breakdown voltage of the base ester fluid sample due to attraction of carbon particles to activated bentonite, but no significant variation was observed with nanofluids due to the depletion of the electrical double layer. The flow electrification current of ester and ester nanofluids reduced after treatment with activated bentonite, may be attributed to the interaction between copper and bentonite that alters the double layer formation responsible for the separation of charges.
Nanoparticles of Ni0.5Co0.2Zn0.3Fe2O4 were prepared using the sol-gel combustion route. The nanoparticles were characterised by x-ray diffraction to confirm single-phase formation in a cubic spinel structure. Micro- and nanostructural analyses were carried out using field emission-scanning electron microscopy and field emission-transmission electron microscopy, respectively. A planetary ball milling technique was used to grind the powder into nanoparticles; the average particle size was 64 nm. Energy-dispersive X-ray spectroscopy was used to determine the atomic composition of the sample. Radio-frequency characteristics were recorded for dielectric measurement in a frequency range of 1 Hz to 15 MHz using a broadband dielectric spectrometer. Terahertz (THz) time-domain spectroscopy was performed to study THz-optical parameters such as refractive index, dielectric constant, and conductivity at room temperature in a frequency range of 0.3−2.2 THz using an indigenously developed THz time-domain spectroscopy setup. The magnetic properties of the sample were studied using a SQUID vibrating sample magnetometer under an applied magnetic field of ±10 kOe. An examination of M-H loops revealed that the saturation magnetization