首页 > 最新文献

Materials & Design最新文献

英文 中文
In-situ fabrication of Ti-TiCx metal matrix composite by laser powder bed fusion with enhanced elastic modulus and superior ductility
IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1016/j.matdes.2024.113499
Gaëtan Bernard , Vaclav Pejchal , Olha Sereda , Roland E. Logé
The production of high stiffness Ti-based Metal Matrix Composites (Ti-MMCs) displaying significant ductility is extremely challenging due to the high reinforcement content required. This study outlines the production process of stiffness-driven Ti-TiC MMCs displaying a remarkable ductility. The process consists in powder Mechanical Blending, Laser Powder Bed Fusion (LPBF), and a heat treatment. A TiC fraction of more than 20 vol% was formed in-situ through the reaction of titanium with carbon during the LPBF process. The as-built sub-stoichiometric TiC dendrites are converted in equiaxed TiC grains during the heat treatment. The TiC C/Ti ratio was found to be close to 0.5 in as-built conditions, and 0.7 in heat treated conditions, resulting in an effective reinforcement content nearly twice the one expected for stoichiometric TiC, leading to stronger reinforcement. The mechanical analysis revealed a Young’s modulus of up to 149 GPa and total elongations of up to 2.8 %. The former represents a 27 % improvement compared to commercially pure Titanium and the latter exceeds by 115 % reported values for LPBF Ti-MMCs with similar Young’s modulus. It is enabled by the in-situ formation of defect-free TiC reinforcements during the LPBF process combined with their globularisation through heat treatment.
{"title":"In-situ fabrication of Ti-TiCx metal matrix composite by laser powder bed fusion with enhanced elastic modulus and superior ductility","authors":"Gaëtan Bernard ,&nbsp;Vaclav Pejchal ,&nbsp;Olha Sereda ,&nbsp;Roland E. Logé","doi":"10.1016/j.matdes.2024.113499","DOIUrl":"10.1016/j.matdes.2024.113499","url":null,"abstract":"<div><div>The production of high stiffness Ti-based Metal Matrix Composites (Ti-MMCs) displaying significant ductility is extremely challenging due to the high reinforcement content required. This study outlines the production process of stiffness-driven Ti-TiC MMCs displaying a remarkable ductility. The process consists in powder Mechanical Blending, Laser Powder Bed Fusion (LPBF), and a heat treatment. A TiC fraction of more than 20 vol% was formed in-situ through the reaction of titanium with carbon during the LPBF process. The as-built sub-stoichiometric TiC dendrites are converted in equiaxed TiC grains during the heat treatment. The TiC C/Ti ratio was found to be close to 0.5 in as-built conditions, and 0.7 in heat treated conditions, resulting in an effective reinforcement content nearly twice the one expected for stoichiometric TiC, leading to stronger reinforcement. The mechanical analysis revealed a Young’s modulus of up to 149 GPa and total elongations of up to 2.8 %. The former represents a 27 % improvement compared to commercially pure Titanium and the latter exceeds by 115 % reported values for LPBF Ti-MMCs with similar Young’s modulus. It is enabled by the in-situ formation of defect-free TiC reinforcements during the LPBF process combined with their globularisation through heat treatment.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113499"},"PeriodicalIF":7.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the mechanical strengthening mechanism: Soft metal doping in ceramic matrices-A case study of TiN-Ag films
IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1016/j.matdes.2024.113489
Jing Luan , Fanlin Kong , Junhua Xu , Filipe Fernandes , Manuel Evaristo , Songtao Dong , Albano Cavaleiro , Hongbo Ju
Soft metals have been widely added into ceramic-based films for fully meeting the demanding requirements of green tribological applications. However, the resulting considerable increase of the mechanical strength by adding a soft metal below 5 at.%, which reversed the rule-of-mixture, was still not fully revealed. In this paper, a case study of TiN-Ag films was carried out to investigate the strengthening mechanism induced by adding soft metal in TiN-Ag composite/multilayered films deposited by magnetron sputtering. The results showed that dual-phases of fcc-TiN and fcc-Ag co-existed in the composite films with the Ag particles embedded in the matrix. In some areas of the Ag particles, with a size below 4 nm, epitaxial growth with the TiN template was detected, which obliged the lattice to be distorted and shrunken. Consequently, both hardness and elastic modulus were enhanced from 21 and 236 GPa, for the reference TiN film, to 26 and 323 GPa for the TiN-Ag composite film with 2.4 at.% Ag. The possibility of having the epitaxial growth of Ag within TiN were also confirmed by designing a TiN/Ag multilayered film with an Ag layer thickness of ∼3 nm.
{"title":"Deciphering the mechanical strengthening mechanism: Soft metal doping in ceramic matrices-A case study of TiN-Ag films","authors":"Jing Luan ,&nbsp;Fanlin Kong ,&nbsp;Junhua Xu ,&nbsp;Filipe Fernandes ,&nbsp;Manuel Evaristo ,&nbsp;Songtao Dong ,&nbsp;Albano Cavaleiro ,&nbsp;Hongbo Ju","doi":"10.1016/j.matdes.2024.113489","DOIUrl":"10.1016/j.matdes.2024.113489","url":null,"abstract":"<div><div>Soft metals have been widely added into ceramic-based films for fully meeting the demanding requirements of green tribological applications. However, the resulting considerable increase of the mechanical strength by adding a soft metal below 5 at.%, which reversed the rule-of-mixture, was still not fully revealed. In this paper, a case study of TiN-Ag films was carried out to investigate the strengthening mechanism induced by adding soft metal in TiN-Ag composite/multilayered films deposited by magnetron sputtering. The results showed that dual-phases of fcc-TiN and fcc-Ag co-existed in the composite films with the Ag particles embedded in the matrix. In some areas of the Ag particles, with a size below 4 nm, epitaxial growth with the TiN template was detected, which obliged the lattice to be distorted and shrunken. Consequently, both hardness and elastic modulus were enhanced from 21 and 236 GPa, for the reference TiN film, to 26 and 323 GPa for the TiN-Ag composite film with 2.4 at.% Ag. The possibility of having the epitaxial growth of Ag within TiN were also confirmed by designing a TiN/Ag multilayered film with an Ag layer thickness of ∼3 nm.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113489"},"PeriodicalIF":7.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diamond-coated quartz crystal microbalance sensors: Challenges in high yield production and enhanced detection of ethanol and sars-cov-2 proteins
IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1016/j.matdes.2024.113474
Tibor Izsák , Marian Varga , Michal Kočí , Ondrej Szabó , Kateřina Aubrechtová Dragounová , Gabriel Vanko , Miroslav Gál , Jana Korčeková , Michaela Hornychová , Alexandra Poturnayová , Alexander Kromka
This study presents the technological progress in the deposition of diamond thin films on quartz crystal microbalance (QCM) sensors. The linear antenna microwave plasma chemical vapour deposition (CVD) technique effectively grows thin diamond films on QCM substrates (Dia-QCM) differently oriented on the substrate holder in the deposition chamber, resulting in single-sided and double-sided coated QCMs. Each of these coated QCMs offers a distinctive advantage for sensing applications. The double-sided coated QCM sensors exhibited the most effective performance in ethanol detection, demonstrating approx. a 3-fold and 12-fold higher response than single-sided diamond-coated and bare gold QCM sensors, respectively. Furthermore, the single-sided Dia-QCM aptasensors demonstrated superior performance compared to bare gold QCM sensors, with a 2-fold higher response and a lower detection limit for S-RBD protein (LODDia-QCM = 0.09 pg/mL vs. LODAu-QCM = 0.10 pg/mL). In experiments conducted in human plasma, the Dia-QCM aptasensor demonstrated the ability to detect S-RBD protein at concentrations as low as 50 pg/mL, with high percentage recoveries. These results highlight the potential of linear antenna microwave plasma CVD for the mass production of advanced diamond-coated QCM sensors with different diamond film morphologies (porous, micro- or nanocrystalline) for various applications.
{"title":"Diamond-coated quartz crystal microbalance sensors: Challenges in high yield production and enhanced detection of ethanol and sars-cov-2 proteins","authors":"Tibor Izsák ,&nbsp;Marian Varga ,&nbsp;Michal Kočí ,&nbsp;Ondrej Szabó ,&nbsp;Kateřina Aubrechtová Dragounová ,&nbsp;Gabriel Vanko ,&nbsp;Miroslav Gál ,&nbsp;Jana Korčeková ,&nbsp;Michaela Hornychová ,&nbsp;Alexandra Poturnayová ,&nbsp;Alexander Kromka","doi":"10.1016/j.matdes.2024.113474","DOIUrl":"10.1016/j.matdes.2024.113474","url":null,"abstract":"<div><div>This study presents the technological progress in the deposition of diamond thin films on quartz crystal microbalance (QCM) sensors. The linear antenna microwave plasma chemical vapour deposition (CVD) technique effectively grows thin diamond films on QCM substrates (Dia-QCM) differently oriented on the substrate holder in the deposition chamber, resulting in single-sided and double-sided coated QCMs. Each of these coated QCMs offers a distinctive advantage for sensing applications. The double-sided coated QCM sensors exhibited the most effective performance in ethanol detection, demonstrating approx. a 3-fold and 12-fold higher response than single-sided diamond-coated and bare gold QCM sensors, respectively. Furthermore, the single-sided Dia-QCM aptasensors demonstrated superior performance compared to bare gold QCM sensors, with a 2-fold higher response and a lower detection limit for S-RBD protein (LOD<sub>Dia-QCM</sub> = 0.09<!--> <!-->pg/mL vs. LOD<sub>Au-QCM</sub> = 0.10<!--> <!-->pg/mL). In experiments conducted in human plasma, the Dia-QCM aptasensor demonstrated the ability to detect S-RBD protein at concentrations as low as 50<!--> <!-->pg/mL, with high percentage recoveries. These results highlight the potential of linear antenna microwave plasma CVD for the mass production of advanced diamond-coated QCM sensors with different diamond film morphologies (porous, micro- or nanocrystalline) for various applications.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113474"},"PeriodicalIF":7.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142759058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extreme high accuracy prediction and design of Fe-C-Cr-Mn-Si steel using machine learning
IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1016/j.matdes.2024.113473
Hao Wu, Jianyuan Zhang, Jintao Zhang, Chengjie Ge, Lu Ren, Xinkun Suo
Solid solution strengthening theory is essential for designing steel with high microhardness. Experimental determination is quite time consuming and costly. It is necessary to develop an alternate approach to rapidly and accurately predict new solid solution strengthening theory for steel. In this study, a data-driven model combining machine learning (ML), firefly optimization algorithm (FA) and conditional generative adversarial networks (CGANs) were proposed to predict solid solution strengthening theory of Fe-C-Cr-Mn-Si steel. Three alloys were fabricated using cladding to validate the predict accuracy of the models. The results show that the trained support vector regression (SVR) model demonstrated the highest prediction precision for microhardness. The coefficient of determination (R2) value increased from 0.85 to 0.89 and root mean square error (RMSE) decreased from 0.39 to 0.31 after introducing the modified solid solution strengthening theory. The experimental validation revealed a minimum error of 1.17% between the predicted value and the experimental value. The investigation provides a valuable method to expedite design of Fe-C-Cr-Mn-Si steel with extreme high accuracy.
{"title":"Extreme high accuracy prediction and design of Fe-C-Cr-Mn-Si steel using machine learning","authors":"Hao Wu,&nbsp;Jianyuan Zhang,&nbsp;Jintao Zhang,&nbsp;Chengjie Ge,&nbsp;Lu Ren,&nbsp;Xinkun Suo","doi":"10.1016/j.matdes.2024.113473","DOIUrl":"10.1016/j.matdes.2024.113473","url":null,"abstract":"<div><div>Solid solution strengthening theory is essential for designing steel with high microhardness. Experimental determination is quite time consuming and costly. It is necessary to develop an alternate approach to rapidly and accurately predict new solid solution strengthening theory for steel. In this study, a data-driven model combining machine learning (ML), firefly optimization algorithm (FA) and conditional generative adversarial networks (CGANs) were proposed to predict solid solution strengthening theory of Fe-C-Cr-Mn-Si steel. Three alloys were fabricated using cladding to validate the predict accuracy of the models. The results show that the trained support vector regression (SVR) model demonstrated the highest prediction precision for microhardness. The coefficient of determination (<em>R<sup>2</sup></em>) value increased from 0.85 to 0.89 and root mean square error (<em>RMSE</em>) decreased from 0.39 to 0.31 after introducing the modified solid solution strengthening theory. The experimental validation revealed a minimum error of 1.17% between the predicted value and the experimental value. The investigation provides a valuable method to expedite design of Fe-C-Cr-Mn-Si steel with extreme high accuracy.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113473"},"PeriodicalIF":7.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishing room-temperature multiferroic behaviour in bismuth-based perovskites
IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1016/j.matdes.2024.113498
Jun Cao , Bin Yang , Graham Smith , Amit Mahajan , Hangfeng Zhang , Yunyin Lin , Chuying Yu , Vladimir Koval , Dou Zhang , Yu Shi , Chenglong Jia , Giuseppe Viola
In the search of single-phase multiferroic materials at room temperature, a ceramic system with composition 0.5(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.5BiFe0.8Mn0.2O3 (BNT-6BT-5BFO2M) was fabricated via the solid-state reaction route, and its crystal structure, dielectric, ferroelectric, and magnetic properties were studied. The results indicate that the ceramic can be considered a single-phase perovskite system with ferroelectric and ferromagnetic characteristics at room temperature. The ferroelectricity is evidenced by the switching of ferroelectric domains, as imaged by piezoresponse force microscopy (PFM). The presence of a weak ferromagnetism is manifested by a non-negligible remnant magnetization in the magnetization-magnetic field loops. The spontaneous net magnetization is mediated by the presence of Mn4+ ions, which may introduce ferromagnetic Fe3+-O-Mn4+ double-exchange interactions in the system. The PFM images taken during the application of a magnetic field of 2000 Oe revealed that the ferroelectric domain structure at room temperature can be significantly influenced by the magnetic field, reflecting the presence of a magnetoelectric effect that allows the occurrence of magnetic field-induced polarization reorientation.
{"title":"Establishing room-temperature multiferroic behaviour in bismuth-based perovskites","authors":"Jun Cao ,&nbsp;Bin Yang ,&nbsp;Graham Smith ,&nbsp;Amit Mahajan ,&nbsp;Hangfeng Zhang ,&nbsp;Yunyin Lin ,&nbsp;Chuying Yu ,&nbsp;Vladimir Koval ,&nbsp;Dou Zhang ,&nbsp;Yu Shi ,&nbsp;Chenglong Jia ,&nbsp;Giuseppe Viola","doi":"10.1016/j.matdes.2024.113498","DOIUrl":"10.1016/j.matdes.2024.113498","url":null,"abstract":"<div><div>In the search of single-phase multiferroic materials at room temperature, a ceramic system with composition 0.5(0.94Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>-0.06BaTiO<sub>3</sub>)-0.5BiFe<sub>0.8</sub>Mn<sub>0.2</sub>O<sub>3</sub> (BNT-6BT-5BFO2M) was fabricated via the solid-state reaction route, and its crystal structure, dielectric, ferroelectric, and magnetic properties were studied. The results indicate that the ceramic can be considered a single-phase perovskite system with ferroelectric and ferromagnetic characteristics at room temperature. The ferroelectricity is evidenced by the switching of ferroelectric domains, as imaged by piezoresponse force microscopy (PFM). The presence of a weak ferromagnetism is manifested by a non-negligible remnant magnetization in the magnetization-magnetic field loops. The spontaneous net magnetization is mediated by the presence of Mn<sup>4+</sup> ions, which may introduce ferromagnetic Fe<sup>3+</sup>-O-Mn<sup>4+</sup> double-exchange interactions in the system. The PFM images taken during the application of a magnetic field of 2000 Oe revealed that the ferroelectric domain structure at room temperature can be significantly influenced by the magnetic field, reflecting the presence of a magnetoelectric effect that allows the occurrence of magnetic field-induced polarization reorientation.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113498"},"PeriodicalIF":7.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FFT-based surrogate modeling of auxetic metamaterials with real-time prediction of effective elastic properties and swift inverse design
IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1016/j.matdes.2024.113491
Hooman Danesh , Daniele Di Lorenzo , Francisco Chinesta , Stefanie Reese , Tim Brepols
Auxetic structures, known for their negative Poisson's ratio, exhibit effective elastic properties heavily influenced by their underlying geometry and base material properties. While periodic homogenization of auxetic unit cells can be used to investigate these properties, it is computationally expensive and limits design space exploration and inverse analysis. In this paper, the fast Fourier transform (FFT)-based homogenization approach is adopted to efficiently generate data for developing surrogate models, bypassing concerns about periodic mesh generation and boundary conditions typically associated with the finite element method (FEM). Surrogate models are developed for the real-time prediction of the effective elastic properties of auxetic unit cells with orthogonal voids of different shapes. The generated surrogate models accept geometric parameters and base material properties as inputs to predict the effective elastic constants in real-time. This rapid evaluation enables a practical inverse analysis framework for obtaining the optimal design parameters that yield the desired effective response. The performance of the generated surrogate models is rigorously examined through a train/test split methodology, a parametric study, and an inverse problem. Finally, a graphical user interface (GUI) is developed, offering real-time prediction of the effective tangent stiffness and performing inverse analysis to determine optimal geometric parameters.
{"title":"FFT-based surrogate modeling of auxetic metamaterials with real-time prediction of effective elastic properties and swift inverse design","authors":"Hooman Danesh ,&nbsp;Daniele Di Lorenzo ,&nbsp;Francisco Chinesta ,&nbsp;Stefanie Reese ,&nbsp;Tim Brepols","doi":"10.1016/j.matdes.2024.113491","DOIUrl":"10.1016/j.matdes.2024.113491","url":null,"abstract":"<div><div>Auxetic structures, known for their negative Poisson's ratio, exhibit effective elastic properties heavily influenced by their underlying geometry and base material properties. While periodic homogenization of auxetic unit cells can be used to investigate these properties, it is computationally expensive and limits design space exploration and inverse analysis. In this paper, the fast Fourier transform (FFT)-based homogenization approach is adopted to efficiently generate data for developing surrogate models, bypassing concerns about periodic mesh generation and boundary conditions typically associated with the finite element method (FEM). Surrogate models are developed for the real-time prediction of the effective elastic properties of auxetic unit cells with orthogonal voids of different shapes. The generated surrogate models accept geometric parameters and base material properties as inputs to predict the effective elastic constants in real-time. This rapid evaluation enables a practical inverse analysis framework for obtaining the optimal design parameters that yield the desired effective response. The performance of the generated surrogate models is rigorously examined through a train/test split methodology, a parametric study, and an inverse problem. Finally, a graphical user interface (GUI) is developed, offering real-time prediction of the effective tangent stiffness and performing inverse analysis to determine optimal geometric parameters.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113491"},"PeriodicalIF":7.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142759059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orientation matters: Assessing the cyclic deformation behaviour of laser powder bed fusion Ti-6Al-4V
IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1016/j.matdes.2024.113485
Jieming S. Zhang , Yun Deng , Huifang Liu , Yuanbo T. Tang , Andrew Lui , Patrick S. Grant , Enrique Alabort , Roger C. Reed , Alan C.F. Cocks
The orientation dependency of the fatigue behaviour of laser powder bed fusion Ti-6Al-4V has been analyzed and rationalized. Seven build orientations relative to the build plate have been studied. The 75° specimen demonstrates the highest fatigue life owing to the optimal surface quality and low proportions of grains near-parallel to the loading direction. When the build orientation is 30° or below, only defects on the downward-facing surface serve as the fatigue crack initiation sites as a result of the poor surface quality. Beyond 45°, cracks begin to initiate from the otherward-facing surface owing to the reduced variation in Ra across the sample surface. The large variation in the size and number of pore clusters near the initiation site governs the highest fatigue scatter of the 75° specimen whereas the difference in crack initiation sites of the 45° specimen results in the large difference in fatigue life. Our results demonstrate that the orientation effect is a critical factor to consider for the design of fatigue-tolerant intricate components.
{"title":"Orientation matters: Assessing the cyclic deformation behaviour of laser powder bed fusion Ti-6Al-4V","authors":"Jieming S. Zhang ,&nbsp;Yun Deng ,&nbsp;Huifang Liu ,&nbsp;Yuanbo T. Tang ,&nbsp;Andrew Lui ,&nbsp;Patrick S. Grant ,&nbsp;Enrique Alabort ,&nbsp;Roger C. Reed ,&nbsp;Alan C.F. Cocks","doi":"10.1016/j.matdes.2024.113485","DOIUrl":"10.1016/j.matdes.2024.113485","url":null,"abstract":"<div><div>The orientation dependency of the fatigue behaviour of laser powder bed fusion Ti-6Al-4V has been analyzed and rationalized. Seven build orientations relative to the build plate have been studied. The 75° specimen demonstrates the highest fatigue life owing to the optimal surface quality and low proportions of grains near-parallel to the loading direction. When the build orientation is 30° or below, only defects on the downward-facing surface serve as the fatigue crack initiation sites as a result of the poor surface quality. Beyond 45°, cracks begin to initiate from the otherward-facing surface owing to the reduced variation in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> across the sample surface. The large variation in the size and number of pore clusters near the initiation site governs the highest fatigue scatter of the 75° specimen whereas the difference in crack initiation sites of the 45° specimen results in the large difference in fatigue life. Our results demonstrate that the orientation effect is a critical factor to consider for the design of fatigue-tolerant intricate components.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113485"},"PeriodicalIF":7.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyurethane-modified room-temperature curing epoxy super adhesive for artifact restoration and light emitting diode encapsulation 用于文物修复和发光二极管封装的聚氨酯改性室温固化环氧超级粘合剂
IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-26 DOI: 10.1016/j.matdes.2024.113480
Peixin Niu , Diedie Xu , Jun Zhu , Zhiying Zhao , Ailing Sun , Liuhe Wei , Yuhan Li
Epoxy adhesives are widely used for their strong adhesion but face challenges due to high curing temperatures and brittleness, limiting their application in precision manufacturing and fine industries. In an innovative endeavor to address these limitations, we have synthesized a novel adhesive system by incorporating epoxy-functionalized polyurethane into the conventional bisphenol A-based epoxy resin. Upon subjecting the adhesive to a 24h curing period at ambient temperature, the resulting material exhibited remarkable mechanical properties. Specifically, the shear strength, tensile strength, and fracture toughness of the cured adhesive were 20.6 MPa, 36.7 MPa, and 2.87 MPa·m1/2, respectively, while the unmodified epoxy resin had values of only 1.9 MPa, 15.5 MPa, and 1.0 MPa·m1/2. Adhesive system unique crosslinked structure has been discovered to confer blue aggregation-induced emission fluorescent properties. We have successfully applied this interesting characteristic in the restoration of cultural relics and the encapsulation of light emitting diode. The research has yielded a groundbreaking adhesive formulation that not only overcomes the traditional limitations associated with epoxy materials but also introduces novel functionalities that extend its utility into diverse and sophisticated applications.
环氧树脂粘合剂因其强大的粘合力而被广泛使用,但也面临着固化温度高和脆性大的挑战,限制了其在精密制造和精细工业中的应用。为了创新性地解决这些局限性,我们在传统的双酚 A 基环氧树脂中加入了环氧官能化聚氨酯,从而合成了一种新型粘合剂体系。粘合剂在环境温度下固化 24 小时后,所生成的材料表现出卓越的机械性能。具体来说,固化粘合剂的剪切强度、拉伸强度和断裂韧性分别为 20.6 兆帕、36.7 兆帕和 2.87 兆帕-m1/2,而未经改性的环氧树脂仅为 1.9 兆帕、15.5 兆帕和 1.0 兆帕-m1/2。研究发现,粘合剂系统独特的交联结构具有蓝色聚集诱导发射荧光的特性。我们已成功地将这一有趣特性应用于文物修复和发光二极管封装。这项研究产生了一种开创性的粘合剂配方,它不仅克服了环氧树脂材料的传统局限性,还引入了新的功能,将其用途扩展到多种复杂的应用领域。
{"title":"Polyurethane-modified room-temperature curing epoxy super adhesive for artifact restoration and light emitting diode encapsulation","authors":"Peixin Niu ,&nbsp;Diedie Xu ,&nbsp;Jun Zhu ,&nbsp;Zhiying Zhao ,&nbsp;Ailing Sun ,&nbsp;Liuhe Wei ,&nbsp;Yuhan Li","doi":"10.1016/j.matdes.2024.113480","DOIUrl":"10.1016/j.matdes.2024.113480","url":null,"abstract":"<div><div>Epoxy adhesives are widely used for their strong adhesion but face challenges due to high curing temperatures and brittleness, limiting their application in precision manufacturing and fine industries. In an innovative endeavor to address these limitations, we have synthesized a novel adhesive system by incorporating epoxy-functionalized polyurethane into the conventional bisphenol A-based epoxy resin. Upon subjecting the adhesive to a 24h curing period at ambient temperature, the resulting material exhibited remarkable mechanical properties. Specifically, the shear strength, tensile strength, and fracture toughness of the cured adhesive were 20.6 MPa, 36.7 MPa, and 2.87 MPa·m<sup>1/2</sup>, respectively, while the unmodified epoxy resin had values of only 1.9 MPa, 15.5 MPa, and 1.0 MPa·m<sup>1/2</sup>. Adhesive system unique crosslinked structure has been discovered to confer blue aggregation-induced emission fluorescent properties. We have successfully applied this interesting characteristic in the restoration of cultural relics and the encapsulation of light emitting diode. The research has yielded a groundbreaking adhesive formulation that not only overcomes the traditional limitations associated with epoxy materials but also introduces novel functionalities that extend its utility into diverse and sophisticated applications.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113480"},"PeriodicalIF":7.6,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of bone regeneration by a synergistic combination of octacalcium phosphate and water glass 磷酸八钙和水玻璃的协同组合改善骨再生效果
IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-22 DOI: 10.1016/j.matdes.2024.113484
Won-Pyo Lee , Euisin Yang , Woong Kim , Riessa Nanda Mertamani , Hana Lee , Se Eun Kim , Kyung Mi Shim , Seong Soo Kang , Sukyoung Kim , Seok-Jun Kim , Jooseong Kim
Octacalcium phosphate (OCP) is a precursor of biological apatite minerals that can be used in synthetic bone grafts. In this work, a new type of synthetic bone grafts was developed by adding water glass to OCP (W-OCP). The OCP phase is generally known to be thermodynamically unstable and rapidly hydrolyzes to apatite. However, X-ray diffraction confirmed that OCP can remain stable even in the presence of water glass. In a rabbit calvarial defect model, W-OCP increased the bone area by 22.4 %, which was significantly higher than that of defects only at week 4 (p < 0.05). In clinical trials, the new bone formation rate was 49.5 %, confirming that W-OCP had an extremely high application potential as a new bone graft material. After treating MG-63 cells with a W-OCP elution medium, changes in gene expression levels that promoted bone formation were verified via microarray analysis. From the results, W-OCP can be inferred that sodium and silicate ions in water glass play an important role in the recruitment of osteoblasts, significantly increasing the bone growth rate at the early implantation stages. The obtained results suggest that W-OCP can be potentially applied as a new type of synthetic bone materials.
磷酸八钙(OCP)是生物磷灰石矿物的前体,可用于合成骨移植。在这项研究中,通过在 OCP 中添加水玻璃(W-OCP),开发出了一种新型合成骨移植物。众所周知,OCP 相具有热力学不稳定性,会迅速水解为磷灰石。然而,X 射线衍射证实,即使存在水玻璃,OCP 也能保持稳定。在兔子腓骨缺损模型中,W-OCP 使骨面积增加了 22.4%,仅在第 4 周时就明显高于缺损模型(p < 0.05)。在临床试验中,新骨形成率为 49.5%,证实了 W-OCP 作为一种新型骨移植材料具有极高的应用潜力。用 W-OCP 洗脱培养基处理 MG-63 细胞后,通过芯片分析验证了促进骨形成的基因表达水平的变化。从结果中可以推断,水玻璃中的钠离子和硅酸根离子在成骨细胞的招募过程中发挥了重要作用,显著提高了植入早期的骨生长率。这些结果表明,W-OCP 有可能被用作一种新型合成骨材料。
{"title":"Improvement of bone regeneration by a synergistic combination of octacalcium phosphate and water glass","authors":"Won-Pyo Lee ,&nbsp;Euisin Yang ,&nbsp;Woong Kim ,&nbsp;Riessa Nanda Mertamani ,&nbsp;Hana Lee ,&nbsp;Se Eun Kim ,&nbsp;Kyung Mi Shim ,&nbsp;Seong Soo Kang ,&nbsp;Sukyoung Kim ,&nbsp;Seok-Jun Kim ,&nbsp;Jooseong Kim","doi":"10.1016/j.matdes.2024.113484","DOIUrl":"10.1016/j.matdes.2024.113484","url":null,"abstract":"<div><div>Octacalcium phosphate (OCP) is a precursor of biological apatite minerals that can be used in synthetic bone grafts. In this work, a new type of synthetic bone grafts was developed by adding water glass to OCP (W-OCP). The OCP phase is generally known to be thermodynamically unstable and rapidly hydrolyzes to apatite. However, X-ray diffraction confirmed that OCP can remain stable even in the presence of water glass. In a rabbit calvarial defect model, W-OCP increased the bone area by 22.4 %, which was significantly higher than that of defects only at week 4 (p &lt; 0.05). In clinical trials, the new bone formation rate was 49.5 %, confirming that W-OCP had an extremely high application potential as a new bone graft material. After treating MG-63 cells with a W-OCP elution medium, changes in gene expression levels that promoted bone formation were verified via microarray analysis. From the results, W-OCP can be inferred that sodium and silicate ions in water glass play an important role in the recruitment of osteoblasts, significantly increasing the bone growth rate at the early implantation stages. The obtained results suggest that W-OCP can be potentially applied as a new type of synthetic bone materials.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113484"},"PeriodicalIF":7.6,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduction of the residual warpage of fused deposition modeling by negative thermal expansion filler 通过负热膨胀填料减少熔融沉积模型的残余翘曲
IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-20 DOI: 10.1016/j.matdes.2024.113472
Masaya Sakagami, Saito Ishiue, Maiki Kawaguchi, Akihiro Takezawa
We investigated the suppression of residual warpage using a negative thermal expansion (NTE) material filler, Zn1.6Mg0.4P2O7. To focus on the effect of thermal expansion on residual warpage, we used acrylonitrile-butadiene-styrene, which is an amorphous polymer with a small volume change around the liquid–solid phase transition, as the matrix. Composite pellets were prepared using a kneader, and filaments were produced for fused deposition modeling (FDM) using an extruder. We fabricated a bar-like test piece using a standard FDM machine and measured the warpage deformation using 3D scanning. The experimental results were supported by the finite element method. We also compared similarly sized SiO2 powders to discuss the advantages of NTE over conventional fillers. The warpage of a 100 mm x 5 mm x 2 mm bar-like test piece was reduced by approximately 75% by introducing Zn1.6Mg0.4P2O7 at 40 vol%. The effect of Zn1.6Mg0.4P2O7 at 30 vol% is similar to that of a conventional SiO2 filler at 40 vol%. Reducing the residual deformation through fillers would reduce energy consumption and simplify the device by avoiding build stage and chamber heating.
我们使用负热膨胀(NTE)材料填充物 Zn1.6Mg0.4P2O7 研究了如何抑制残余翘曲。为了重点研究热膨胀对残余翘曲的影响,我们使用丙烯腈-丁二烯-苯乙烯作为基体,它是一种无定形聚合物,在液固相变附近体积变化很小。我们使用捏合机制备了复合材料颗粒,并使用挤出机生产了用于熔融沉积建模(FDM)的长丝。我们使用标准的 FDM 机器制造了一个棒状测试片,并使用三维扫描测量了翘曲变形。实验结果得到了有限元法的支持。我们还比较了类似尺寸的二氧化硅粉末,讨论了 NTE 与传统填料相比的优势。通过引入 40 Vol% 的 Zn1.6Mg0.4P2O7,100 mm x 5 mm x 2 mm 棒状试件的翘曲变形减少了约 75%。Zn1.6Mg0.4P2O7含量为 30 Vol%时的效果与传统的二氧化硅填料含量为 40 Vol%时的效果相似。通过填料减少残余变形可降低能耗,并通过避免构建阶段和腔室加热来简化设备。
{"title":"Reduction of the residual warpage of fused deposition modeling by negative thermal expansion filler","authors":"Masaya Sakagami,&nbsp;Saito Ishiue,&nbsp;Maiki Kawaguchi,&nbsp;Akihiro Takezawa","doi":"10.1016/j.matdes.2024.113472","DOIUrl":"10.1016/j.matdes.2024.113472","url":null,"abstract":"<div><div>We investigated the suppression of residual warpage using a negative thermal expansion (NTE) material filler, Zn<sub>1.6</sub>Mg<sub>0.4</sub>P<sub>2</sub>O<sub>7</sub>. To focus on the effect of thermal expansion on residual warpage, we used acrylonitrile-butadiene-styrene, which is an amorphous polymer with a small volume change around the liquid–solid phase transition, as the matrix. Composite pellets were prepared using a kneader, and filaments were produced for fused deposition modeling (FDM) using an extruder. We fabricated a bar-like test piece using a standard FDM machine and measured the warpage deformation using 3D scanning. The experimental results were supported by the finite element method. We also compared similarly sized SiO<sub>2</sub> powders to discuss the advantages of NTE over conventional fillers. The warpage of a 100 mm x 5 mm x 2 mm bar-like test piece was reduced by approximately 75% by introducing Zn<sub>1.6</sub>Mg<sub>0.4</sub>P<sub>2</sub>O<sub>7</sub> at 40 vol%. The effect of Zn<sub>1.6</sub>Mg<sub>0.4</sub>P<sub>2</sub>O<sub>7</sub> at 30 vol% is similar to that of a conventional SiO<sub>2</sub> filler at 40 vol%. Reducing the residual deformation through fillers would reduce energy consumption and simplify the device by avoiding build stage and chamber heating.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113472"},"PeriodicalIF":7.6,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials & Design
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1