Pub Date : 2024-10-11DOI: 10.1016/j.microc.2024.111884
Asiyeh Moteallemi , Mohammad Hadi Dehghani , Fatemeh Momeniha , Salah Azizi
Nanoplastics (NPs) with a size of less than 1 µm have received worldwide attention as an emerging environmental pollutant. Because they are easier for organisms to absorb, they pose higher ecological and health risks than microplastics. Natural water is a significant source of nanoplastics in the environment, and it is important for both human and ecosystem health. The analysis of nanoplastics in waters is still lacking reliable and harmonized methods. Most of the studies successfully identified and removed standard reference nanoplastics from environmental samples, but they were unable to quantify nanoplastics from real field samples. Here, we reviewed studies that measured and removed nanoplastics in environmental waters, such as seawater, rivers, drinking water, wastewater, snow, and so on. Pyrolysis gas chromatography–mass spectrometry (py-GC–MS) and surface-enhanced Raman spectroscopy were two common methods for analyzing nanoplastics in real samples. Mass spectrometry methods are time-consuming and cannot analyze the full nanorange due to particle size restrictions. This approach for measuring nanoplastic mass concentration may involve mistakes and require larger sample quantities. Various strategies for removing nanoplastics, including centrifugation, coagulation, filtration, flocculation, and adsorption, were reviewed. The effectiveness of nanoplastic removal is influenced by parameters such as source, size, type, and purification process. The removal efficiency for nanoplastics is 99 % when combined with filtration and coagulation processes. This study provides basic information for future research on the analysis and removal of nanoplastics from water and wastewater.
{"title":"Nanoplastics as emerging contaminants: A systematic review of analytical processes, removal strategies from water environments, challenges and perspective","authors":"Asiyeh Moteallemi , Mohammad Hadi Dehghani , Fatemeh Momeniha , Salah Azizi","doi":"10.1016/j.microc.2024.111884","DOIUrl":"10.1016/j.microc.2024.111884","url":null,"abstract":"<div><div>Nanoplastics (NPs) with a size of less than 1 µm have received worldwide attention as an emerging environmental pollutant. Because they are easier for organisms to absorb, they pose higher ecological and health risks than microplastics. Natural water is a significant source of nanoplastics in the environment, and it is important for both human and ecosystem health. The analysis of nanoplastics in waters is still lacking reliable and harmonized methods. Most of the studies successfully identified and removed standard reference nanoplastics from environmental samples, but they were unable to quantify nanoplastics from real field samples. Here, we reviewed studies that measured and removed nanoplastics in environmental waters, such as seawater, rivers, drinking water, wastewater, snow, and so on. Pyrolysis gas chromatography–mass spectrometry (py-GC–MS) and surface-enhanced Raman spectroscopy were two common methods for analyzing nanoplastics in real samples. Mass spectrometry methods are time-consuming and cannot analyze the full nanorange due to particle size restrictions. This approach for measuring nanoplastic mass concentration may involve mistakes and require larger sample quantities. Various strategies for removing nanoplastics, including centrifugation, coagulation, filtration, flocculation, and adsorption, were reviewed. The effectiveness of nanoplastic removal is influenced by parameters such as source, size, type, and purification process. The removal efficiency for nanoplastics is 99 % when combined with filtration and coagulation processes. This study provides basic information for future research on the analysis and removal of nanoplastics from water and wastewater.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"207 ","pages":"Article 111884"},"PeriodicalIF":4.9,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.microc.2024.111903
Marcello Locatelli , Abuzar Kabir , Miryam Perrucci , Halil Ibrahim Ulusoy , Songül Ulusoy , Natalia Manousi , Victoria Samanidou , Imran Ali , Sariye Irem Kaya , Fotouh R. Mansour , Ahmet Cetinkaya , Sibel A. Ozkan
In the last century, in the analytical field, the interest of researchers in the preliminary phases of the analysis has grown more and more, giving space to important innovations in the field of sample preparation, but above all leading to a renewed interest in this field. It is known that these phases are the most critical of the entire analytical process not only in terms of time, but also in terms of final measurement error. In this perspective, in recent years a growing interest of the Scientific Community and important efforts have been directed towards not only the development of innovative techniques that allow a reduction in sample manipulation while maintaining high analytical performance, but at the same time also towards a reduction in the environmental impact that such procedures can have. In this direction, there is also the possibility of intervening to reduce the quantity of sample processed and, consequently, obtain a reduction in the volumes of solvents and non-green reagents.
The main objective of this review is to provide an overview of the literature focused on the most modern sorbent-based sampling and sample preparation techniques that are applied (or have been recently developed) in the three main “sections” of instrumental analysis (sensor-based analysis, electrochemical analysis and chromatography-based analysis). In particular, the Authors wanted to outline the main advantages and disadvantages of the different procedures and above all evaluate how the different methods are applied in the field of biological matrix analysis (biological fluids, tissues, etc.). A final paragraph also considers an evaluation and estimate (using the most recent tools) for the environmental impact assessment and how they can be applied in this field (AGREE, AGREEprep, and MoGAPI). Through these applications it is also evaluated how continuous improvement is possible by checking the “critical” points and remedying/optimizing the procedures in this sense.
The present review finally concludes with a section on future perspectives in which the Authors (based on their vast experience in their respective fields of application) have tried to hypothesize a possible future and a possible way to be considered to ensure that this part of the analytical process can further progress and support the new challenges that daily arise in the field of bioanalytical applications.
{"title":"Recent trends in sampling and sorbent-based sample preparation procedures for bioanalytical applications","authors":"Marcello Locatelli , Abuzar Kabir , Miryam Perrucci , Halil Ibrahim Ulusoy , Songül Ulusoy , Natalia Manousi , Victoria Samanidou , Imran Ali , Sariye Irem Kaya , Fotouh R. Mansour , Ahmet Cetinkaya , Sibel A. Ozkan","doi":"10.1016/j.microc.2024.111903","DOIUrl":"10.1016/j.microc.2024.111903","url":null,"abstract":"<div><div>In the last century, in the analytical field, the interest of researchers in the preliminary phases of the analysis has grown more and more, giving space to important innovations in the field of sample preparation, but above all leading to a renewed interest in this field. It is known that these phases are the most critical of the entire analytical process not only in terms of time, but also in terms of final measurement error. In this perspective, in recent years a growing interest of the Scientific Community and important efforts have been directed towards not only the development of innovative techniques that allow a reduction in sample manipulation while maintaining high analytical performance, but at the same time also towards a reduction in the environmental impact that such procedures can have. In this direction, there is also the possibility of intervening to reduce the quantity of sample processed and, consequently, obtain a reduction in the volumes of solvents and non-green reagents.</div><div>The main objective of this review is to provide an overview of the literature focused on the most modern sorbent-based sampling and sample preparation techniques that are applied (or have been recently developed) in the three main “sections” of instrumental analysis (sensor-based analysis, electrochemical analysis and chromatography-based analysis). In particular, the Authors wanted to outline the main advantages and disadvantages of the different procedures and above all evaluate how the different methods are applied in the field of biological matrix analysis (biological fluids, tissues, etc.). A final paragraph also considers an evaluation and estimate (using the most recent tools) for the environmental impact assessment and how they can be applied in this field (AGREE, AGREEprep, and MoGAPI). Through these applications it is also evaluated how continuous improvement is possible by checking the “critical” points and remedying/optimizing the procedures in this sense.</div><div>The present review finally concludes with a section on future perspectives in which the Authors (based on their vast experience in their respective fields of application) have tried to hypothesize a possible future and a possible way to be considered to ensure that this part of the analytical process can further progress and support the new challenges that daily arise in the field of bioanalytical applications.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"207 ","pages":"Article 111903"},"PeriodicalIF":4.9,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.microc.2024.111907
Laetitia Maidodou , Damien Steyer , Marie-Anaïs Monat , Michelle Leemans , Isabelle Fromantin , Eric Marchioni , Igor Clarot
Pathologies such as cancers or infectious diseases can induce modifications in the concentrations of urinary volatile metabolites. Indeed, urine is a large source of Volatile Organic Compounds (VOCs) from the human body. Canine olfaction and Gas Chromatography coupled to Mass Spectrometry (GC–MS) systems are promising tools for the development of non-invasive diagnosis methods based on the analysis of urine. This review paper aims to provide an overview of materials and methods found in the literature for urinary VOCs analysis by detection dogs and GC–MS instruments. It highlights the impact of urine collection procedures and storage conditions. Then, sample preparation protocols for canine olfaction are discussed, as well as for GC–MS analysis, focusing on headspace-based extraction techniques. In the case of instrumental analysis, a significant variability of volatile profiles can be observed depending on the sample preparation (urine pH, extraction methods), and analytical parameters. Lastly, limitations of urinary VOCs analysis for medical diagnosis purposes are considered.
{"title":"Harnessing the potential of sniffing dogs and GC–MS in analyzing human urine: A comprehensive review of sample preparation and extraction techniques","authors":"Laetitia Maidodou , Damien Steyer , Marie-Anaïs Monat , Michelle Leemans , Isabelle Fromantin , Eric Marchioni , Igor Clarot","doi":"10.1016/j.microc.2024.111907","DOIUrl":"10.1016/j.microc.2024.111907","url":null,"abstract":"<div><div>Pathologies such as cancers or infectious diseases can induce modifications in the concentrations of urinary volatile metabolites. Indeed, urine is a large source of Volatile Organic Compounds (VOCs) from the human body. Canine olfaction and Gas Chromatography coupled to Mass Spectrometry (GC–MS) systems are promising tools for the development of non-invasive diagnosis methods based on the analysis of urine. This review paper aims to provide an overview of materials and methods found in the literature for urinary VOCs analysis by detection dogs and GC–MS instruments. It highlights the impact of urine collection procedures and storage conditions. Then, sample preparation protocols for canine olfaction are discussed, as well as for GC–MS analysis, focusing on headspace-based extraction techniques. In the case of instrumental analysis, a significant variability of volatile profiles can be observed depending on the sample preparation (urine pH, extraction methods), and analytical parameters. Lastly, limitations of urinary VOCs analysis for medical diagnosis purposes are considered.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"207 ","pages":"Article 111907"},"PeriodicalIF":4.9,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.microc.2024.111878
Miao Liu , Kayhaneh Berijani , Jiaxin Ma , Sirui Guo , Yanqiong Peng , Ying Pan , Ali Morsali , Yong Huang
According to the continuous development of today’s society, the production of environmental pollutants has been a severe concern observed in the drug industries. For instance, the demand for the consumption of antibiotics is one of them that is increasing, and the residual hazards of the broad-spectrum antibiotic chloramphenicol (CAP) are widespread, which can not only pollute the environment but can also have negative health impacts on humans. Thus, the detection of CAP is of great significance. Among the used chemical materials to solve this issue, the essential metal–organic skeletons, namely metal–organic frameworks (MOFs) have promising applications due to their advantages such as large specific surface area (SA), abundant pores, and luminescent properties. This paper describes the principles of electrochemical, fluorescent, and probe assays related to the detection of CAP. A more comprehensive overview of the use of MOFs for the detection of CAP and other antibiotics in water and food and how CAP can be monitored with high sensitivity, high selectivity, and stability in the form of various sensors is given, as well as future perspectives on MOFs materials that have the potential to be used as sensors.
随着当今社会的不断发展,环境污染物的产生已成为药品行业严重关注的问题。例如,人们对抗生素的消费需求与日俱增,而广谱抗生素氯霉素(CAP)的残留危害十分普遍,不仅会污染环境,还会对人体健康产生负面影响。因此,CAP 的检测意义重大。在用于解决这一问题的化学材料中,重要的金属有机骨架,即金属有机框架(MOFs)因其具有大比表面积(SA)、丰富的孔隙和发光特性等优点而具有广阔的应用前景。本文介绍了与检测 CAP 相关的电化学、荧光和探针测定原理。本文更全面地概述了如何利用 MOFs 检测水和食品中的 CAP 及其他抗生素,以及如何以各种传感器的形式高灵敏度、高选择性和高稳定性地监测 CAP,并展望了有可能用作传感器的 MOFs 材料的未来前景。
{"title":"Recent advances and principles of metal–organic framework for the detection of chloramphenicol: Perspectives and challenges","authors":"Miao Liu , Kayhaneh Berijani , Jiaxin Ma , Sirui Guo , Yanqiong Peng , Ying Pan , Ali Morsali , Yong Huang","doi":"10.1016/j.microc.2024.111878","DOIUrl":"10.1016/j.microc.2024.111878","url":null,"abstract":"<div><div>According to the continuous development of today’s society, the production of environmental pollutants has been a severe concern observed in the drug industries. For instance, the demand for the consumption of antibiotics is one of them that is increasing, and the residual hazards of the broad-spectrum antibiotic chloramphenicol (CAP) are widespread, which can not only pollute the environment but can also have negative health impacts on humans. Thus, the detection of CAP is of great significance. Among the used chemical materials to solve this issue, the essential metal–organic skeletons, namely metal–organic frameworks (MOFs) have promising applications due to their advantages such as large specific surface area (SA), abundant pores, and luminescent properties. This paper describes the principles of electrochemical, fluorescent, and probe assays related to the detection of CAP. A more comprehensive overview of the use of MOFs for the detection of CAP and other antibiotics in water and food and how CAP can be monitored with high sensitivity, high selectivity, and stability in the form of various sensors is given, as well as future perspectives on MOFs materials that have the potential to be used as sensors.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"207 ","pages":"Article 111878"},"PeriodicalIF":4.9,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.microc.2024.111858
M.A. Diab , Heba A. El-Sabban , Kwang-Hyun Baek
Fumonisins (FMS), a class of Mycotoxins mostly produced by fusarium species, are found in polluted food and feed and can seriously harm humans and animals. To ensure food safety and regulatory compliance, accurate and dependable analytical techniques are utilized in detecting and measuring these pollutants. This mini-review focused on sophisticated clean-up techniques for Fumonisin (FM) analysis utilizing molecularly imprinted polymer solid phase extraction (MIPSPE). The majority of the molecularly imprinted polymers (MIPs) categories that are intended to extract FMs from the food matrix were discussed, along with a list of well-known chromatographic techniques and MIP-based electrochemical sensors to detect FMs.
By imitating FM-specific natural sites, MIPSPE provides great selectivity, sensitivity, and reproducibility while improving the accuracy of subsequent analytical tests. This review includes the synthesis of MIPs, extraction protocol optimization, and integration with several detection techniques like High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography-Mass Spectroscopy (LC-MS). It also covers recent advancements in MIPSPE technology.
{"title":"Toward advanced analytical procedures for detecting Fumonisins in contaminated food and feed using molecularly imprinted polymers: A mini review","authors":"M.A. Diab , Heba A. El-Sabban , Kwang-Hyun Baek","doi":"10.1016/j.microc.2024.111858","DOIUrl":"10.1016/j.microc.2024.111858","url":null,"abstract":"<div><div>Fumonisins (FMS), a class of Mycotoxins mostly produced by fusarium species, are found in polluted food and feed and can seriously harm humans and animals. To ensure food safety and regulatory compliance, accurate and dependable analytical techniques are utilized in detecting and measuring these pollutants. This mini-review focused on sophisticated clean-up techniques for Fumonisin (FM) analysis utilizing molecularly imprinted polymer solid phase extraction (MIPSPE). The majority of the molecularly imprinted polymers (MIPs) categories that are intended to extract FMs from the food matrix were discussed, along with a list of well-known chromatographic techniques and MIP-based electrochemical sensors to detect FMs<strong>.</strong></div><div>By imitating FM-specific natural sites, MIPSPE provides great selectivity, sensitivity, and reproducibility while improving the accuracy of subsequent analytical tests. This review includes the synthesis of MIPs, extraction protocol optimization, and integration with several detection techniques like High-Performance Liquid Chromatography <strong>(</strong>HPLC) and Liquid Chromatography-Mass Spectroscopy (LC-MS). It also covers recent advancements in MIPSPE technology.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"207 ","pages":"Article 111858"},"PeriodicalIF":4.9,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cardiovascular disease (CVD) is the leading cause of global mortality. Early identification of CVD and subsequent intervention can significantly improve treatment outcomes. A successful approach to promptly diagnose CVD involves identifying biomarkers present in bodily fluids. Apolipoprotein B-100 (apoB-100) is a critical biomarker associated with CVD and plays a significant role in its progression. Elevated levels of apoB-100 (>100 mg/dL) are linked to a higher risk of CVD, underscoring its importance for accurate diagnosis and effective treatment strategies. Electrochemical biosensors offer advantages in monitoring apoB-100 due to their speed, portability, and on-site analysis capabilities. This review provides a comprehensive analysis of how apoB-100 levels change in biological fluids as CVD advances. It includes a detailed explanation of the construction and analytical capabilities of various electrochemical sensors. A comparison of electrochemical biosensors using amperometric, potentiometric, voltammetric, conductometric, and impedimetric methods is presented. Additionally, the suitability of these sensors for measuring apoB-100 in clinical samples, including serum, plasma, whole blood, and other bodily fluids, is evaluated. Furthermore, the challenges associated with electrochemical sensors as diagnostic tools for apoB-100 in CVD biomarker detection are examined, and potential future directions and trends are outlined.
{"title":"The role of electrochemical biosensors in monitoring Apolipoprotein B-100 as a diagnostic tool for cardiovascular disease","authors":"Sara Ranjbari , Wael Almahmeed , Prashant Kesharwani , Amirhossein Sahebkar","doi":"10.1016/j.microc.2024.111867","DOIUrl":"10.1016/j.microc.2024.111867","url":null,"abstract":"<div><div>Cardiovascular disease (CVD) is the leading cause of global mortality. Early identification of CVD and subsequent intervention can significantly improve treatment outcomes. A successful approach to promptly diagnose CVD involves identifying biomarkers present in bodily fluids. Apolipoprotein B-100 (apoB-100) is a critical biomarker associated with CVD and plays a significant role in its progression. Elevated levels of apoB-100 (>100 mg/dL) are linked to a higher risk of CVD, underscoring its importance for accurate diagnosis and effective treatment strategies. Electrochemical biosensors offer advantages in monitoring apoB-100 due to their speed, portability, and on-site analysis capabilities. This review provides a comprehensive analysis of how apoB-100 levels change in biological fluids as CVD advances. It includes a detailed explanation of the construction and analytical capabilities of various electrochemical sensors. A comparison of electrochemical biosensors using amperometric, potentiometric, voltammetric, conductometric, and impedimetric methods is presented. Additionally, the suitability of these sensors for measuring apoB-100 in clinical samples, including serum, plasma, whole blood, and other bodily fluids, is evaluated. Furthermore, the challenges associated with electrochemical sensors as diagnostic tools for apoB-100 in CVD biomarker detection are examined, and potential future directions and trends are outlined.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"207 ","pages":"Article 111867"},"PeriodicalIF":4.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1016/j.microc.2024.111846
Sohan G. Jawarkar, Megha Pillai, Prasad Chavan, Pinaki Sengupta
Smart biomaterials are gaining increasing importance in the field of bioanalytical sciences because of the unique ability to change their inherent properties as per need. Recently, many advancements have been witnessed in the storage techniques of biological samples in solid state. Among these, dried blood spot and dried plasma spot methods have unique advantages as cutting-edge approaches. However, such methods are capable to accommodate only a very low volume of sample. To overcome this limitation, the application of smart biomaterial for the storage and extraction of biological samples is now being widely explored. The primary focus of this review is to assess the potential of smart biomaterial for the storage and extraction of bioanalytical samples. The applicability of biomaterials as sorbents for bioanalytical sample extraction and storage emphasizing their unique nature, characterization techniques, and constraints are critically evaluated in this review. Furthermore, applications of biomaterials in tissue engineering, drug delivery, and 3D-printing showcasing their potential to address key challenges in healthcare have been discussed. This review provides a clear-insights into the future directions of smart biomaterial as a sorbent for bioanalytical sample preparation and storage. Interdisciplinary collaboration and translational efforts are identified as a need of the hour to harness the full potential of smart biomaterials in clinical applications.
{"title":"Next-generation smart biomaterials for storage and extraction of bioanalytical samples: Current standing and path forward","authors":"Sohan G. Jawarkar, Megha Pillai, Prasad Chavan, Pinaki Sengupta","doi":"10.1016/j.microc.2024.111846","DOIUrl":"10.1016/j.microc.2024.111846","url":null,"abstract":"<div><div>Smart biomaterials are gaining increasing importance in the field of bioanalytical sciences because of the unique ability to change their inherent properties as per need. Recently, many advancements have been witnessed in the storage techniques of biological samples in solid state. Among these, dried blood spot and dried plasma spot methods have unique advantages as cutting-edge approaches. However, such methods are capable to accommodate only a very low volume of sample. To overcome this limitation, the application of smart biomaterial for the storage and extraction of biological samples is now being widely explored. The primary focus of this review is to assess the potential of smart biomaterial for the storage and extraction of bioanalytical samples. The applicability of biomaterials as sorbents for bioanalytical sample extraction and storage emphasizing their unique nature, characterization techniques, and constraints are critically evaluated in this review. Furthermore, applications of biomaterials in tissue engineering, drug delivery, and 3D-printing showcasing their potential to address key challenges in healthcare have been discussed. This review provides a clear-insights into the future directions of smart biomaterial as a sorbent for bioanalytical sample preparation and storage. Interdisciplinary collaboration and translational efforts are identified as a need of the hour to harness the full potential of smart biomaterials in clinical applications.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"207 ","pages":"Article 111846"},"PeriodicalIF":4.9,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1016/j.microc.2024.111865
Jeongeun Lee , Beelee Chua , Ahjeong Son
Bacterial lysis is a critical step in bioassays and serves as a pretreatment to extract genomic material before various genomic bioassays. These assays are used for microbial profiling, identification, or quantification. In the realm of environmental monitoring, the effective management of microbial environments, such as soil with nitrogen-fixing bacteria or lakes and rivers with algal blooms, is crucial. To achieve successful microbial detection and environmental monitoring, we explored various existing bacterial lysis techniques. Initially, we discuss the general techniques for chemical and physical bacterial lysis that have been optimized and integrated into commercial DNA extraction kits, the current gold standard for bacterial lysis. Next, we introduce recent advancements in lysis technologies, particularly in the context of rapid, portable, and on-site implementation, where traditional DNA extraction kits may be time consuming or impractical. Finally, we provide a concise overview of developments in portable devices and systems designed for bacterial cell lysis. This comprehensive review of the bacterial lysis techniques research will improve analytical methods in environmental microbiology and biotechnology.
细菌裂解是生物测定中的一个关键步骤,也是各种基因组生物测定前提取基因组材料的预处理。这些检测方法可用于微生物分析、鉴定或定量。在环境监测领域,有效管理微生物环境至关重要,例如存在固氮菌的土壤或藻类大量繁殖的湖泊和河流。为了成功实现微生物检测和环境监测,我们探索了现有的各种细菌裂解技术。首先,我们讨论了化学和物理细菌裂解的一般技术,这些技术已被优化并集成到商业 DNA 提取试剂盒(目前细菌裂解的黄金标准)中。接下来,我们将介绍裂解技术的最新进展,特别是在快速、便携和现场实施方面,因为传统的 DNA 提取试剂盒可能会耗费时间或不切实际。最后,我们简要概述了专为细菌细胞裂解设计的便携式设备和系统的发展情况。这篇细菌裂解技术研究综述将改进环境微生物学和生物技术领域的分析方法。
{"title":"Recent advances in bacterial lysis techniques for environmental monitoring: A review","authors":"Jeongeun Lee , Beelee Chua , Ahjeong Son","doi":"10.1016/j.microc.2024.111865","DOIUrl":"10.1016/j.microc.2024.111865","url":null,"abstract":"<div><div>Bacterial lysis is a critical step in bioassays and serves as a pretreatment to extract genomic material before various genomic bioassays. These assays are used for microbial profiling, identification, or quantification. In the realm of environmental monitoring, the effective management of microbial environments, such as soil with nitrogen-fixing bacteria or lakes and rivers with algal blooms, is crucial. To achieve successful microbial detection and environmental monitoring, we explored various existing bacterial lysis techniques. Initially, we discuss the general techniques for chemical and physical bacterial lysis that have been optimized and integrated into commercial DNA extraction kits, the current gold standard for bacterial lysis. Next, we introduce recent advancements in lysis technologies, particularly in the context of rapid, portable, and on-site implementation, where traditional DNA extraction kits may be time consuming or impractical. Finally, we provide a concise overview of developments in portable devices and systems designed for bacterial cell lysis. This comprehensive review of the bacterial lysis techniques research will improve analytical methods in environmental microbiology and biotechnology.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"207 ","pages":"Article 111865"},"PeriodicalIF":4.9,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this review, we focused on the nanomaterials and applications used to separate and enrich the small molecule active components of traditional Chinese medicine (TCM) in the past 5 years (2018–2023), including magnetic molecularly imprinted polymers (MMIPs), magnetic surface functionalized dummy template molecularly imprinted polymers (magnetic surface functionalized DMIPs), borate functionalized magnetic solids (BFMS), metal–organic framework materials (MOFs) and molecularly imprinted mesoporous silica (MIP-MS). This review provides a reference for further innovation and development of separation and enrichment technology of pharmacodynamic substances in TCM. Among them, MMIPs have been applied more in the active ingredients of small molecules in TCM, mainly for flavonoids, terpenoids, alkaloids and organic acids, and this technology is more advanced. Magnetic surface functionalized DMIPs have high specificity and selectivity for target analytes, which can shorten the separation and enrichment time and increase the yield. The use of this manomaterial for the separation and enrichment of some natural active ingredients can effectively make up for the shortcomings of traditional MIPs. In addition, studies in the past 5 years have also shown some progress in the separation and enrichment of small molecule components by BFMS, MOFs and MIP-MS. For example, BFMS can be used to separate glycosides, MOFs to separate flavonoids, and MIP-MS to separate organic acids. However, the application of these materials for small molecules of TCM is still insufficient, including fewer application examples in the field of chromatography, and some of the materials have never even been utilized. Meanwhile, most of them have only been initially applied to solid-phase extraction in the pre-treatment of chromatography. Therefore, we believe that we can try to apply these nanomaterials more to the separation and enrichment of the active ingredients of small molecules in TCM afterwards, thus advancing the development of chromatography.
{"title":"Recent advances in the application of nanomaterials for separation and enrichments of small molecule active ingredients of traditional Chinese medicine","authors":"Yi-zhen Sun, Ying Zhou, Xu-zhao Li, Shuai-nan Zhang","doi":"10.1016/j.microc.2024.111827","DOIUrl":"10.1016/j.microc.2024.111827","url":null,"abstract":"<div><div>In this review, we focused on the nanomaterials and applications used to separate and enrich the small molecule active components of traditional Chinese medicine (TCM) in the past 5 years (2018–2023), including magnetic molecularly imprinted polymers (MMIPs), magnetic surface functionalized dummy template molecularly imprinted polymers (magnetic surface functionalized DMIPs), borate functionalized magnetic solids (BFMS), metal–organic framework materials (MOFs) and molecularly imprinted mesoporous silica (MIP-MS). This review provides a reference for further innovation and development of separation and enrichment technology of pharmacodynamic substances in TCM. Among them, MMIPs have been applied more in the active ingredients of small molecules in TCM, mainly for flavonoids, terpenoids, alkaloids and organic acids, and this technology is more advanced. Magnetic surface functionalized DMIPs have high specificity and selectivity for target analytes, which can shorten the separation and enrichment time and increase the yield. The use of this manomaterial for the separation and enrichment of some natural active ingredients can effectively make up for the shortcomings of traditional MIPs. In addition, studies in the past 5 years have also shown some progress in the separation and enrichment of small molecule components by BFMS, MOFs and MIP-MS. For example, BFMS can be used to separate glycosides, MOFs to separate flavonoids, and MIP-MS to separate organic acids. However, the application of these materials for small molecules of TCM is still insufficient, including fewer application examples in the field of chromatography, and some of the materials have never even been utilized. Meanwhile, most of them have only been initially applied to solid-phase extraction in the pre-treatment of chromatography. Therefore, we believe that we can try to apply these nanomaterials more to the separation and enrichment of the active ingredients of small molecules in TCM afterwards, thus advancing the development of chromatography.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"207 ","pages":"Article 111827"},"PeriodicalIF":4.9,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1016/j.microc.2024.111826
Fareeha Arshad, Bong Jing Yee, Koo Pey Ting, Arifah Arina Syairah Janudin, Muhammad Nadzre Adzremeen bin Amir, Minhaz Uddin Ahmed
With the recent shift in perspective in compacting diagnostic laboratories to recreate miniaturised and portable diagnostic tools that can perform rapid, on-site detection, novel nanomaterials have been explored for their application in developing unique point-of-care systems. Upon integration with CRISPR/Cas, it can perform large-scale screening and potentially be applied even under remote conditions, especially in sudden outbreaks and pandemics. Despite the high trans-cleavage activity of the CRISPR/Cas system to give a rapid fluorometric response, their application towards detecting target analytes from complex samples suffers from limited stability and sensitivity. On the contrary, nanomaterials demonstrate robust activity and versatile properties, including rapid optical and electrocatalytic activity, which places them in an ideal position to be applied as signal amplifier systems along with CRISPR/Cas. With the integration of trans-cleavage activity of CRISPR/Cas and nanomaterials, it is possible to develop the next generation of diagnostics that can detect various kinds of biomarkers using different optical and electrochemical transduction methods, which play a crucial role in personalised medicine and precision agriculture. Through this review, we aim to explore the recent advances in the field of CRISPR/Cas – nanomaterial-based biosensors that offer the promising potential to be applied in the highly sensitive and selective detection of multiple target analytes. The potential of applying such biosensors towards developing multiplex biosensors will also be explored, followed by the outlook of this promising diagnostic technology.
{"title":"Nanomaterials as signal amplifiers in CRISPR/Cas biosensors: A path toward multiplex point-of-care diagnostics","authors":"Fareeha Arshad, Bong Jing Yee, Koo Pey Ting, Arifah Arina Syairah Janudin, Muhammad Nadzre Adzremeen bin Amir, Minhaz Uddin Ahmed","doi":"10.1016/j.microc.2024.111826","DOIUrl":"10.1016/j.microc.2024.111826","url":null,"abstract":"<div><div>With the recent shift in perspective in compacting diagnostic laboratories to recreate miniaturised and portable diagnostic tools that can perform rapid, on-site detection, novel nanomaterials have been explored for their application in developing unique point-of-care systems. Upon integration with CRISPR/Cas, it can perform large-scale screening and potentially be applied even under remote conditions, especially in sudden outbreaks and pandemics. Despite the high <em>trans</em>-cleavage activity of the CRISPR/Cas system to give a rapid fluorometric response, their application towards detecting target analytes from complex samples suffers from limited stability and sensitivity. On the contrary, nanomaterials demonstrate robust activity and versatile properties, including rapid optical and electrocatalytic activity, which places them in an ideal position to be applied as signal amplifier systems along with CRISPR/Cas. With the integration of <em>trans</em>-cleavage activity of CRISPR/Cas and nanomaterials, it is possible to develop the next generation of diagnostics that can detect various kinds of biomarkers using different optical and electrochemical transduction methods, which play a crucial role in personalised medicine and precision agriculture. Through this review, we aim to explore the recent advances in the field of CRISPR/Cas – nanomaterial-based biosensors that offer the promising potential to be applied in the highly sensitive and selective detection of multiple target analytes. The potential of applying such biosensors towards developing multiplex biosensors will also be explored, followed by the outlook of this promising diagnostic technology.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"207 ","pages":"Article 111826"},"PeriodicalIF":4.9,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}