首页 > 最新文献

OpenNano最新文献

英文 中文
Nucleic acid nano-carriers for delivery of antisense and RNAi therapeutics 用于递送反义和 RNAi 疗法的核酸纳米载体
Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-05-17 DOI: 10.1016/j.onano.2024.100208
Himanshu Sekhar Panda, Samraggi Choudhury, Jiban Jyoti Panda

Nucleic acid nanotechnology presents an exciting approach for manufacturing tailored nanoscale biomaterials with precise structures, spatial precision, and exceptional biocompatibility. These nucleic acid-based nanomaterials, here referred as nano-carriers can have versatile applications in bio-imaging, diagnostics, and therapy. In this review, we have surveyed the progress made in the field of multifunctional nucleic acid nano-carriers, particularly in the context of delivering antisense and RNA interference (RNAi) therapeutics. RNAi technology has emerged as a potent modality for conducting functional genomic analyses and holds potential as an effective approach for crafting targeted gene-silencing treatments for viral infections, cancer, and other diseases in the future. Our focus is on exploring RNAi as a therapeutic avenue, taking into account challenges such as the expense of RNAi triggers, delivering RNAi efficiently to the target site, and addressing off-target and nontarget effects, while also recognizing promising opportunities within the field of biomedical research.

核酸纳米技术为制造具有精确结构、空间精度和优异生物兼容性的定制纳米级生物材料提供了一种令人兴奋的方法。这些以核酸为基础的纳米材料(在此称为纳米载体)可在生物成像、诊断和治疗方面广泛应用。在这篇综述中,我们回顾了多功能核酸纳米载体领域取得的进展,尤其是在传递反义和 RNA 干扰(RNAi)疗法方面。RNAi 技术已成为进行功能基因组分析的一种有效方式,并有可能成为未来针对病毒感染、癌症和其他疾病设计靶向基因沉默疗法的一种有效方法。我们的重点是将 RNAi 作为一种治疗途径进行探索,同时考虑到各种挑战,如 RNAi 触发器的费用、将 RNAi 有效传递到靶点、解决脱靶和非靶点效应等,同时也认识到生物医学研究领域中大有可为的机会。
{"title":"Nucleic acid nano-carriers for delivery of antisense and RNAi therapeutics","authors":"Himanshu Sekhar Panda,&nbsp;Samraggi Choudhury,&nbsp;Jiban Jyoti Panda","doi":"10.1016/j.onano.2024.100208","DOIUrl":"10.1016/j.onano.2024.100208","url":null,"abstract":"<div><p>Nucleic acid nanotechnology presents an exciting approach for manufacturing tailored nanoscale biomaterials with precise structures, spatial precision, and exceptional biocompatibility. These nucleic acid-based nanomaterials, here referred as nano-carriers can have versatile applications in bio-imaging, diagnostics, and therapy. In this review, we have surveyed the progress made in the field of multifunctional nucleic acid nano-carriers, particularly in the context of delivering antisense and RNA interference (RNAi) therapeutics. RNAi technology has emerged as a potent modality for conducting functional genomic analyses and holds potential as an effective approach for crafting targeted gene-silencing treatments for viral infections, cancer, and other diseases in the future. Our focus is on exploring RNAi as a therapeutic avenue, taking into account challenges such as the expense of RNAi triggers, delivering RNAi efficiently to the target site, and addressing off-target and nontarget effects, while also recognizing promising opportunities within the field of biomedical research.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"18 ","pages":"Article 100208"},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952024000094/pdfft?md5=20366c860ec20135f29b21f3fd554740&pid=1-s2.0-S2352952024000094-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141023454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The nano and artificial intelligence effect: Improved magnetic resonance imaging volumetry for multiple sclerosis 纳米和人工智能效应:改进多发性硬化症的磁共振成像容积测量法
Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-05-16 DOI: 10.1016/j.onano.2024.100209
Alrayan F. Nahhas , Alaa F. Nahhas , Thomas J. Webster

Magnetic Resonance Imaging (MRI) is a widely established method for monitoring and diagnosing neurological diseases, including multiple sclerosis (MS). MS is a disease that continuously progresses and in due course involves the progressive atrophy of neural structures (such as brain gray and white matter) leading to debilitation. Clearly, the earlier that MS can be detected, the better the chances of eventual treatment to slow down disease progression. While conventional MRI volumetry, as a non-invasive imaging technique that measures the exact volume of different brain structures, has improved the diagnosis of brain atrophy, problems still exist. This review introduces and summarizes the seminal role that nanotechnology (in terms of novel materials for improved MS diagnosis and treatment) and artificial intelligence (in terms of enhancing images via computer algorithms and novel contrast agents) are playing in improving volumetric MRI. In doing so, this one-of-a-kind review manuscript establishes how nanotechnology and artificial intelligence is improving, and will continue to improve, volumetric MRI diagnosis and treatment of MS.

磁共振成像(MRI)是监测和诊断包括多发性硬化症(MS)在内的神经系统疾病的公认方法。多发性硬化症是一种持续进展的疾病,在适当的时候,神经结构(如大脑灰质和白质)会逐渐萎缩,从而导致衰弱。显然,越早发现多发性硬化症,就越有可能通过治疗来延缓疾病的发展。传统的核磁共振成像容积测量法是一种非侵入性成像技术,可精确测量不同脑结构的容积,它改善了脑萎缩的诊断,但问题依然存在。本综述介绍并总结了纳米技术(用于改善多发性硬化症诊断和治疗的新型材料)和人工智能(通过计算机算法和新型造影剂增强图像)在改善核磁共振成像容积测量方面发挥的开创性作用。因此,这篇独一无二的综述手稿确定了纳米技术和人工智能如何改善并将继续改善多发性硬化症的容积磁共振成像诊断和治疗。
{"title":"The nano and artificial intelligence effect: Improved magnetic resonance imaging volumetry for multiple sclerosis","authors":"Alrayan F. Nahhas ,&nbsp;Alaa F. Nahhas ,&nbsp;Thomas J. Webster","doi":"10.1016/j.onano.2024.100209","DOIUrl":"10.1016/j.onano.2024.100209","url":null,"abstract":"<div><p>Magnetic Resonance Imaging (MRI) is a widely established method for monitoring and diagnosing neurological diseases, including multiple sclerosis (MS). MS is a disease that continuously progresses and in due course involves the progressive atrophy of neural structures (such as brain gray and white matter) leading to debilitation. Clearly, the earlier that MS can be detected, the better the chances of eventual treatment to slow down disease progression. While conventional MRI volumetry, as a non-invasive imaging technique that measures the exact volume of different brain structures, has improved the diagnosis of brain atrophy, problems still exist. This review introduces and summarizes the seminal role that nanotechnology (in terms of novel materials for improved MS diagnosis and treatment) and artificial intelligence (in terms of enhancing images via computer algorithms and novel contrast agents) are playing in improving volumetric MRI. In doing so, this one-of-a-kind review manuscript establishes how nanotechnology and artificial intelligence is improving, and will continue to improve, volumetric MRI diagnosis and treatment of MS.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"18 ","pages":"Article 100209"},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952024000100/pdfft?md5=bf67a72f48a641e38736e831df3f694f&pid=1-s2.0-S2352952024000100-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141039447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the efficacy of monolaurin against SARS-CoV-2 and influenza A (H1N1) with a nanoemulsion formulation 利用纳米乳剂配方增强单月桂苷对 SARS-CoV-2 和甲型流感(H1N1)的疗效
Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-05-01 DOI: 10.1016/j.onano.2024.100207
Yotsanan Weerapol , Suwisit Manmuan , Sontaya Limmatvapirat , Chutima Limmatvapirat , Jitnapa Sirirak , Poomipat Tamdee , Sukannika Tubtimsri

Monolaurin was utilized to formulate temperature-driven phase inversion nanoemulsions containing lesser galangal essential oil, fixed oil, and Cremophor RH40, with aim for eradicating enveloped viruses. Results showed that the droplet size of the nanoemulsion depended on lesser galangal essential oil–fixed oil ratio, monolaurin concentration, and oil concentration. Nanoemulsions prepared from lesser galangal essential oil–perilla oil (60:40) exhibited approximately 50-nm nanosized droplets and high entrapment efficiency (98.68 % ± 2.45 %). After storage at 25 °C for 1 year, droplet size did not vary significantly from the initial size, and monolaurin content was >95 %, indicating good physical and chemical stability. The monolaurin was located at the oil–water interface as indicated by a two-dimensional nuclear Overhauser effect nuclear magnetic resonance spectroscope and computer simulation. The 0.2% w/v monolaurin nanoemulsion inhibited SARS-CoV-2 and influenza A (H1N1) viruses with efficacy more than 3 log reduction (99.90 %) and low cytotoxicity. Hence, the monolaurin nanoemulsion can successfully eradicate enveloped viruses, especially SARS-CoV-2 and influenza A (H1N1).

利用单月桂苷配制了含有小高良姜精油、固定油和 Cremophor RH40 的温度驱动型相位反转纳米乳液,旨在消灭包膜病毒。结果表明,纳米乳液的液滴大小取决于小高良姜精油与固定油的比例、单月桂酸浓度和油的浓度。用小高良姜精油-紫苏油(60:40)制备的纳米乳液呈现出约 50 纳米大小的液滴,并且具有很高的包载效率(98.68 % ± 2.45 %)。在 25 °C 下储存 1 年后,液滴大小与初始大小相比变化不大,单月桂苷含量为 95%,表明其具有良好的物理和化学稳定性。二维核奥弗霍塞尔效应核磁共振光谱和计算机模拟显示,单月桂苷位于油水界面。0.2% w/v 的单月桂苷纳米乳液可抑制 SARS-CoV-2 和甲型 H1N1 流感病毒,药效降低 3 log 以上(99.90%),细胞毒性低。因此,单月桂苷纳米乳液可成功消灭包膜病毒,尤其是 SARS-CoV-2 和甲型 H1N1 流感病毒。
{"title":"Enhancing the efficacy of monolaurin against SARS-CoV-2 and influenza A (H1N1) with a nanoemulsion formulation","authors":"Yotsanan Weerapol ,&nbsp;Suwisit Manmuan ,&nbsp;Sontaya Limmatvapirat ,&nbsp;Chutima Limmatvapirat ,&nbsp;Jitnapa Sirirak ,&nbsp;Poomipat Tamdee ,&nbsp;Sukannika Tubtimsri","doi":"10.1016/j.onano.2024.100207","DOIUrl":"https://doi.org/10.1016/j.onano.2024.100207","url":null,"abstract":"<div><p>Monolaurin was utilized to formulate temperature-driven phase inversion nanoemulsions containing lesser galangal essential oil, fixed oil, and Cremophor RH40, with aim for eradicating enveloped viruses. Results showed that the droplet size of the nanoemulsion depended on lesser galangal essential oil–fixed oil ratio, monolaurin concentration, and oil concentration. Nanoemulsions prepared from lesser galangal essential oil–perilla oil (60:40) exhibited approximately 50-nm nanosized droplets and high entrapment efficiency (98.68 % ± 2.45 %). After storage at 25 °C for 1 year, droplet size did not vary significantly from the initial size, and monolaurin content was &gt;95 %, indicating good physical and chemical stability. The monolaurin was located at the oil–water interface as indicated by a two-dimensional nuclear Overhauser effect nuclear magnetic resonance spectroscope and computer simulation. The 0.2% w/v monolaurin nanoemulsion inhibited SARS-CoV-2 and influenza A (H1N1) viruses with efficacy more than 3 log reduction (99.90 %) and low cytotoxicity. Hence, the monolaurin nanoemulsion can successfully eradicate enveloped viruses, especially SARS-CoV-2 and influenza A (H1N1).</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"17 ","pages":"Article 100207"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952024000082/pdfft?md5=7a75428e4f2dea7e4d1354e4ef72f90e&pid=1-s2.0-S2352952024000082-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140815770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of QCT loaded TPGS coated solid lipid nanoparticles for improved in vivo neuroprotective activity in LPS administered adult zebrafish model: A QbD-based approach 开发负载 QCT 的 TPGS 包覆固体脂质纳米颗粒,提高 LPS 给药成年斑马鱼模型的体内神经保护活性:基于 QbD 的方法
Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-05-01 DOI: 10.1016/j.onano.2024.100206
Galal Mohsen Hussein Al-sayadi , Gurisha Garg , Arti Singh , Preeti Patel , Ghanshyam Das Gupta , Balak Das Kurmi

This work contains the development of QCT-loaded TPGS-coated SLNs by QbD to enhance neuroinflammation potential. Developed SLNs were in the nanometer range (263±3.62 nm) with desired parameters i.e., PDI (0.244±0.003), zeta potential (28.2 ± 0.74 mV), and%EE (74.3 ± 2.45 %) respectively. The release study showed sustained drug release of the developed formulation T-QCT-SLN (83.2 % release in 48 h). The study found QCT can reduce oxidative stress and neuroinflammation in adult zebrafish. Results showed reduced disruption in neuronal cells, decreased TNF-α and IL-1β levels, and reduced LPO, nitrite, and AChEs levels while increasing GSH levels, indicating its potential for treating oxidative stress and neuroinflammation. It can be concluded that QCT-loaded TPGS-coated SLN effectively prevents oxidative damage and neuroinflammation in adult zebrafish exposed to LPS compared to the QCT alone. The suggested work will be a focal paradigm for neuroinflammatory drug delivery.

本研究通过 QbD 方法开发了负载 QCT 的 TPGS 涂层 SLNs,以增强神经炎症潜能。所开发的 SLNs 在纳米范围内(263±3.62 nm),具有理想的参数,即 PDI(0.244±0.003)、zeta 电位(28.2 ± 0.74 mV)和%EE(74.3 ± 2.45 %)。释放研究表明,所开发的制剂 T-QCT-SLN 可持续释放药物(48 小时内释放 83.2%)。研究发现,QCT 可以减轻成年斑马鱼的氧化应激和神经炎症。结果表明,QCT可减少神经细胞的破坏,降低TNF-α和IL-1β水平,降低LPO、亚硝酸盐和AChEs水平,同时提高GSH水平,这表明QCT具有治疗氧化应激和神经炎症的潜力。可以得出结论,与单独使用 QCT 相比,负载 TPGS 涂层的 QCT SLN 能有效防止暴露于 LPS 的成年斑马鱼的氧化损伤和神经炎症。建议的工作将成为神经炎症药物递送的重点范例。
{"title":"Development of QCT loaded TPGS coated solid lipid nanoparticles for improved in vivo neuroprotective activity in LPS administered adult zebrafish model: A QbD-based approach","authors":"Galal Mohsen Hussein Al-sayadi ,&nbsp;Gurisha Garg ,&nbsp;Arti Singh ,&nbsp;Preeti Patel ,&nbsp;Ghanshyam Das Gupta ,&nbsp;Balak Das Kurmi","doi":"10.1016/j.onano.2024.100206","DOIUrl":"10.1016/j.onano.2024.100206","url":null,"abstract":"<div><p>This work contains the development of QCT-loaded TPGS-coated SLNs by QbD to enhance neuroinflammation potential. Developed SLNs were in the nanometer range (263±3.62 nm) with desired parameters i.e., PDI (0.244±0.003), zeta potential (28.2 ± 0.74 mV), and%EE (74.3 ± 2.45 %) respectively. The release study showed sustained drug release of the developed formulation T-QCT-SLN (83.2 % release in 48 h). The study found QCT can reduce oxidative stress and neuroinflammation in adult zebrafish. Results showed reduced disruption in neuronal cells, decreased TNF-α and IL-1β levels, and reduced LPO, nitrite, and AChEs levels while increasing GSH levels, indicating its potential for treating oxidative stress and neuroinflammation. It can be concluded that QCT-loaded TPGS-coated SLN effectively prevents oxidative damage and neuroinflammation in adult zebrafish exposed to LPS compared to the QCT alone. The suggested work will be a focal paradigm for neuroinflammatory drug delivery.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"17 ","pages":"Article 100206"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952024000070/pdfft?md5=2f96f069582f6cd38085cfa670ced3c3&pid=1-s2.0-S2352952024000070-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140762690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative study on the physicochemical properties and gastrointestinal delivery of calcium niosomes produced by low and high-energy techniques 低能量和高能量技术制备的钙离子口服液的理化性质和胃肠道给药比较研究
Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-03-21 DOI: 10.1016/j.onano.2024.100205
Jorge Alejandro Barbosa-Nuñez , Sara Elisa Herrera-Rodríguez , Eristeo García-Márquez , Hugo Espinosa-Andrews

Since the bioavailability of calcium from foods and supplements is low, its encapsulation in niosomes is proposed as a potential solution to this issue. This study aimed to compare the physiochemical properties and release profiles of niosomes with calcium chloride and calcium lactate produced by injection and sonication methods. The size distribution (200–300 nm), encapsulation efficiency (20–40 %), stability, release profile, cytotoxicity, and calcium bioavailability of the niosomes were characterized. The production method, rather than the calcium salt used, impacted the properties of the niosomes. Calcium release under gastrointestinal conditions was dependent on both the calcium source and the production method, which was characterized by a Peppas-Sahlin release model. Calcium niosomes were not cytotoxic to intestinal cells. All the calcium niosomes showed high bioavailability in cells (5–20 % greater than the control) but lower bioavailability than the non-encapsulated calcium salts (80–110 % above control) due to their high solubility. Nevertheless, the use of niosomes might be a promising approach for improving calcium bioavailability.

由于食物和补充剂中钙的生物利用率较低,因此将钙封装在niosomes中被认为是解决这一问题的潜在方法。本研究旨在比较用注射法和超声法生产的含氯化钙和乳酸钙的niosomes的理化性质和释放曲线。研究表征了niosomes的尺寸分布(200-300 nm)、封装效率(20-40 %)、稳定性、释放曲线、细胞毒性和钙的生物利用率。生产方法而不是所使用的钙盐影响了niosomes的特性。钙在胃肠道条件下的释放既取决于钙源,也取决于生产方法。钙诺糖对肠道细胞没有细胞毒性。所有钙诺沙姆斯在细胞中的生物利用率都很高(比对照组高 5-20%),但由于其溶解度高,生物利用率低于非胶囊钙盐(比对照组高 80-110%)。尽管如此,使用niosomes可能是提高钙生物利用率的一种有前途的方法。
{"title":"A comparative study on the physicochemical properties and gastrointestinal delivery of calcium niosomes produced by low and high-energy techniques","authors":"Jorge Alejandro Barbosa-Nuñez ,&nbsp;Sara Elisa Herrera-Rodríguez ,&nbsp;Eristeo García-Márquez ,&nbsp;Hugo Espinosa-Andrews","doi":"10.1016/j.onano.2024.100205","DOIUrl":"10.1016/j.onano.2024.100205","url":null,"abstract":"<div><p>Since the bioavailability of calcium from foods and supplements is low, its encapsulation in niosomes is proposed as a potential solution to this issue. This study aimed to compare the physiochemical properties and release profiles of niosomes with calcium chloride and calcium lactate produced by injection and sonication methods. The size distribution (200–300 nm), encapsulation efficiency (20–40 %), stability, release profile, cytotoxicity, and calcium bioavailability of the niosomes were characterized. The production method, rather than the calcium salt used, impacted the properties of the niosomes. Calcium release under gastrointestinal conditions was dependent on both the calcium source and the production method, which was characterized by a Peppas-Sahlin release model. Calcium niosomes were not cytotoxic to intestinal cells. All the calcium niosomes showed high bioavailability in cells (5–20 % greater than the control) but lower bioavailability than the non-encapsulated calcium salts (80–110 % above control) due to their high solubility. Nevertheless, the use of niosomes might be a promising approach for improving calcium bioavailability.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"17 ","pages":"Article 100205"},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952024000069/pdfft?md5=e1988301879094919cc6233f1db3218c&pid=1-s2.0-S2352952024000069-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140281513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosynthesis of ZnO using Senna siamea leaf extract for photodegradation of tetracycline antibiotic and azo dye in wastewater 利用番泻叶提取物生物合成氧化锌,用于光降解废水中的四环素抗生素和偶氮染料
Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-03-01 DOI: 10.1016/j.onano.2024.100202
Poomsith Thangsan, Khemika Wannakan, Suwat Nanan

The green fabrication of photocatalyst is an interesting research topic owing to the beneficials of non-toxicity, simplicity, and environmentally friendly. In this research, we report the biosynthesis of ZnO by a hydrothermal/solvothermal method with addition of leaf extract (using either water or ethanol as a solvent) of Senna siamea.. The prepared ZnO was used for removal of tetracycline (TC) antibiotic and reactive red 141 (RR141) azo dye. The complete degradation of the pollutant was achieved under both UV light (120 min) and sunlight (40 min). The ZnO-SV400, solvothermally grown using ethanol extract and then calcined at 400 °C, showed promising photoactivity assigning to the increment of the photogenerated charge carrier separation capacity and high crystallinity of the sample after thermal treatment. The degradation reaction follows nicely with the first-order reaction with a rate constant of 0.081 min−1. The result shows that hydroxyl radicals are the key spices involved in the detoxification of the contaminants. The recycling ability of about five cycles was reported. The structural stability was also confirmed. The strategy presented here demonstrates that the green synthesis with addition of plant extracts is the main parameter governing the fabrication of sunlight-active ZnO photocatalyst for detoxification of the toxic contaminants including organic dyes and antibiotics in wastewater.

绿色制造光催化剂具有无毒、简便、环保等优点,是一个有趣的研究课题。在这项研究中,我们报告了通过水热/溶热法,加入番泻叶提取物(以水或乙醇为溶剂)生物合成氧化锌的过程。所制备的氧化锌被用于去除四环素(TC)抗生素和活性红 141(RR141)偶氮染料。在紫外光(120 分钟)和日光(40 分钟)条件下,污染物均能完全降解。利用乙醇提取物溶解热法生长的 ZnO-SV400 在 400 °C 煅烧后显示出良好的光活性,这归功于热处理后样品光生电荷载流子分离能力的提高和高结晶度。降解反应遵循良好的一阶反应,速率常数为 0.081 min-1。结果表明,羟基自由基是参与污染物解毒的关键香料。据报告,该化合物具有约五个循环的再循环能力。结构稳定性也得到了证实。本文介绍的策略表明,添加植物提取物的绿色合成是制备具有阳光活性的氧化锌光催化剂的主要参数,可用于解毒废水中的有毒污染物,包括有机染料和抗生素。
{"title":"Biosynthesis of ZnO using Senna siamea leaf extract for photodegradation of tetracycline antibiotic and azo dye in wastewater","authors":"Poomsith Thangsan,&nbsp;Khemika Wannakan,&nbsp;Suwat Nanan","doi":"10.1016/j.onano.2024.100202","DOIUrl":"https://doi.org/10.1016/j.onano.2024.100202","url":null,"abstract":"<div><p>The green fabrication of photocatalyst is an interesting research topic owing to the beneficials of non-toxicity, simplicity, and environmentally friendly. In this research, we report the biosynthesis of ZnO by a hydrothermal/solvothermal method with addition of leaf extract (using either water or ethanol as a solvent) of <em>Senna siamea.</em>. The prepared ZnO was used for removal of tetracycline (TC) antibiotic and reactive red 141 (RR141) azo dye. The complete degradation of the pollutant was achieved under both UV light (120 min) and sunlight (40 min). The ZnO-SV400, solvothermally grown using ethanol extract and then calcined at 400 °C, showed promising photoactivity assigning to the increment of the photogenerated charge carrier separation capacity and high crystallinity of the sample after thermal treatment. The degradation reaction follows nicely with the first-order reaction with a rate constant of 0.081 min<sup>−1</sup>. The result shows that hydroxyl radicals are the key spices involved in the detoxification of the contaminants. The recycling ability of about five cycles was reported. The structural stability was also confirmed. The strategy presented here demonstrates that the green synthesis with addition of plant extracts is the main parameter governing the fabrication of sunlight-active ZnO photocatalyst for detoxification of the toxic contaminants including organic dyes and antibiotics in wastewater.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"16 ","pages":"Article 100202"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952024000033/pdfft?md5=d7632c6783636c778adfa4a60f4f3d93&pid=1-s2.0-S2352952024000033-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140052610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural characteristics of Zn-MOFs and derived zinc oxide by X-ray diffraction peak analysis fabricated by mechanical and hydrothermal methods 通过 X 射线衍射峰值分析研究机械和水热法制造的 Zn-MOFs 和衍生氧化锌的结构特征
Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-03-01 DOI: 10.1016/j.onano.2024.100203
Sajed Nikmehr , Mahmood Kazemzad , Mohammad Mehdi Sabzehmeidani , Leila Nikzad , Touradj Ebadzadeh

In this work, the Zn based MOFs were synthesized from cyanoguanidine and zinc acetate source precursors via two hydrothermal methods and high energy ball milling technique and also the free salt and bimetallic samples have been synthesized. Then, the fabricated Zn-MOFs were heat for calcination at 550 °C for 110 min. The synthesized nanostructures were examined by XRD, SEM and FTIR analysis to gain insight about structure, morphology and functional groups properties. The results confirm that it is possible to prepare Zn MOFs using high energy ball milling methods. Besides, the fabricated MOF and complex structures can be converted to porous zinc oxide (ZnO) by a simple thermal annealing in air. Then, the line broadening of ZnO from mechanochemical and hydrothermal methods was showed due to the small crystallite size and lattice strain. The broadening was studied by the Scherrer formula and Williamson Hall (UDM, USDM, UDEDM) and Size-strain plot techniques. In addition, undesirable phases may affect the synthesized part during thermal cycles. We demonstrate the potential of using high-energy X-ray diffraction for detailed analysis of minority phases in ZnO-derived components.

本研究通过两种水热法和高能球磨技术,以氰基胍和醋酸锌为前驱体合成了锌基 MOFs,并合成了游离盐和双金属样品。然后,将制成的 Zn-MOFs 在 550 °C 下加热煅烧 110 分钟。通过 XRD、SEM 和傅立叶变换红外光谱分析,对合成的纳米结构进行了检测,以了解其结构、形态和官能团特性。结果证实,利用高能球磨法制备 Zn MOFs 是可行的。此外,通过在空气中进行简单的热退火,可以将制备的 MOF 和复杂结构转化为多孔氧化锌(ZnO)。然后,由于结晶尺寸和晶格应变较小,机械化学和水热法制备的氧化锌出现了线展宽现象。通过舍勒公式、威廉姆森霍尔(UDM、USDM、UDEDM)和尺寸-应变图技术研究了线宽现象。此外,在热循环过程中,不良相可能会影响合成部件。我们展示了使用高能 X 射线衍射详细分析氧化锌衍生部件中少数相的潜力。
{"title":"Structural characteristics of Zn-MOFs and derived zinc oxide by X-ray diffraction peak analysis fabricated by mechanical and hydrothermal methods","authors":"Sajed Nikmehr ,&nbsp;Mahmood Kazemzad ,&nbsp;Mohammad Mehdi Sabzehmeidani ,&nbsp;Leila Nikzad ,&nbsp;Touradj Ebadzadeh","doi":"10.1016/j.onano.2024.100203","DOIUrl":"https://doi.org/10.1016/j.onano.2024.100203","url":null,"abstract":"<div><p>In this work, the Zn based MOFs were synthesized from cyanoguanidine and zinc acetate source precursors via two hydrothermal methods and high energy ball milling technique and also the free salt and bimetallic samples have been synthesized. Then, the fabricated Zn-MOFs were heat for calcination at 550 °C for 110 min. The synthesized nanostructures were examined by XRD, SEM and FTIR analysis to gain insight about structure, morphology and functional groups properties. The results confirm that it is possible to prepare Zn MOFs using high energy ball milling methods. Besides, the fabricated MOF and complex structures can be converted to porous zinc oxide (ZnO) by a simple thermal annealing in air. Then, the line broadening of ZnO from mechanochemical and hydrothermal methods was showed due to the small crystallite size and lattice strain. The broadening was studied by the Scherrer formula and Williamson Hall (UDM, USDM, UDEDM) and Size-strain plot techniques. In addition, undesirable phases may affect the synthesized part during thermal cycles. We demonstrate the potential of using high-energy X-ray diffraction for detailed analysis of minority phases in ZnO-derived components.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"16 ","pages":"Article 100203"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952024000045/pdfft?md5=36c458edeea1231955b9bbf37335cf82&pid=1-s2.0-S2352952024000045-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Size and dose of nanoparticles modulate between toxic and medicinal effect on kidney 纳米颗粒的大小和剂量可调节对肾脏的毒性和药用效果
Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-01-03 DOI: 10.1016/j.onano.2024.100200
Tom M. Nolte, Bingqing Lu

To know when a nanoparticle (NP) is toxic and when a NP is medicinal, we need to elucidate the various biochemical interactions exerted by NPs within the body. Clearance is an important pharmacological parameter and property. Once in the body, renal clearance modulates the biological response to NPs and modulate (toxic) stress. Here, we reviewed mechanisms of interaction between NPs and kidney. NPs interact differently with mesangial and endothelial cells, podocytes and macrophages; these cell types work together to maintain homeostasis. Clearance requires NPs to be filtered and (then) ‘scavenged’ by e.g., kidney macrophages. We identified several markers of overall biophysical stress. For example, NPs can mimic transport agents, viruses or systems used by the body to combat them, like vesicles. Thus, NPs interfere with e.g., endocytic and actin-angiotensin systems and osmotic pressure that they regulate. In cases of too much stress, NPs can aggravate disease; in case ‘adequate’ stress is lacking, NPs can act medicinal. In this short review, we also describe kinetics for clearance by kidney and present formulae for NP clearance with a basis in bio-physics. Glomerular filtration rates (GFR) measure energy expenditure and metabolic rate. NPs of differing size may differ in renal scavenging and filtration capacity. NPs affect the GFR in a size and dose-dependent manner. Therefore, modeling clearance and accumulation of NPs by/in kidney ought to be flexible to biological response and in situ NP-induced changes in biophysiological properties.

要知道纳米粒子(NP)何时具有毒性,何时具有药用价值,我们需要阐明 NP 在体内产生的各种生化相互作用。清除率是一个重要的药理学参数和特性。一旦进入人体,肾脏的清除率会调节生物对 NPs 的反应,并调节(毒性)压力。在此,我们回顾了 NPs 与肾脏之间的相互作用机制。NPs 与间质细胞、内皮细胞、荚膜细胞和巨噬细胞的相互作用各不相同;这些细胞类型共同维持着体内平衡。清除NPs需要过滤,然后由肾脏巨噬细胞等 "清除"。我们确定了整体生物物理压力的几个标记。例如,NPs 可模拟运输剂、病毒或人体用于对抗它们的系统,如囊泡。因此,NPs 会干扰内细胞膜和肌动蛋白-血管紧张素系统以及它们所调节的渗透压等。在压力过大的情况下,NPs会加重疾病;而在缺乏 "足够 "压力的情况下,NPs则可以发挥药效。在这篇简短的综述中,我们还介绍了肾脏清除NP的动力学,并提出了以生物物理学为基础的NP清除公式。肾小球滤过率(GFR)衡量能量消耗和新陈代谢率。不同大小的 NP 在肾脏清除和过滤能力方面可能有所不同。NPs 影响肾小球滤过率的方式与大小和剂量有关。因此,模拟肾脏对 NPs 的清除和蓄积时,应根据生物反应和 NP 诱导的生物生理特性的原位变化灵活进行。
{"title":"Size and dose of nanoparticles modulate between toxic and medicinal effect on kidney","authors":"Tom M. Nolte,&nbsp;Bingqing Lu","doi":"10.1016/j.onano.2024.100200","DOIUrl":"10.1016/j.onano.2024.100200","url":null,"abstract":"<div><p>To know when a nanoparticle (NP) is toxic and when a NP is medicinal, we need to elucidate the various biochemical interactions exerted by NPs within the body. Clearance is an important pharmacological parameter and property. Once in the body, renal clearance modulates the biological response to NPs and modulate (toxic) stress. Here, we reviewed mechanisms of interaction between NPs and kidney. NPs interact differently with mesangial and endothelial cells, podocytes and macrophages; these cell types work together to maintain homeostasis. Clearance requires NPs to be filtered and (then) ‘scavenged’ by e.g., kidney macrophages. We identified several markers of overall biophysical stress. For example, NPs can mimic transport agents, viruses or systems used by the body to combat them, like vesicles. Thus, NPs interfere with e.g., endocytic and actin-angiotensin systems and osmotic pressure that they regulate. In cases of too much stress, NPs can aggravate disease; in case ‘adequate’ stress is lacking, NPs can act medicinal. In this short review, we also describe kinetics for clearance by kidney and present formulae for NP clearance with a basis in bio-physics. Glomerular filtration rates (GFR) measure energy expenditure and metabolic rate. NPs of differing size may differ in renal scavenging and filtration capacity. NPs affect the GFR in a size and dose-dependent manner. Therefore, modeling clearance and accumulation of NPs by/in kidney ought to be flexible to biological response and <em>in situ</em> NP-induced changes in biophysiological properties.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"16 ","pages":"Article 100200"},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235295202400001X/pdfft?md5=46ea4008069069c1030c450e480db073&pid=1-s2.0-S235295202400001X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139392899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancement in lipid-based nanocomposites for theranostic applications in lung carcinoma treatment 基于脂质的纳米复合材料在肺癌治疗中的治疗应用进展
Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-01-01 DOI: 10.1016/j.onano.2023.100199
Viola Colaco, Amrita Arup Roy, Gaurisha Alias Resha Ramnath Naik, Arijit Mondal, Srinivas Mutalik, Namdev Dhas

On a global scale, lung cancer remains a common malignancy and is largest cause of many deaths related to cancer. Despite the significant advancements in lung cancer diagnostic and therapeutic approaches, many individuals exhibit resistant responses to proven therapies. This focuses on the critical need for novel therapeutic methods to be developed and innovated. Recently, nanotechnology has gained a lot of importance for treating malignancy as it helps improve drug delivery, specificity, reduced dose, and efficient elimination. Lipid nanoparticles (LNPs) are nanocarriers with low particle size, which can be modified for specific delivery. The current review focuses on the significance and application of lipid-based theranostic nanoparticles for cancer therapy, components, method of preparation and factors affecting lipid nanoparticle preparation, along with the clinical trials and patents of LNPs. Therapeutic applications in lung cancer therapy include Chemotherapy, photodynamic therapy, immunotherapy, gene therapy, photothermal therapy, and sonodynamic therapy. Diagnostic applications like SPECT, CT, MRI, PET, Optical fluorescence imaging and NIR. As LNPs are being used more frequently in lung cancer therapy, the ongoing research helps in offering solutions to overcome the issues by conventional treatments. Due to their adaptability to customized medical procedures and the use of numerous components, they hold the potential for treating lung cancer. In conclusion, LNPs offer a viable strategy for treating lung cancer by boosting bioavailability, promoting medication delivery, and removing obstacles. For individualised medicine, they can encapsulate a range of therapeutic, such as immunomodulatory medicines, siRNA, and chemotherapeutic medications. Additional study and clinical validation are required to address scalability, long-term safety, and optimised manufacturing techniques for effective application in lung cancer therapy.

在全球范围内,肺癌仍然是一种常见的恶性肿瘤,也是导致许多人死于癌症的最大原因。尽管肺癌诊断和治疗方法取得了重大进展,但许多患者对已证实的疗法表现出抗药性。这就迫切需要开发和创新新型治疗方法。最近,纳米技术在治疗恶性肿瘤方面获得了极大的重视,因为它有助于改善药物输送、特异性、减少剂量和有效清除。脂质纳米颗粒(LNPs)是一种粒径较小的纳米载体,可进行改性以实现特异性给药。本综述重点介绍了脂质治疗纳米粒子在癌症治疗中的意义和应用、成分、制备方法和影响脂质纳米粒子制备的因素,以及 LNPs 的临床试验和专利情况。肺癌治疗应用包括化疗、光动力疗法、免疫疗法、基因疗法、光热疗法和声动力疗法。诊断应用包括 SPECT、CT、MRI、PET、光学荧光成像和近红外。由于 LNPs 在肺癌治疗中的应用越来越广泛,正在进行的研究有助于为克服传统治疗方法的问题提供解决方案。由于 LNPs 可适应定制的医疗程序,并可使用多种成分,因此具有治疗肺癌的潜力。总之,LNPs 通过提高生物利用度、促进药物输送和消除障碍,为治疗肺癌提供了一种可行的策略。对于个体化治疗,它们可以封装一系列治疗药物,如免疫调节药物、siRNA 和化疗药物。要在肺癌治疗中有效应用,还需要进行更多的研究和临床验证,以解决可扩展性、长期安全性和优化生产技术等问题。
{"title":"Advancement in lipid-based nanocomposites for theranostic applications in lung carcinoma treatment","authors":"Viola Colaco,&nbsp;Amrita Arup Roy,&nbsp;Gaurisha Alias Resha Ramnath Naik,&nbsp;Arijit Mondal,&nbsp;Srinivas Mutalik,&nbsp;Namdev Dhas","doi":"10.1016/j.onano.2023.100199","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100199","url":null,"abstract":"<div><p>On a global scale, lung cancer remains a common malignancy and is largest cause of many deaths related to cancer. Despite the significant advancements in lung cancer diagnostic and therapeutic approaches, many individuals exhibit resistant responses to proven therapies. This focuses on the critical need for novel therapeutic methods to be developed and innovated. Recently, nanotechnology has gained a lot of importance for treating malignancy as it helps improve drug delivery, specificity, reduced dose, and efficient elimination. Lipid nanoparticles (LNPs) are nanocarriers with low particle size, which can be modified for specific delivery. The current review focuses on the significance and application of lipid-based theranostic nanoparticles for cancer therapy, components, method of preparation and factors affecting lipid nanoparticle preparation, along with the clinical trials and patents of LNPs. Therapeutic applications in lung cancer therapy include Chemotherapy, photodynamic therapy, immunotherapy, gene therapy, photothermal therapy, and sonodynamic therapy. Diagnostic applications like SPECT, CT, MRI, PET, Optical fluorescence imaging and NIR. As LNPs are being used more frequently in lung cancer therapy, the ongoing research helps in offering solutions to overcome the issues by conventional treatments. Due to their adaptability to customized medical procedures and the use of numerous components, they hold the potential for treating lung cancer. In conclusion, LNPs offer a viable strategy for treating lung cancer by boosting bioavailability, promoting medication delivery, and removing obstacles. For individualised medicine, they can encapsulate a range of therapeutic, such as immunomodulatory medicines, siRNA, and chemotherapeutic medications. Additional study and clinical validation are required to address scalability, long-term safety, and optimised manufacturing techniques for effective application in lung cancer therapy.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"15 ","pages":"Article 100199"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952023000786/pdfft?md5=fde8e6706154857844db7b074cd405c1&pid=1-s2.0-S2352952023000786-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139107791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theranostic siRNA loaded mesoporous silica nanoplatforms: A game changer in gene therapy for cancer treatment 治疗siRNA负载介孔二氧化硅纳米平台:癌症基因治疗的游戏规则改变者
Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2023-11-07 DOI: 10.1016/j.onano.2023.100195
Anwesha Kanungo , Nigam Sekhar Tripathy , Liza Sahoo , Sarbari Acharya , Fahima Dilnawaz

Growing interest has been seen in non-pathogenic, safe, and effective gene therapy delivery systems. There are many nucleic acid therapies that have been studied to alter the expression of DNA or RNA, such as mRNA, siRNA, antisense DNA, and microRNA (miRNA), of which siRNA has been shown to be useful in blocking specific genes. The development of an efficient nucleic acid delivery method is crucial for molecular diagnostic and therapeutic systems. Mesoporous silica nanoparticles (MSNs) with high porosity, good textural qualities, and biocompatibility have been studied for use in drug delivery systems. They are being utilized more and more in combination therapy, gene silencing, and other biological applications, especially in cancer nanomedicine. MSNs offer efficient drug loading and controlled release, and additions can change their characteristics. They are widely employed in target medication delivery, biosensing, cellular uptake, and diagnostics in the biomedical field. Additionally, they have been connected to theranostic drugs for cancer treatment. This review highlights the current state of knowledge of MSNs and their specialized applications as theranostic agents for cancer management.

人们对非致病性、安全和有效的基因治疗递送系统越来越感兴趣。已经研究了许多核酸疗法来改变DNA或RNA的表达,例如mRNA, siRNA,反义DNA和microRNA (miRNA),其中siRNA已被证明可用于阻断特定基因。开发一种高效的核酸传递方法对分子诊断和治疗系统至关重要。介孔二氧化硅纳米颗粒(MSNs)具有高孔隙率、良好的结构质量和生物相容性,已被研究用于药物输送系统。它们越来越多地用于联合治疗、基因沉默和其他生物学应用,特别是在癌症纳米医学中。msn提供有效的药物装载和控释,添加物可以改变其特性。它们被广泛应用于靶药物递送、生物传感、细胞摄取和生物医学领域的诊断。此外,它们还与癌症治疗药物有关。这篇综述强调了目前对微微粒子的认识状况及其作为癌症治疗药物的特殊应用。
{"title":"Theranostic siRNA loaded mesoporous silica nanoplatforms: A game changer in gene therapy for cancer treatment","authors":"Anwesha Kanungo ,&nbsp;Nigam Sekhar Tripathy ,&nbsp;Liza Sahoo ,&nbsp;Sarbari Acharya ,&nbsp;Fahima Dilnawaz","doi":"10.1016/j.onano.2023.100195","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100195","url":null,"abstract":"<div><p>Growing interest has been seen in non-pathogenic, safe, and effective gene therapy delivery systems. There are many nucleic acid therapies that have been studied to alter the expression of DNA or RNA, such as mRNA, siRNA, antisense DNA, and microRNA (miRNA), of which siRNA has been shown to be useful in blocking specific genes. The development of an efficient nucleic acid delivery method is crucial for molecular diagnostic and therapeutic systems. Mesoporous silica nanoparticles (MSNs) with high porosity, good textural qualities, and biocompatibility have been studied for use in drug delivery systems. They are being utilized more and more in combination therapy, gene silencing, and other biological applications, especially in cancer nanomedicine. MSNs offer efficient drug loading and controlled release, and additions can change their characteristics. They are widely employed in target medication delivery, biosensing, cellular uptake, and diagnostics in the biomedical field. Additionally, they have been connected to theranostic drugs for cancer treatment. This review highlights the current state of knowledge of MSNs and their specialized applications as theranostic agents for cancer management.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"15 ","pages":"Article 100195"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952023000749/pdfft?md5=22960921a00ddf4b9eae9e36d3567ece&pid=1-s2.0-S2352952023000749-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90129963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
OpenNano
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1