首页 > 最新文献

IET Nanodielectrics最新文献

英文 中文
Enhanced electromechanical performance through chemistry graft copper phthalocyanine to siloxane-modified polyurethane and interpenetrate with siloxane silicon rubber as composite actuator material 通过将酞菁铜化学接枝到硅氧烷改性聚氨酯上并与硅氧烷硅橡胶互穿作为复合致动器材料来增强机电性能
IF 2.7 Q1 Physics and Astronomy Pub Date : 2021-02-21 DOI: 10.1049/nde2.12008
Tingting Huang, Bolei Yuan, Jun Tang, Yunhe Zhang

Researchers are devoted to developing dielectric elastomers (DEs) with excellent electromechanical properties as an artificial muscle material. The authors report a new class of semi-interpenetrating network (semi-IPN) composites that contains siloxane-modified linear polyurethane (PU) and silicone rubber through reasonable design of polymer structure. The organic-filler copper phthalocyanine (CuPc) is chemically grafted into the semi-interpenetrating network as a cross-linking point and exhibits excellent dispersibility in the matrix. The various properties of the obtained composite films are also evaluated. The dielectric constant (8.65 at 1 kHz) and maximum actuation strain at 30 MV m−1 (5.32%) are significantly higher than those of semi-IPN composites.

国家自然科学基金,授予/奖号:519730801903100摘要研究人员致力于开发具有优异机电性能的介电弹性体(DE)作为人工肌肉材料。作者通过对聚合物结构的合理设计,报道了一类新型的半互穿网络(semi-IPN)复合材料,该复合材料含有硅氧烷改性的线性聚氨酯(PU)和硅橡胶。有机填料酞菁铜(CuPc)被化学接枝到半互穿网络中作为交联点,并在基体中表现出优异的分散性。并对所得复合膜的各种性能进行了评价。介电常数(1 kHz时为8.65)和30 MV m时的最大致动应变(5.32%)显著高于半互穿网络复合材料。
{"title":"Enhanced electromechanical performance through chemistry graft copper phthalocyanine to siloxane-modified polyurethane and interpenetrate with siloxane silicon rubber as composite actuator material","authors":"Tingting Huang,&nbsp;Bolei Yuan,&nbsp;Jun Tang,&nbsp;Yunhe Zhang","doi":"10.1049/nde2.12008","DOIUrl":"10.1049/nde2.12008","url":null,"abstract":"<p>Researchers are devoted to developing dielectric elastomers (DEs) with excellent electromechanical properties as an artificial muscle material. The authors report a new class of semi-interpenetrating network (semi-IPN) composites that contains siloxane-modified linear polyurethane (PU) and silicone rubber through reasonable design of polymer structure. The organic-filler copper phthalocyanine (CuPc) is chemically grafted into the semi-interpenetrating network as a cross-linking point and exhibits excellent dispersibility in the matrix. The various properties of the obtained composite films are also evaluated. The dielectric constant (8.65 at 1 kHz) and maximum actuation strain at 30 MV m<sup>−1</sup> (5.32%) are significantly higher than those of semi-IPN composites.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48092546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Integrated multifunctional properties of polypropylene composites by employing three-dimensional flower-like MgO with hierarchical surface morphology 采用具有分级表面形态的三维花状MgO制备聚丙烯复合材料的综合多功能性能
IF 2.7 Q1 Physics and Astronomy Pub Date : 2021-02-16 DOI: 10.1049/nde2.12006
Jun-Wei Zha, Qi Cheng, Jin-Tao Zhai, Xingming Bian, George Chen, Zhi-Min Dang

Polymer nanocomposites have attracted increased attention for use in the field of high-voltage direct current (HVDC) cable insulation. To study the use of polymer nanocomposites for this purpose, 3D flower-like MgO (flower-MgO) particles with hierarchical surface morphology are first synthesised. Polypropylene (PP) was simultaneously mixed with styrene-(ethylene-co-butylene)-styrene triblock copolymer (SEBS) and flower-MgO to obtain PP/SEBS/flower-MgO composites. The microstructural, thermal, electrical, and mechanical properties of the obtained nanocomposites were then studied in detail. The results showed that flower-MgO particles loaded at low concentration were well dispersed in the PP/SEBS matrix. The incorporation of flower-MgO particles has been found to significantly suppress the injection of homocharges and strengthen the ability to release the charge, thus containing accumulation of the space charge. The DC breakdown strength of PP/SEBS/flower-MgO composites was increased to 323 MV/m. Meanwhile, the tensile strength and elongation at break of the obtained composites was improved by loading 0.5 phr flower-MgO because of the synergistic toughening effects of SEBS and MgO. The investigation demonstrates the immense potential to replace nonrecyclable cross-linked polyethylene as an HVDC cable insulating material.

聚合物纳米复合材料在高压直流电缆绝缘领域的应用越来越受到人们的关注。为了研究聚合物纳米复合材料在这方面的应用,首先合成了具有分层表面形貌的3D花状MgO(花- MgO)颗粒。将聚丙烯(PP)与苯乙烯-乙烯- co -丁烯-苯乙烯三嵌段共聚物(SEBS)和花- MgO同时混合,得到PP/SEBS/花- MgO复合材料。然后详细研究了所获得的纳米复合材料的显微组织、热、电和机械性能。结果表明,低浓度的花氧化镁颗粒在PP/SEBS基质中分散良好。研究发现,花-氧化镁颗粒的掺入可以显著抑制同电荷的注入,增强释放电荷的能力,从而抑制空间电荷的积累。PP/SEBS/flower - MgO复合材料的直流击穿强度提高到323 MV/m。同时,由于SEBS和MgO的协同增韧作用,添加0.5 phr的flower - MgO后,复合材料的抗拉强度和断裂伸长率均有所提高。该研究表明,取代不可回收的交联聚乙烯作为高压直流电缆绝缘材料的巨大潜力。
{"title":"Integrated multifunctional properties of polypropylene composites by employing three-dimensional flower-like MgO with hierarchical surface morphology","authors":"Jun-Wei Zha,&nbsp;Qi Cheng,&nbsp;Jin-Tao Zhai,&nbsp;Xingming Bian,&nbsp;George Chen,&nbsp;Zhi-Min Dang","doi":"10.1049/nde2.12006","DOIUrl":"10.1049/nde2.12006","url":null,"abstract":"<p>Polymer nanocomposites have attracted increased attention for use in the field of high-voltage direct current (HVDC) cable insulation. To study the use of polymer nanocomposites for this purpose, 3D flower-like MgO (flower-MgO) particles with hierarchical surface morphology are first synthesised. Polypropylene (PP) was simultaneously mixed with styrene-(ethylene-co-butylene)-styrene triblock copolymer (SEBS) and flower-MgO to obtain PP/SEBS/flower-MgO composites. The microstructural, thermal, electrical, and mechanical properties of the obtained nanocomposites were then studied in detail. The results showed that flower-MgO particles loaded at low concentration were well dispersed in the PP/SEBS matrix. The incorporation of flower-MgO particles has been found to significantly suppress the injection of homocharges and strengthen the ability to release the charge, thus containing accumulation of the space charge. The DC breakdown strength of PP/SEBS/flower-MgO composites was increased to 323 MV/m. Meanwhile, the tensile strength and elongation at break of the obtained composites was improved by loading 0.5 phr flower-MgO because of the synergistic toughening effects of SEBS and MgO. The investigation demonstrates the immense potential to replace nonrecyclable cross-linked polyethylene as an HVDC cable insulating material.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44619382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Dielectric performance of magnetic nanoparticles-based ester oil 磁性纳米颗粒基酯油介电性能研究
IF 2.7 Q1 Physics and Astronomy Pub Date : 2021-02-16 DOI: 10.1049/nde2.12005
Qasim Khan, Vineet Singh, Furkan Ahmad, Asfar Ali Khan
Furkan Ahmad, Centre for Automotive Research and Tribology (CART), Indian Institute of Technology, Delhi, India. Email: furkanahmad@zhcet.ac.in, ahmdfurkan@iitd. ac.in Abstract Nanotechnology has been applied in the electrical industry for the enhancement of insulation properties. The compactness of the electrical machines has resulted in the requirement and creation of next‐generation insulating fluid with inflated dielectric properties. In this study, the magnetic nanoparticles are used in different concentrations to form stable nanofluids comprising ester‐based oils and two different electrode structures. The host fluids are synthetic ester oil and rapeseed oil, and magnetic nanoparticles used are iron (II, III) oxide, cobalt (II, III) oxide, and iron phosphide. Furthermore, the breakdown tests are analysed using Weibull statistical distribution.
纳米技术已应用于电气工业,以提高绝缘性能。电机的紧凑性导致了对具有膨胀介电特性的下一代绝缘流体的要求和创造。在这项研究中,使用不同浓度的磁性纳米颗粒形成稳定的纳米流体,包括酯基油和两种不同的电极结构。宿主流体为合成酯油和菜籽油,磁性纳米颗粒为氧化铁(II, III)、氧化钴(II, III)和磷化铁。此外,采用威布尔统计分布对击穿试验进行了分析。
{"title":"Dielectric performance of magnetic nanoparticles-based ester oil","authors":"Qasim Khan,&nbsp;Vineet Singh,&nbsp;Furkan Ahmad,&nbsp;Asfar Ali Khan","doi":"10.1049/nde2.12005","DOIUrl":"10.1049/nde2.12005","url":null,"abstract":"Furkan Ahmad, Centre for Automotive Research and Tribology (CART), Indian Institute of Technology, Delhi, India. Email: furkanahmad@zhcet.ac.in, ahmdfurkan@iitd. ac.in Abstract Nanotechnology has been applied in the electrical industry for the enhancement of insulation properties. The compactness of the electrical machines has resulted in the requirement and creation of next‐generation insulating fluid with inflated dielectric properties. In this study, the magnetic nanoparticles are used in different concentrations to form stable nanofluids comprising ester‐based oils and two different electrode structures. The host fluids are synthetic ester oil and rapeseed oil, and magnetic nanoparticles used are iron (II, III) oxide, cobalt (II, III) oxide, and iron phosphide. Furthermore, the breakdown tests are analysed using Weibull statistical distribution.","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43660287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Time-domain characterisation of epoxy-based barium titanate nanocomposites 环氧基钛酸钡纳米复合材料的时域表征
IF 2.7 Q1 Physics and Astronomy Pub Date : 2021-02-12 DOI: 10.1049/nde2.12002
Romana Zafar, Nandini Gupta

In this article, the dielectric response of epoxy resin and epoxy-based barium titanate (BaTiO3) nanocomposites is characterised in the time-domain, based on polarisation and depolarisation current measurements. The aim of this article is to understand the dominant polarisation mechanisms in neat epoxy and its nanocomposites and validate the findings in frequency-domain spectroscopy (FDS). The effect of various parameters on the dielectric response of the material is investigated to this end, namely, polarisation–depolarisation time, electrode material, electric field and specimen thickness. The effect of pre-processing the nano-particles before use is also studied. In order to validate the findings of FDS, time-domain spectroscopy (TDS) of neat epoxy and its nanocomposites is performed.

在本文中,基于极化和去极化电流测量,在时域上表征了环氧树脂和环氧基钛酸钡(batio3)纳米复合材料的介电响应。本文的目的是了解纯环氧树脂及其纳米复合材料的主要极化机制,并在频域光谱(FDS)中验证这些发现。为此,研究了各种参数对材料介电响应的影响,即极化-退极化时间、电极材料、电场和试样厚度。研究了使用前对纳米颗粒进行预处理的效果。为了验证FDS的结果,对纯环氧树脂及其纳米复合材料进行了时域光谱(TDS)分析。
{"title":"Time-domain characterisation of epoxy-based barium titanate nanocomposites","authors":"Romana Zafar,&nbsp;Nandini Gupta","doi":"10.1049/nde2.12002","DOIUrl":"10.1049/nde2.12002","url":null,"abstract":"<p>In this article, the dielectric response of epoxy resin and epoxy-based barium titanate (BaTiO<sub>3</sub>) nanocomposites is characterised in the time-domain, based on polarisation and depolarisation current measurements. The aim of this article is to understand the dominant polarisation mechanisms in neat epoxy and its nanocomposites and validate the findings in frequency-domain spectroscopy (FDS). The effect of various parameters on the dielectric response of the material is investigated to this end, namely, polarisation–depolarisation time, electrode material, electric field and specimen thickness. The effect of pre-processing the nano-particles before use is also studied. In order to validate the findings of FDS, time-domain spectroscopy (TDS) of neat epoxy and its nanocomposites is performed.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48014538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Structure design boosts concomitant enhancement of permittivity, breakdown strength, discharged energy density and efficiency in all-organic dielectrics 结构设计提高了全有机电介质的介电常数、击穿强度、放电能量密度和效率
IF 2.7 Q1 Physics and Astronomy Pub Date : 2020-12-02 DOI: 10.1049/iet-nde.2020.0034
Zhenkang Dan, Weibin Ren, Mengfan Guo, Zhonghui Shen, Tao Zhang, Jianyong Jiang, Cewen Nan, Yang Shen

Polymer-based nanocomposites with excellent flexibility and intrinsic high breakdown strength are promising candidates for high energy density capacitors compared to ceramics counterparts. However, their energy density is relatively low due to the trade-off between permittivity and breakdown strength. In this work, the authors proposed a ferroconcrete-like structure for all-organic nanocomposites via combinatorial electrospinning and hot-pressing method. In this structure, polymethyl methacrylate (PMMA) serves as matrix while poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) serves as reinforcement phase. This novel structure is highly effective in breaking the paradox of improved discharged energy density with decreased efficiency, as evidenced by the concurrently improved discharged energy density (∼12.15 J/cm3 compared to 8.82 J/cm3 of the matrix) and efficiency (∼81.7% compared to 76.8% of the matrix). Compared to conventional blending composite films, samples with ferroconcrete-like structure exhibit higher permittivity, breakdown strength, discharged energy density and efficiency. The superior energy storage performance is attributed to large aspect ratio P(VDF-HFP) fibres distributed perpendicularly to the external field, which brings about the extra enhancement of permittivity. Besides, mechanical properties are improved and restriction on carrier motion is facilitated, leading to enhanced breakdown strength and suppressed conduction. This work provides a new way to design dielectric composite for high energy density and efficiency applications.

:与陶瓷相比,具有优异柔韧性和固有高击穿强度的聚合物基纳米复合材料是高能量密度电容器的有前途的候选者。然而,由于介电常数和击穿强度之间的权衡,它们的能量密度相对较低。在这项工作中,作者通过组合静电纺丝和热压方法,为全有机纳米复合材料提出了一种类似钢筋混凝土的结构。在该结构中,聚甲基丙烯酸甲酯(PMMA)用作基体,而聚(偏二氟乙烯-共-六氟丙烯)(P(VDF-HFP))用作增强相。这种新型结构非常有效地打破了放电能量密度提高和效率降低的矛盾,放电能量密度(与基体的8.82 J/cm 3相比为-12.15 J/cm 3)和效率(与基质的76.8%相比为-81.7%)同时提高就证明了这一点。与传统的共混复合膜相比,具有类钢筋混凝土结构的样品表现出更高的介电常数、击穿强度、放电能量密度和效率。大纵横比P(VDF-HFP)纤维垂直于外电场分布,使介电常数得到了额外的提高,从而获得了优异的储能性能。此外,机械性能得到改善,并且有利于对载流子运动的限制,从而提高了击穿强度并抑制了导通。这项工作为设计高能量密度和高效率应用的电介质复合材料提供了一种新的方法。
{"title":"Structure design boosts concomitant enhancement of permittivity, breakdown strength, discharged energy density and efficiency in all-organic dielectrics","authors":"Zhenkang Dan,&nbsp;Weibin Ren,&nbsp;Mengfan Guo,&nbsp;Zhonghui Shen,&nbsp;Tao Zhang,&nbsp;Jianyong Jiang,&nbsp;Cewen Nan,&nbsp;Yang Shen","doi":"10.1049/iet-nde.2020.0034","DOIUrl":"10.1049/iet-nde.2020.0034","url":null,"abstract":"<p>Polymer-based nanocomposites with excellent flexibility and intrinsic high breakdown strength are promising candidates for high energy density capacitors compared to ceramics counterparts. However, their energy density is relatively low due to the trade-off between permittivity and breakdown strength. In this work, the authors proposed a ferroconcrete-like structure for all-organic nanocomposites via combinatorial electrospinning and hot-pressing method. In this structure, polymethyl methacrylate (PMMA) serves as matrix while poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) serves as reinforcement phase. This novel structure is highly effective in breaking the paradox of improved discharged energy density with decreased efficiency, as evidenced by the concurrently improved discharged energy density (∼12.15 J/cm<sup>3</sup> compared to 8.82 J/cm<sup>3</sup> of the matrix) and efficiency (∼81.7% compared to 76.8% of the matrix). Compared to conventional blending composite films, samples with ferroconcrete-like structure exhibit higher permittivity, breakdown strength, discharged energy density and efficiency. The superior energy storage performance is attributed to large aspect ratio P(VDF-HFP) fibres distributed perpendicularly to the external field, which brings about the extra enhancement of permittivity. Besides, mechanical properties are improved and restriction on carrier motion is facilitated, leading to enhanced breakdown strength and suppressed conduction. This work provides a new way to design dielectric composite for high energy density and efficiency applications.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-nde.2020.0034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42127845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Titania-based transformer nanofluid: a study on the synthesis for enhanced breakdown strength and its humidity ageing 钛酸基变压器纳米流体的合成及其湿老化研究
IF 2.7 Q1 Physics and Astronomy Pub Date : 2020-11-12 DOI: 10.1049/iet-nde.2020.0014
S. Raja, G. Koperundevi

Researches on the transformer oil-based nanofluids to determine its suitability for replacing the conventional liquid insulation has been consistently happening for more than a decade. Yet, to prepare an optimum blend of transformer oil-based nanofluid with the stability compliance and superior breakdown (BD) characteristics is still a key issue to be addressed. So to achieve the higher BD voltages (BDVs) with good stability, the nanoparticle and surfactant weights dispersed in the oil should be optimised to at least possible critical levels. In this work, dielectric BD characteristic of mineral oil dispersed with TiO2 nanoparticle and surfactant cetyl trimethyl ammonium bromide (CTAB) is been studied with the applied AC and DC high voltages, which is termed as titania-based transformer nanofluid (TTNF) for this study. Series of TTNF samples were synthesised with different weights of TiO2 nanoparticle and CTAB, and the partial discharge inception voltage, AC and DC BDV were experimented to ascertain the optimum concentration level. Results show that the AC and DC BDV enhanced up to 36.23 and 43.07%, respectively, for the TTNF prepared with 0.00562 wt% of TiO2 and its 1% weight of CTAB, which was stable for around eight weeks.

十多年来,对变压器油基纳米流体的研究一直在进行,以确定其是否适合取代传统的液体绝缘。然而,制备一种具有稳定性和优异击穿特性的变压器油基纳米流体的最佳混合物仍然是一个需要解决的关键问题。因此,为了实现具有良好稳定性的更高BD电压(BDV),分散在油中的纳米颗粒和表面活性剂的重量应至少优化到可能的临界水平。在交流和直流高压下,研究了TiO2纳米颗粒和表面活性剂十六烷基三甲基溴化铵(CTAB)分散矿物油的介电BD特性,该研究称为二氧化钛基变压器纳米流体(TTNF)。用不同重量的TiO2纳米粒子和CTAB合成了一系列TTNF样品,并对局部放电起始电压、交流和直流BDV进行了实验,以确定最佳浓度水平。结果表明,对于用0.00562制备的TTNF,AC和DC BDV分别提高了36.23%和43.07% 重量%的TiO2及其1重量%的CTAB,其稳定约8周。
{"title":"Titania-based transformer nanofluid: a study on the synthesis for enhanced breakdown strength and its humidity ageing","authors":"S. Raja,&nbsp;G. Koperundevi","doi":"10.1049/iet-nde.2020.0014","DOIUrl":"10.1049/iet-nde.2020.0014","url":null,"abstract":"<p>Researches on the transformer oil-based nanofluids to determine its suitability for replacing the conventional liquid insulation has been consistently happening for more than a decade. Yet, to prepare an optimum blend of transformer oil-based nanofluid with the stability compliance and superior breakdown (BD) characteristics is still a key issue to be addressed. So to achieve the higher BD voltages (BDVs) with good stability, the nanoparticle and surfactant weights dispersed in the oil should be optimised to at least possible critical levels. In this work, dielectric BD characteristic of mineral oil dispersed with TiO<sub>2</sub> nanoparticle and surfactant cetyl trimethyl ammonium bromide (CTAB) is been studied with the applied AC and DC high voltages, which is termed as titania-based transformer nanofluid (TTNF) for this study. Series of TTNF samples were synthesised with different weights of TiO<sub>2</sub> nanoparticle and CTAB, and the partial discharge inception voltage, AC and DC BDV were experimented to ascertain the optimum concentration level. Results show that the AC and DC BDV enhanced up to 36.23 and 43.07%, respectively, for the TTNF prepared with 0.00562 wt% of TiO<sub>2</sub> and its 1% weight of CTAB, which was stable for around eight weeks.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-nde.2020.0014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44727443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
High-temperature dielectric properties and impedance spectroscopy of PbHf1−x Snx O3 ceramics phbhf1−x Sn x O 3陶瓷的高温介电性能和阻抗谱
IF 2.7 Q1 Physics and Astronomy Pub Date : 2020-11-11 DOI: 10.1049/iet-nde.2020.0030
Zhi-Gang Liu, Peng-Zu Ge, Hui Tang, Xin-Gui Tang, Si-Ming Zeng, Yan-Ping Jiang, Zhen-Hua Tang, Qiu-Xiang Liu

PbHf1−x Snx O3 (PSH) ceramics were synthesised by a conventional solid-state reaction method. Dielectric properties were investigated in the temperature range of 20–650°C. As the Sn4+ content goes up, the phase transition temperatures of an antiferroelectric (AFE1) to another intermediate antiferroelectric (AFE2) phase and AFE2 to the paraelectric (PE) phase decrease gradually. When x ≥0.1 for PSH ceramics, the ferroelectric (FE) phase appears around 225°C, and phase transition temperature from FE phase to PE phase goes up with the increasing concentration of Sn4+. Moreover, high-temperature dielectric relaxation (HTDR) phenomenon can be seen from all samples. Mechanism of HTDR was discussed from impedance spectroscopy and conductivity for PSH ceramics. It was found that three dielectric responses were observed in complex impedance plots and HTDR was involved with the movement of oxygen vacancies. Activation energy calculated from dielectric data suggested that the HTDR was governed by the hopping conduction process.

采用传统的固相反应方法合成了PbHf1−x Sn x O3(PSH)陶瓷。在20–650°C的温度范围内研究了介电性能。随着Sn4+含量的增加,反铁电(AFE1)到另一个中间反铁电(AF E2)相以及AFE2到顺电(PE)相的相变温度逐渐降低。当x≥0.1时,PSH陶瓷在225°C左右出现铁电相,随着Sn4+浓度的增加,铁电相向PE相的相变温度升高。此外,从所有样品中都可以看到高温介电弛豫(HTDR)现象。从PSH陶瓷的阻抗谱和电导率两个方面探讨了HTDR的形成机理。研究发现,在复阻抗图中观察到三种介电响应,HTDR与氧空位的运动有关。根据介电数据计算的活化能表明,HTDR受跳跃传导过程的控制。
{"title":"High-temperature dielectric properties and impedance spectroscopy of PbHf1−x Snx O3 ceramics","authors":"Zhi-Gang Liu,&nbsp;Peng-Zu Ge,&nbsp;Hui Tang,&nbsp;Xin-Gui Tang,&nbsp;Si-Ming Zeng,&nbsp;Yan-Ping Jiang,&nbsp;Zhen-Hua Tang,&nbsp;Qiu-Xiang Liu","doi":"10.1049/iet-nde.2020.0030","DOIUrl":"10.1049/iet-nde.2020.0030","url":null,"abstract":"<p>PbHf<sub>1−<i>x</i></sub> Sn<i><sub>x</sub></i> O<sub>3</sub> (PSH) ceramics were synthesised by a conventional solid-state reaction method. Dielectric properties were investigated in the temperature range of 20–650°C. As the Sn<sup>4+</sup> content goes up, the phase transition temperatures of an antiferroelectric (AFE1) to another intermediate antiferroelectric (AFE2) phase and AFE2 to the paraelectric (PE) phase decrease gradually. When <i>x</i> ≥0.1 for PSH ceramics, the ferroelectric (FE) phase appears around 225°C, and phase transition temperature from FE phase to PE phase goes up with the increasing concentration of Sn<sup>4+</sup>. Moreover, high-temperature dielectric relaxation (HTDR) phenomenon can be seen from all samples. Mechanism of HTDR was discussed from impedance spectroscopy and conductivity for PSH ceramics. It was found that three dielectric responses were observed in complex impedance plots and HTDR was involved with the movement of oxygen vacancies. Activation energy calculated from dielectric data suggested that the HTDR was governed by the hopping conduction process.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-nde.2020.0030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46588081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Liquid-phase preparation of BaTiO3 nanoparticles batio3纳米颗粒的液相制备
IF 2.7 Q1 Physics and Astronomy Pub Date : 2020-10-30 DOI: 10.1049/iet-nde.2020.0021
Feng Shi, Huiling Chen, Jing Wang

Barium titanate (BaTiO3, BT) is widely used in the manufacture of electronic components such as multilayer ceramic capacitors, supercapacitors, thermistors, ferroelectric devices and piezoelectric devices due to its excellent dielectric, ferroelectric, piezoelectric and insulating properties. The performance of BT-based components is highly dependent on the quality of the BT nanoparticles. Large particle size and uneven distribution are the disadvantages of the BT nanoparticles synthesised by the traditional solid-phase reaction, however, the liquid-phase method can overcome these shortcomings, which has the characteristics of high purity and uniform composition with small particle size, and therefore is the main method for the preparation of BT nanoparticles. This review described various liquid-phase preparation methods of BT nanoparticles and compared the advantages and disadvantages of these methods, thereafter the optimised process parameters that affected the BT crystalline quality were summarised so as to obtain BT nanoparticles with a high crystalline quality, small particle size and even distribution.

:钛酸钡(batio3, BT)由于其优异的介电、铁电、压电和绝缘性能,被广泛应用于多层陶瓷电容器、超级电容器、热敏电阻、铁电器件和压电器件等电子元件的制造。BT基组件的性能高度依赖于BT纳米颗粒的质量。传统固相法合成的BT纳米颗粒存在粒径大、分布不均匀等缺点,而液相法克服了这些缺点,具有纯度高、组成均匀、粒径小的特点,是目前制备BT纳米颗粒的主要方法。本文介绍了BT纳米颗粒的各种液相制备方法,比较了各种方法的优缺点,总结了影响BT纳米颗粒结晶质量的优化工艺参数,从而获得结晶质量高、粒径小、分布均匀的BT纳米颗粒。
{"title":"Liquid-phase preparation of BaTiO3 nanoparticles","authors":"Feng Shi,&nbsp;Huiling Chen,&nbsp;Jing Wang","doi":"10.1049/iet-nde.2020.0021","DOIUrl":"10.1049/iet-nde.2020.0021","url":null,"abstract":"<p>Barium titanate (BaTiO<sub>3</sub>, BT) is widely used in the manufacture of electronic components such as multilayer ceramic capacitors, supercapacitors, thermistors, ferroelectric devices and piezoelectric devices due to its excellent dielectric, ferroelectric, piezoelectric and insulating properties. The performance of BT-based components is highly dependent on the quality of the BT nanoparticles. Large particle size and uneven distribution are the disadvantages of the BT nanoparticles synthesised by the traditional solid-phase reaction, however, the liquid-phase method can overcome these shortcomings, which has the characteristics of high purity and uniform composition with small particle size, and therefore is the main method for the preparation of BT nanoparticles. This review described various liquid-phase preparation methods of BT nanoparticles and compared the advantages and disadvantages of these methods, thereafter the optimised process parameters that affected the BT crystalline quality were summarised so as to obtain BT nanoparticles with a high crystalline quality, small particle size and even distribution.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-nde.2020.0021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44532472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Thermal ageing study of ZnO nanofluid–cellulose insulation 氧化锌纳米流体-纤维素绝热老化研究
IF 2.7 Q1 Physics and Astronomy Pub Date : 2020-10-28 DOI: 10.1049/iet-nde.2020.0018
Asmaa Ibrahim, Loai Nasrat, Ahmed Elnoby, Soliman Eldebeiky

Trends in the studies of mineral oil (MO)-based nanofluids (NFs) show that most of the conducted works have focused only on the thermal and dielectric properties but few numbers on the ageing performance. In the present study, ZnO NF, in combination with cellulose insulation experienced accelerated thermal ageing at 120 °C for 20 days to study the ageing performance and it was compared with that of MO–cellulose insulation. The deterioration rate of cellulose was evaluated through tensile strength, breakdown voltage (BDV) and dielectric dissipation factor properties. Whereas oils deterioration was evaluated through BDV, interfacial tension, kinematic viscosity, acidity and colour. The results demonstrate that for cellulose aged in NF (NFIP), the tensile strength and BDV are 3 and 6.9% higher, respectively; than those aged in MO. For aged oils, NF exhibits higher values of the viscosity and acidity by 3 and 33.3%, respectively, than MO. The BDV of NF is superior to that of MO in the initial ageing period, after that; it shows a lesser reduction tendency with ageing. The most important observation from this study is that despite this increment of ageing indicators for NF, it could improve the anti-ageing properties of cellulose insulation.

矿物油基纳米流体的研究趋势表明,大多数研究工作只关注其热学和介电性能,而很少关注其老化性能。在本研究中,ZnO NF与纤维素绝热材料在120℃下加速热老化20天,研究其老化性能,并与mo -纤维素绝热材料进行比较。通过拉伸强度、击穿电压(BDV)和介电损耗因子等指标评价纤维素的劣化率。而油的变质是通过BDV、界面张力、运动粘度、酸度和颜色来评估的。结果表明:在NF (NFIP)中陈化的纤维素,其抗拉强度和BDV分别提高了3%和6.9%;对于陈化油,NF的粘度值和酸度值分别比MO高3%和33.3%,在初始陈化期,NF的BDV优于MO;随着老化,其还原趋势较小。本研究最重要的观察结果是,尽管NF的老化指标增加了,但它可以提高纤维素绝缘材料的抗老化性能。
{"title":"Thermal ageing study of ZnO nanofluid–cellulose insulation","authors":"Asmaa Ibrahim,&nbsp;Loai Nasrat,&nbsp;Ahmed Elnoby,&nbsp;Soliman Eldebeiky","doi":"10.1049/iet-nde.2020.0018","DOIUrl":"10.1049/iet-nde.2020.0018","url":null,"abstract":"<p>Trends in the studies of mineral oil (MO)-based nanofluids (NFs) show that most of the conducted works have focused only on the thermal and dielectric properties but few numbers on the ageing performance. In the present study, ZnO NF, in combination with cellulose insulation experienced accelerated thermal ageing at 120 °C for 20 days to study the ageing performance and it was compared with that of MO–cellulose insulation. The deterioration rate of cellulose was evaluated through tensile strength, breakdown voltage (BDV) and dielectric dissipation factor properties. Whereas oils deterioration was evaluated through BDV, interfacial tension, kinematic viscosity, acidity and colour. The results demonstrate that for cellulose aged in NF (NFIP), the tensile strength and BDV are 3 and 6.9% higher, respectively; than those aged in MO. For aged oils, NF exhibits higher values of the viscosity and acidity by 3 and 33.3%, respectively, than MO. The BDV of NF is superior to that of MO in the initial ageing period, after that; it shows a lesser reduction tendency with ageing. The most important observation from this study is that despite this increment of ageing indicators for NF, it could improve the anti-ageing properties of cellulose insulation.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-nde.2020.0018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47300890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Investigations on the effect of ageing on charge de-trapping processes of epoxy–alumina nanocomposites based on isothermal relaxation current measurements 老化对环氧-氧化铝纳米复合材料电荷脱陷过程影响的等温弛豫电流测量研究
IF 2.7 Q1 Physics and Astronomy Pub Date : 2020-10-13 DOI: 10.1049/iet-nde.2020.0020
Subhajit Maur, Nasirul Haque, Preetha Pottekat, Biswajit Chakraborty, Sovan Dalai, Biswendu Chatterjee

In this study, the relationship between thermal ageing and charge trapping properties of epoxy-based nanocomposites has been investigated. With ageing, any dielectric material undergoes thorough degradation. This degradation significantly affects the space charge accumulation and charge trapping behaviour of the dielectric, which are very important parameters for insulation health under high-voltage direct current (HVDC) environment. In this work, an improved model based on the isothermal relaxation current (IRC) has been developed to study the charge trapping behaviour of pure epoxy and epoxy alumina (Al2 O3) nano-composites at different ageing conditions. A methodology based on polarisation–depolarisation current (PDC) measurements has been proposed to identify the current component due to a dipolar relaxation in measured total IRC. This will help to identify the trap distribution characteristics more accurately compared to conventional IRC measurements. It was experimentally observed that the addition of nanoparticles significantly reduces trapped charge formation and reduces thermal degradation. It is observed that aging leads to the generation of deeper traps, while the addition of Al2 O3 nanoparticles mainly enhances the density of shallow traps. Results presented in this work indicate that epoxy–alumina nanocomposites are very much suitable in HVDC applications from the perspective of trapped charge accumulation.

本文研究了环氧基纳米复合材料的热老化与电荷俘获性能的关系。随着老化,任何介电材料都会彻底退化。这种退化严重影响了介质的空间电荷积累和电荷捕获行为,这是高压直流(HVDC)环境下绝缘健康的重要参数。本文建立了一种基于等温弛豫电流(IRC)的改进模型,用于研究纯环氧树脂和环氧氧化铝(Al2O3)纳米复合材料在不同老化条件下的电荷俘获行为。提出了一种基于极化-去极化电流(PDC)测量的方法来识别由于测量的总IRC中的偶极弛豫引起的电流分量。与传统的IRC测量相比,这将有助于更准确地识别圈闭分布特征。实验观察到,纳米粒子的加入显著减少了捕获电荷的形成,减少了热降解。结果表明:时效导致了深层陷阱的形成,而Al2O3纳米粒子的加入主要增强了浅层陷阱的密度。本研究结果表明,从捕获电荷积累的角度来看,环氧氧化铝纳米复合材料非常适合于高压直流应用。
{"title":"Investigations on the effect of ageing on charge de-trapping processes of epoxy–alumina nanocomposites based on isothermal relaxation current measurements","authors":"Subhajit Maur,&nbsp;Nasirul Haque,&nbsp;Preetha Pottekat,&nbsp;Biswajit Chakraborty,&nbsp;Sovan Dalai,&nbsp;Biswendu Chatterjee","doi":"10.1049/iet-nde.2020.0020","DOIUrl":"10.1049/iet-nde.2020.0020","url":null,"abstract":"<p>In this study, the relationship between thermal ageing and charge trapping properties of epoxy-based nanocomposites has been investigated. With ageing, any dielectric material undergoes thorough degradation. This degradation significantly affects the space charge accumulation and charge trapping behaviour of the dielectric, which are very important parameters for insulation health under high-voltage direct current (HVDC) environment. In this work, an improved model based on the isothermal relaxation current (IRC) has been developed to study the charge trapping behaviour of pure epoxy and epoxy alumina (Al<sub>2</sub> O<sub>3</sub>) nano-composites at different ageing conditions. A methodology based on polarisation–depolarisation current (PDC) measurements has been proposed to identify the current component due to a dipolar relaxation in measured total IRC. This will help to identify the trap distribution characteristics more accurately compared to conventional IRC measurements. It was experimentally observed that the addition of nanoparticles significantly reduces trapped charge formation and reduces thermal degradation. It is observed that aging leads to the generation of deeper traps, while the addition of Al<sub>2</sub> O<sub>3</sub> nanoparticles mainly enhances the density of shallow traps. Results presented in this work indicate that epoxy–alumina nanocomposites are very much suitable in HVDC applications from the perspective of trapped charge accumulation.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-nde.2020.0020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45725483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
IET Nanodielectrics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1