Pub Date : 2024-09-01DOI: 10.1016/j.nanoso.2024.101304
M.M. Rhaman , M.S. Miah , T. Ahmad
Multiferroic bismuth ferrite shows a massive interest in its potential application in magnetic and electronic devices however maintaining high purity in bismuth ferrite nanoparticles at different temperatures is a difficult task for researchers. Several samples are prepared with different annealing temperatures and investigated in different atmospheres to recognize magnetic and electrical properties. A xerogel powder of bismuth ferrite is synthesized by the sol-gel route. The powder then anneals at 500, 600, 700, and 800 °C to form a nanostructure. X-ray diffraction analysis confirms that the annealed samples are in rhombohedral structure with R3c space symmetry and show a significant increase in crystal size and reduction in lattice strain with increasing annealing temperature. FESEM reveals the microstructural features of annealed nanoparticles which represent the conversion of spherical to cubic morphology with annealing temperature. Vibrating sample magnetometer investigations were conducted as a function of annealing and surface (300, 200, 80 K) temperatures. Insignificant variations of saturation magnetization are detected with surface temperature, but considerable degradation is observed with increasing annealing temperatures. The band-gap energy of bismuth ferrite nanoparticles annealed at 500, 600, 700, and 800 ºC is measured and significant escalation is observed from 1.93 to 2.06 eV. Electrical property analyses have been investigated as a function of frequency at different surface temperatures of 50, 100, 150, 200, 250, 300, and 350 °C. Remarkable variations are established in the electric and magnetic properties. Bismuth ferrite has been widely investigated due to its promising multifunctional device applications such as memory devices, spintronics, sensors, actuators, and photocatalytic and photovoltaic applications.
多铁性铋铁氧体在磁性和电子设备中的潜在应用引起了人们的极大兴趣,但在不同温度下保持铋铁氧体纳米颗粒的高纯度对研究人员来说是一项艰巨的任务。我们用不同的退火温度制备了几种样品,并在不同的气氛中对其进行了研究,以确认其磁性和电性。通过溶胶-凝胶法合成了铁铋的异凝胶粉末。粉末在 500、600、700 和 800 °C 下退火形成纳米结构。X 射线衍射分析证实,退火后的样品为 R3c 空间对称的斜方体结构,随着退火温度的升高,晶体尺寸显著增大,晶格应变降低。FESEM 揭示了退火纳米粒子的微观结构特征,即随着退火温度的升高,球形形态转变为立方形态。振动样品磁力计研究是作为退火温度和表面温度(300、200、80 K)的函数进行的。检测到饱和磁化率随表面温度的变化不大,但随着退火温度的升高,饱和磁化率有相当大的下降。测量了在 500、600、700 和 800 ºC 下退火的铋铁氧体纳米粒子的带隙能,发现带隙能从 1.93 eV 显著上升到 2.06 eV。在 50、100、150、200、250、300 和 350 °C 的不同表面温度下,研究了电特性分析与频率的函数关系。电性能和磁性能都发生了显著变化。由于铋铁氧体在存储器件、自旋电子学、传感器、致动器以及光催化和光伏应用等多功能器件方面的应用前景广阔,因此对其进行了广泛的研究。
{"title":"Investigation of magnetic and electric properties of bismuth ferrite nanoparticles at different temperatures","authors":"M.M. Rhaman , M.S. Miah , T. Ahmad","doi":"10.1016/j.nanoso.2024.101304","DOIUrl":"10.1016/j.nanoso.2024.101304","url":null,"abstract":"<div><p>Multiferroic bismuth ferrite shows a massive interest in its potential application in magnetic and electronic devices however maintaining high purity in bismuth ferrite nanoparticles at different temperatures is a difficult task for researchers. Several samples are prepared with different annealing temperatures and investigated in different atmospheres to recognize magnetic and electrical properties. A xerogel powder of bismuth ferrite is synthesized by the sol-gel route. The powder then anneals at 500, 600, 700, and 800 °C to form a nanostructure. X-ray diffraction analysis confirms that the annealed samples are in rhombohedral structure with R3c space symmetry and show a significant increase in crystal size and reduction in lattice strain with increasing annealing temperature. FESEM reveals the microstructural features of annealed nanoparticles which represent the conversion of spherical to cubic morphology with annealing temperature. Vibrating sample magnetometer investigations were conducted as a function of annealing and surface (300, 200, 80 K) temperatures. Insignificant variations of saturation magnetization are detected with surface temperature, but considerable degradation is observed with increasing annealing temperatures. The band-gap energy of bismuth ferrite nanoparticles annealed at 500, 600, 700, and 800 ºC is measured and significant escalation is observed from 1.93 to 2.06 eV. Electrical property analyses have been investigated as a function of frequency at different surface temperatures of 50, 100, 150, 200, 250, 300, and 350 °C. Remarkable variations are established in the electric and magnetic properties. Bismuth ferrite has been widely investigated due to its promising multifunctional device applications such as memory devices, spintronics, sensors, actuators, and photocatalytic and photovoltaic applications.</p></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"39 ","pages":"Article 101304"},"PeriodicalIF":5.45,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.nanoso.2024.101309
S. Castro-Lopes , D.M. Oliveira , J.E. Abrão , L.K.C.S. Assis , J.F.O. Silva , J. Neves-Araújo , J.M. Soares , A.R. Rodrigues , E. Padrón-Hernández
In this work, we investigated the tailoring of structural and magnetic properties of NiCu nanowires through electrodeposition. Continuous (S1) and composition-modulated (S2) wires were fabricated by electrodeposition using porous alumina membranes as a template. Morphological characterization revealed that the total length of the wires was 8 ± 3 µm in both S1 and S2. For the composition-modulated wires, the length of the segments with the lowest and highest Cu concentrations was 1.2 ± 0.4 µm and 226 ± 65 nm, respectively. Mapping by energy dispersive spectroscopy (EDS) revealed that the concentration of copper and nickel varied along the length of the composition-modulated nanowires, while the continuous nanowires contained a relatively constant concentration of both metals. It is demonstrated that the change in Cu concentration along the wire modifies the lattice parameter, average crystallite size (D) and lattice strain (ε) of Ni. This result is pivotal for understanding the magnetic properties of the wires, as nickel is primarily responsible for the magnetic behavior of the wires. From the ferromagnetic resonance (FMR) results, the linewidth and resonance field values for samples S1 and S2 were determined. It was demonstrated that the greater deformation in the nickel lattice in NiCu nanowires increases the angular dependence of the resonance field. Furthermore, the smaller nickel crystallite size was shown to increase spin dispersion and magnetic damping, leading to complex behavior in FMR responses. Finally, it was demonstrated how Cu can influence the magnetic properties such as coercivity (HC) and squareness (MR/MS) of the wires. Overall, this work contributes to understanding the tailoring of structural and magnetic properties of NiCu nanowires through electrodeposition.
{"title":"Tailoring structural and magnetic properties of NiCu nanowires by electrodeposition","authors":"S. Castro-Lopes , D.M. Oliveira , J.E. Abrão , L.K.C.S. Assis , J.F.O. Silva , J. Neves-Araújo , J.M. Soares , A.R. Rodrigues , E. Padrón-Hernández","doi":"10.1016/j.nanoso.2024.101309","DOIUrl":"10.1016/j.nanoso.2024.101309","url":null,"abstract":"<div><p>In this work, we investigated the tailoring of structural and magnetic properties of NiCu nanowires through electrodeposition. Continuous (S1) and composition-modulated (S2) wires were fabricated by electrodeposition using porous alumina membranes as a template. Morphological characterization revealed that the total length of the wires was 8 ± 3 µm in both S1 and S2. For the composition-modulated wires, the length of the segments with the lowest and highest Cu concentrations was 1.2 ± 0.4 µm and 226 ± 65 nm, respectively. Mapping by energy dispersive spectroscopy (EDS) revealed that the concentration of copper and nickel varied along the length of the composition-modulated nanowires, while the continuous nanowires contained a relatively constant concentration of both metals. It is demonstrated that the change in Cu concentration along the wire modifies the lattice parameter, average crystallite size (<em>D</em>) and lattice strain (<em>ε</em>) of Ni. This result is pivotal for understanding the magnetic properties of the wires, as nickel is primarily responsible for the magnetic behavior of the wires. From the ferromagnetic resonance (FMR) results, the linewidth and resonance field values for samples S1 and S2 were determined. It was demonstrated that the greater deformation in the nickel lattice in NiCu nanowires increases the angular dependence of the resonance field. Furthermore, the smaller nickel crystallite size was shown to increase spin dispersion and magnetic damping, leading to complex behavior in FMR responses. Finally, it was demonstrated how Cu can influence the magnetic properties such as coercivity (<em>H</em><sub><em>C</em></sub>) and squareness (<em>M</em><sub><em>R</em></sub>/<em>M</em><sub><em>S</em></sub>) of the wires. Overall, this work contributes to understanding the tailoring of structural and magnetic properties of NiCu nanowires through electrodeposition.</p></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"39 ","pages":"Article 101309"},"PeriodicalIF":5.45,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.nanoso.2024.101301
Nurdiyantoro Putra Prasetya , Retna Arilasita , Herman Aldila , Nur Aji Wibowo , Riyatun , Utari , Nuryani , Terumitsu Tanaka , Budi Purnama
Single-domain configuration is one of the important key in the applied current- technology especially information technology. In order to address this issue, a magnetic modification of cobalt ferrite nanoparticles (CFO-NPs) by decorating the monazite-natural-mineral (Ce) is presented. Monazite-decorated CFO-NPs are successfully synthesized by the co-precipitation method. The obtained nanoparticle samples are annealed at 200 °C, 300 °C, and 400 °C for 5 hours. XRD results confirms the successful decoration of the monazite sand with CFO-NPs, as demonstrated by the distinctive peaks of CFO-NPs, as well as the major peaks of the monazite-sand. The presence of monazite in the CFO-NPs sample was confirmed by the EDS results. With increasing annealing temperature, the crystallite size increases, respectively. FTIR results show that the monazite-decorated CFO-NPs outcome absorption peaks at kt ∼590/cm and ko ∼390/cm, which are the original absorptions of CFO-NPs. VSM results showed that the single-domain configuration realized owing high the HC (supported by K1 and Kσ) for samples without and annealed at 200 °C, whereas the multi-domain configuration appears to have a small HC (supported only by K1) for samples annealed at 300 °C and 400 °C. The largest HC of the monazite-decorated CFO-NPs was obtained with the annealing temperature at 200 °C, i.e., 3.02 kOe, suggesting that it be supported by both the K1 and Kσ. The magnetic properties obtained also indicate the potential for developing permanent magnets.
{"title":"Single-domain configuration tune high coercive field in Co-precipitated monazite-decorated cobalt ferrite nanoparticles","authors":"Nurdiyantoro Putra Prasetya , Retna Arilasita , Herman Aldila , Nur Aji Wibowo , Riyatun , Utari , Nuryani , Terumitsu Tanaka , Budi Purnama","doi":"10.1016/j.nanoso.2024.101301","DOIUrl":"10.1016/j.nanoso.2024.101301","url":null,"abstract":"<div><p>Single-domain configuration is one of the important key in the applied current- technology especially information technology. In order to address this issue, a magnetic modification of cobalt ferrite nanoparticles (CFO-NPs) by decorating the monazite-natural-mineral (Ce) is presented. Monazite-decorated CFO-NPs are successfully synthesized by the co-precipitation method. The obtained nanoparticle samples are annealed at 200 °C, 300 °C, and 400 °C for 5 hours. XRD results confirms the successful decoration of the monazite sand with CFO-NPs, as demonstrated by the distinctive peaks of CFO-NPs, as well as the major peaks of the monazite-sand. The presence of monazite in the CFO-NPs sample was confirmed by the EDS results. With increasing annealing temperature, the crystallite size increases, respectively. FTIR results show that the monazite-decorated CFO-NPs outcome absorption peaks at <em>k</em><sub>t</sub> ∼590/cm and <em>k</em><sub>o</sub> ∼390/cm, which are the original absorptions of CFO-NPs. VSM results showed that the single-domain configuration realized owing high the <em>H</em><sub>C</sub> (supported by <em>K</em><sub>1</sub> and <em>K</em><sub>σ</sub>) for samples without and annealed at 200 °C, whereas the multi-domain configuration appears to have a small <em>H</em><sub>C</sub> (supported only by <em>K</em><sub>1</sub>) for samples annealed at 300 °C and 400 °C. The largest <em>H</em><sub>C</sub> of the monazite-decorated CFO-NPs was obtained with the annealing temperature at 200 °C, i.e., 3.02 kOe, suggesting that it be supported by both the <em>K</em><sub>1</sub> and <em>K</em><sub>σ</sub>. The magnetic properties obtained also indicate the potential for developing permanent magnets.</p></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"39 ","pages":"Article 101301"},"PeriodicalIF":5.45,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-31DOI: 10.1016/j.nanoso.2024.101314
A.S. Alameen, S.B. Undre, P.B. Undre
The precipitation process was used to synthesize ZnO nanoparticles (ZnO NPs), which were functionalized with fifteen amino acids and three surfactants. X-ray diffraction (XRD), field emission scanning microscopy (FESEM) with energy-dispersive X-ray spectroscopy, Fourier transformed infrared spectroscopy (FTIR), Raman spectroscopy, and UV-Vis spectroscopy were used to evaluate the synthesized and functionalized ZnO NPs. The characterization of the produced ZnO using XRD and FESEM revealed the development of a nanoscale hexagonal crystal, and the spectroscopic methods validated the presence of IR functional groups, Raman phase mode, and UV optical absorbance. The ZnO samples that had been functionalized demonstrated deformation in a surface morphology while maintaining chemical stability. The functionalization procedure effectively increases the inhibitory efficacy of NPs against (Accession No. MZ435922) and (Accession No. MZ435863), as demonstrated by the antifungal activity. The findings of current work provide a foundation for improving the biological activity of NPs against fungi by modifying them with active medium and boosting their anti-microorganism and antioxidant activity.
{"title":"Functionalization of ZnO nanoparticles and their antimicrobial activity: In vitro","authors":"A.S. Alameen, S.B. Undre, P.B. Undre","doi":"10.1016/j.nanoso.2024.101314","DOIUrl":"https://doi.org/10.1016/j.nanoso.2024.101314","url":null,"abstract":"The precipitation process was used to synthesize ZnO nanoparticles (ZnO NPs), which were functionalized with fifteen amino acids and three surfactants. X-ray diffraction (XRD), field emission scanning microscopy (FESEM) with energy-dispersive X-ray spectroscopy, Fourier transformed infrared spectroscopy (FTIR), Raman spectroscopy, and UV-Vis spectroscopy were used to evaluate the synthesized and functionalized ZnO NPs. The characterization of the produced ZnO using XRD and FESEM revealed the development of a nanoscale hexagonal crystal, and the spectroscopic methods validated the presence of IR functional groups, Raman phase mode, and UV optical absorbance. The ZnO samples that had been functionalized demonstrated deformation in a surface morphology while maintaining chemical stability. The functionalization procedure effectively increases the inhibitory efficacy of NPs against (Accession No. MZ435922) and (Accession No. MZ435863), as demonstrated by the antifungal activity. The findings of current work provide a foundation for improving the biological activity of NPs against fungi by modifying them with active medium and boosting their anti-microorganism and antioxidant activity.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"64 1","pages":""},"PeriodicalIF":5.45,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study introduces a novel Metronidazole-Based ZnMoO₄ Nanocomposite (MTZ-ZnMO), a hybrid material combining ZnMoO₄ and metronidazole (MTZ) that exhibits significant potential for photocatalytic and antifungal applications. The nanocomposite was synthesized using a facile hydrothermal method and characterized using various analytical techniques including X-ray diffraction (XRD), Fourier scanning electron microscope (FESEM), Energy dispersive spectroscopy (EDS), Photo-luminance emission spectra (PL) and UV-Visible spectroscopy. The photocatalytic performance of the nanocomposite was evaluated through the degradation of methylene blue (MB) visible light irradiation. Additionally, its antifungal properties were assessed against common fungi . Results demonstrated incorporation of MTZ resulted in enhanced photocatalytic degradation of MB under visible light irradiation and concentration dependent antifungal activity against . These findings highlight the material’s multifunctional potential for use in environmental remediation and catalytic applications, offering a promising approach to integrating photocatalytic and antifungul properties in a single nanocomposite.
本研究介绍了一种新型甲硝唑基 ZnMoO₄纳米复合材料(MTZ-ZnMO),这是一种结合了 ZnMoO₄和甲硝唑(MTZ)的混合材料,在光催化和抗真菌应用方面具有巨大潜力。该纳米复合材料采用简便的水热法合成,并使用多种分析技术进行表征,包括 X 射线衍射(XRD)、傅立叶扫描电子显微镜(FESEM)、能量色散光谱(EDS)、光致发光光谱(PL)和紫外可见光谱。通过降解亚甲基蓝(MB)的可见光照射,评估了纳米复合材料的光催化性能。此外,还评估了纳米复合材料对常见真菌的抗真菌性能。结果表明,在可见光照射下,MTZ 的加入增强了甲基溴的光催化降解,并对......真菌具有浓度依赖性抗真菌活性。这些发现凸显了该材料在环境修复和催化应用方面的多功能潜力,为在单一纳米复合材料中集成光催化和抗真菌特性提供了一种前景广阔的方法。
{"title":"Synthesis and characterization of metronidazole-based ZnMoO₄ nanocomposite: Photocatalysis and antifungal activity","authors":"Bhupendra Kande, Prachi Parmar Nimje, Bhawana Jain, Sanju Singh","doi":"10.1016/j.nanoso.2024.101306","DOIUrl":"https://doi.org/10.1016/j.nanoso.2024.101306","url":null,"abstract":"This study introduces a novel Metronidazole-Based ZnMoO₄ Nanocomposite (MTZ-ZnMO), a hybrid material combining ZnMoO₄ and metronidazole (MTZ) that exhibits significant potential for photocatalytic and antifungal applications. The nanocomposite was synthesized using a facile hydrothermal method and characterized using various analytical techniques including X-ray diffraction (XRD), Fourier scanning electron microscope (FESEM), Energy dispersive spectroscopy (EDS), Photo-luminance emission spectra (PL) and UV-Visible spectroscopy. The photocatalytic performance of the nanocomposite was evaluated through the degradation of methylene blue (MB) visible light irradiation. Additionally, its antifungal properties were assessed against common fungi . Results demonstrated incorporation of MTZ resulted in enhanced photocatalytic degradation of MB under visible light irradiation and concentration dependent antifungal activity against . These findings highlight the material’s multifunctional potential for use in environmental remediation and catalytic applications, offering a promising approach to integrating photocatalytic and antifungul properties in a single nanocomposite.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"10 1","pages":""},"PeriodicalIF":5.45,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-31DOI: 10.1016/j.nanoso.2024.101307
V.C. Deivayanai, P. Thamarai, R. Kamalesh, Alan Shaji, P.R. Yaashikaa, A. Saravanan
The growing need for sustainable energy solutions has led to the convergence of waste management and renewable energy technologies. This study delves into the application of waste-derived biochar in microbial fuel cells (MFC) to achieve a net-zero carbon footprint, contributing to the global sustainability agenda. Biochar, a carbon-rich product attained from the pyrolysis of organic waste materials, is examined for its dual role in waste management strategies and as an effective electrode material in MFC. The inherent characteristics of the biochar, including the porosity, surface area and conductivity, enhance the overall performance of MFCs, as well as the microbial activity such as nutrient retention and pH buffering, and promote efficient electron transfer. The current review emphasizes biochar's different sources, characteristics, and synthesis techniques. This review also discusses the application of biochar in MFC as anode and cathode, followed by its utilisation in soil amendment and bioelectricity generation. It also reviews the relationship between the economic analysis and the utilisation of biochar as electrode materials. Regardless of the synthesis techniques and biochar application, the limitations and future outlooks have also been discussed in detail.
{"title":"A sustainable approach on utilization of waste-derived biochar in microbial fuel cell toward net-zero coalition","authors":"V.C. Deivayanai, P. Thamarai, R. Kamalesh, Alan Shaji, P.R. Yaashikaa, A. Saravanan","doi":"10.1016/j.nanoso.2024.101307","DOIUrl":"https://doi.org/10.1016/j.nanoso.2024.101307","url":null,"abstract":"The growing need for sustainable energy solutions has led to the convergence of waste management and renewable energy technologies. This study delves into the application of waste-derived biochar in microbial fuel cells (MFC) to achieve a net-zero carbon footprint, contributing to the global sustainability agenda. Biochar, a carbon-rich product attained from the pyrolysis of organic waste materials, is examined for its dual role in waste management strategies and as an effective electrode material in MFC. The inherent characteristics of the biochar, including the porosity, surface area and conductivity, enhance the overall performance of MFCs, as well as the microbial activity such as nutrient retention and pH buffering, and promote efficient electron transfer. The current review emphasizes biochar's different sources, characteristics, and synthesis techniques. This review also discusses the application of biochar in MFC as anode and cathode, followed by its utilisation in soil amendment and bioelectricity generation. It also reviews the relationship between the economic analysis and the utilisation of biochar as electrode materials. Regardless of the synthesis techniques and biochar application, the limitations and future outlooks have also been discussed in detail.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"62 1","pages":""},"PeriodicalIF":5.45,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-31DOI: 10.1016/j.nanoso.2024.101311
Muhammad Tawalbeh, Abdullah Ali, Bashar Aljawrneh, Amani Al-Othman
Sodium ion batteries (SIBs) have resurfaced into the spotlight, given the supply chain uncertainties and the soaring demand for lithium-ion batteries (LIBs). Although, even now, their lower energy density may stall their commercialization in the portable sector, they are considered prime candidates for large scale electrochemical energy storage applications. Accordingly, advancing, establishing, and maintaining the safety of SIBs is crucial to prevent catastrophic thermal runaways and colossal financial losses to garner the trust of concerned authorities. Electrolytes play a pivotal role in the safety of batteries. Considering the above, this paper presents a comprehensive review of the progress in safe electrolytes for SIBs. It explains the various approaches employed to enhance the safety of high-risk based electrolytes and the electrochemical performance of intrinsically safe electrolytes. Moreover, a state-of-the-art review of the assembled cells/half cells employing different classes of electrolytes is also presented. Particular attention has been devoted to specifying the techniques and results, if available, of thermal stability and safety tests besides highlighting the electrochemical characteristics and performance, such as the cell capacity and cyclability, and electrolyte ionic conductivity and electrochemical stability window (ESW) of the electrolyte. Finally, challenges and future research directions have been summarized and recommended. This review concludes that solid state electrolytes with high conductivity are among the practical and safe electrolytes for SIBs.
{"title":"Progress in safe nano-structured electrolytes for sodium ion batteries: A comprehensive review","authors":"Muhammad Tawalbeh, Abdullah Ali, Bashar Aljawrneh, Amani Al-Othman","doi":"10.1016/j.nanoso.2024.101311","DOIUrl":"https://doi.org/10.1016/j.nanoso.2024.101311","url":null,"abstract":"Sodium ion batteries (SIBs) have resurfaced into the spotlight, given the supply chain uncertainties and the soaring demand for lithium-ion batteries (LIBs). Although, even now, their lower energy density may stall their commercialization in the portable sector, they are considered prime candidates for large scale electrochemical energy storage applications. Accordingly, advancing, establishing, and maintaining the safety of SIBs is crucial to prevent catastrophic thermal runaways and colossal financial losses to garner the trust of concerned authorities. Electrolytes play a pivotal role in the safety of batteries. Considering the above, this paper presents a comprehensive review of the progress in safe electrolytes for SIBs. It explains the various approaches employed to enhance the safety of high-risk based electrolytes and the electrochemical performance of intrinsically safe electrolytes. Moreover, a state-of-the-art review of the assembled cells/half cells employing different classes of electrolytes is also presented. Particular attention has been devoted to specifying the techniques and results, if available, of thermal stability and safety tests besides highlighting the electrochemical characteristics and performance, such as the cell capacity and cyclability, and electrolyte ionic conductivity and electrochemical stability window (ESW) of the electrolyte. Finally, challenges and future research directions have been summarized and recommended. This review concludes that solid state electrolytes with high conductivity are among the practical and safe electrolytes for SIBs.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"60 1","pages":""},"PeriodicalIF":5.45,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magnetic nanoparticles have been synthesized in a very simple and economical way by the co-precipitation method, where the effect of molar concentrations of ferric chloride anhydrous (FeCl) and iron (II) sulphate heptahydrate (FeSO.7 H0) on magnetite synthesis has been investigated. Also, a detailed study was conducted to study the effect of magnetite and hematite on both normal and cancerous cell lines. After this, the magnetic nanoparticles obtained were analyzed by x-ray Diffraction (XRD), scanning electron microscope (SEM) - energy dispersive x-ray (EDX), Fourier transform infrared spectroscopy (FTIR), zeta potential, vibrating sample magnetometer (VSM), atomic force microscopy AFM), MTT test, and cell apoptotic assay. The XRD peaks for magnetite were easily discernible in the final formulation. SEM images showed round particles in nano ranges, and FTIR peaks showed the presence of magnetite. Zeta potential showed surface charges. VSM showed the magnetic property of magnetite, and AFM confirmed SEM images. It can be concluded that magnetic nanoparticles were synthesized by the co-precipitation method using an optimized molar concentration of reagents. Also, the necessity of coating uncoated magnetic nanoparticles can be seen from the MTT assay. Cell apoptotic assays have shown that synthesized magnetite nanoparticles have shown potential apoptotic activity on cancer cell lines.
{"title":"Synthesis, evaluation, and biocompatibility study of magnetite nano particles in normal cells and cancer cells for health care application","authors":"Shreya Chatterjee, Ankita Das, Amrita Das, Riya Roy, Poulomi Roy, Pallab Datta, Sabu Thomas, Kajal Ghosal","doi":"10.1016/j.nanoso.2024.101313","DOIUrl":"https://doi.org/10.1016/j.nanoso.2024.101313","url":null,"abstract":"Magnetic nanoparticles have been synthesized in a very simple and economical way by the co-precipitation method, where the effect of molar concentrations of ferric chloride anhydrous (FeCl) and iron (II) sulphate heptahydrate (FeSO.7 H0) on magnetite synthesis has been investigated. Also, a detailed study was conducted to study the effect of magnetite and hematite on both normal and cancerous cell lines. After this, the magnetic nanoparticles obtained were analyzed by x-ray Diffraction (XRD), scanning electron microscope (SEM) - energy dispersive x-ray (EDX), Fourier transform infrared spectroscopy (FTIR), zeta potential, vibrating sample magnetometer (VSM), atomic force microscopy AFM), MTT test, and cell apoptotic assay. The XRD peaks for magnetite were easily discernible in the final formulation. SEM images showed round particles in nano ranges, and FTIR peaks showed the presence of magnetite. Zeta potential showed surface charges. VSM showed the magnetic property of magnetite, and AFM confirmed SEM images. It can be concluded that magnetic nanoparticles were synthesized by the co-precipitation method using an optimized molar concentration of reagents. Also, the necessity of coating uncoated magnetic nanoparticles can be seen from the MTT assay. Cell apoptotic assays have shown that synthesized magnetite nanoparticles have shown potential apoptotic activity on cancer cell lines.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"1 1","pages":""},"PeriodicalIF":5.45,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-31DOI: 10.1016/j.nanoso.2024.101312
Fawzy G. El Desouky
This paper presents a detailed protocol for the synthesis and characterization of cesium ferrate nanorods, a unique material that possesses a wide range of functionalities. These include the ability to demonstrate ferromagnetism at normal ambient temperature and the capacity to modify its structural, optical, and electrical properties. The XRD patterns specify the presence of an orthorhombic alkali ferrate phase (CsFeO), with the size of the crystals increasing as the temperature rises. Furthermore, the XPS spectra of Cs 3d, Fe 2p, and O 1 s exhibit the formation of substances due to the peak positions fluctuate in reaction to temperature variations. The nanorod-like structure and size distribution of materials can be visualized using TEM and SEM. The UV spectra of the samples indicate broad absorption bands ranging from the visible to the near infrared (IR) region. Calcination of the as-prepared CsFeO at 400 and 600 ºC lowered the optical band gap from 2.15 to 2.04 and 2.06 eV, respectively. The temperature's synergistic effect is crucial in transforming materials from a paramagnetic to a ferromagnetic phase. The colossal sample's dielectric constant, which varies from around 10 at 600 ºC to 10 and 10 in the lower frequency band, and electrical conductivity show substantial fluctuations depending on the frequency. Nanorod systems have interesting optical, dielectric, and ferromagnetic properties at room temperature that could be used in many areas, such as photocatalysis, energy storage, and spintronics.
本文介绍了合成和表征铁酸铯纳米棒的详细方案,这种独特的材料具有多种功能。这种独特的材料具有广泛的功能,包括在常温下具有铁磁性,并能改变其结构、光学和电学特性。X 射线衍射图显示了正交碱铁相(CsFeO)的存在,晶体的尺寸随着温度的升高而增大。此外,铯 3d、铁 2p 和 O 1 s 的 XPS 光谱显示,由于峰值位置随温度变化而波动,因此形成了一些物质。利用 TEM 和 SEM 可以观察到材料的纳米棒状结构和尺寸分布。样品的紫外光谱显示出从可见光到近红外(IR)区域的宽吸收带。将制备的 CsFeO 在 400 ºC 和 600 ºC 煅烧后,其光带隙分别从 2.15 eV 降至 2.04 eV 和 2.06 eV。温度的协同效应对于材料从顺磁性相转变为铁磁性相至关重要。巨型样品的介电常数(从 600 ºC 时的 10 左右变化到低频段的 10 和 10)和电导率随频率的变化而出现大幅波动。纳米棒系统在室温下具有有趣的光学、介电和铁磁特性,可用于光催化、能量存储和自旋电子学等许多领域。
{"title":"Bottom-up synthesis of novel cesium ferrate (Cs2FeO4) nanorods: Tailoring the structural and optical characteristics with room-temperature ferromagnetic and colossal dielectric performance","authors":"Fawzy G. El Desouky","doi":"10.1016/j.nanoso.2024.101312","DOIUrl":"https://doi.org/10.1016/j.nanoso.2024.101312","url":null,"abstract":"This paper presents a detailed protocol for the synthesis and characterization of cesium ferrate nanorods, a unique material that possesses a wide range of functionalities. These include the ability to demonstrate ferromagnetism at normal ambient temperature and the capacity to modify its structural, optical, and electrical properties. The XRD patterns specify the presence of an orthorhombic alkali ferrate phase (CsFeO), with the size of the crystals increasing as the temperature rises. Furthermore, the XPS spectra of Cs 3d, Fe 2p, and O 1 s exhibit the formation of substances due to the peak positions fluctuate in reaction to temperature variations. The nanorod-like structure and size distribution of materials can be visualized using TEM and SEM. The UV spectra of the samples indicate broad absorption bands ranging from the visible to the near infrared (IR) region. Calcination of the as-prepared CsFeO at 400 and 600 ºC lowered the optical band gap from 2.15 to 2.04 and 2.06 eV, respectively. The temperature's synergistic effect is crucial in transforming materials from a paramagnetic to a ferromagnetic phase. The colossal sample's dielectric constant, which varies from around 10 at 600 ºC to 10 and 10 in the lower frequency band, and electrical conductivity show substantial fluctuations depending on the frequency. Nanorod systems have interesting optical, dielectric, and ferromagnetic properties at room temperature that could be used in many areas, such as photocatalysis, energy storage, and spintronics.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"55 1","pages":""},"PeriodicalIF":5.45,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-31DOI: 10.1016/j.nanoso.2024.101318
Mohammad Moslem Imani, Pourya Gorji, Mohammad Salmani Mobarakeh, Mohsen Safaei
Due to the escalating bacterial resistance, the objective of the current investigation was to discover the most favorable condition for the fabrication of a novel bionanocomposite consisting of sodium alginate, montmorillonite, and ZnO, possessing the greatest degree of antibacterial efficacy. To determine the optimal synthesis conditions for nanocomposite with the most favorable antimicrobial activity, a total of nine experiments were devised via the Taguchi methodology. The studied nanocomposites were produced using the in situ method. The antibacterial efficacy of the synthesized nanocomposites was assessed against through the utilization of the colony-forming unit methodology. The nanocomposites synthesized, consisting of 60 mg/mL alginate, 0.6 mg/mL montmorillonite, and 6 mg/mL ZnO, exhibited the most potent antibacterial activity. The greatest effect on bacterial viability was related to the ZnO factor. The synthesis of alginate/MMT/ZnO nanocomposites with desirable conditions was confirmed using various analyses. This study showed that alginate/MMT/ZnO nanocomposite has high performance under optimal conditions, and applying optimal levels of components improves the antibacterial properties of the synthesized nanocomposite.
{"title":"Optimization of synthesis and characterization of novel sodium alginate/montmorillonite/zinc oxide bionanocomposite as an antibacterial agent against Streptococcus mutans","authors":"Mohammad Moslem Imani, Pourya Gorji, Mohammad Salmani Mobarakeh, Mohsen Safaei","doi":"10.1016/j.nanoso.2024.101318","DOIUrl":"https://doi.org/10.1016/j.nanoso.2024.101318","url":null,"abstract":"Due to the escalating bacterial resistance, the objective of the current investigation was to discover the most favorable condition for the fabrication of a novel bionanocomposite consisting of sodium alginate, montmorillonite, and ZnO, possessing the greatest degree of antibacterial efficacy. To determine the optimal synthesis conditions for nanocomposite with the most favorable antimicrobial activity, a total of nine experiments were devised via the Taguchi methodology. The studied nanocomposites were produced using the in situ method. The antibacterial efficacy of the synthesized nanocomposites was assessed against through the utilization of the colony-forming unit methodology. The nanocomposites synthesized, consisting of 60 mg/mL alginate, 0.6 mg/mL montmorillonite, and 6 mg/mL ZnO, exhibited the most potent antibacterial activity. The greatest effect on bacterial viability was related to the ZnO factor. The synthesis of alginate/MMT/ZnO nanocomposites with desirable conditions was confirmed using various analyses. This study showed that alginate/MMT/ZnO nanocomposite has high performance under optimal conditions, and applying optimal levels of components improves the antibacterial properties of the synthesized nanocomposite.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"12 1","pages":""},"PeriodicalIF":5.45,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}