Flame retardants are used for fire prevention in different sectors, including industries, houses, or materials sensitive to combustion. Fire is considered the cause of natural and anthropogenic activities, and responsible for severe loss of life and economy. It also results in environmental pollution by producing a huge amount of smoke, suspended particulate matter, and other pollutants. However, many flame retardants, viz. halogenated flame retardants, organophosphate, oxides, hydroxides, melamine derivates, etc., can be conventionally used in controlling fire in agriculture and livestock. Though these retardants have good efficacy in controlling fire the impact on the environment and the loading value of these flame retardants is a major challenge. The nanostructured flame retardants (NFR) have greater potential to act in a multidimensional approach including radical scavenging, char formation, cooling effect, dilution effect, synergism, etc. NFRs have a high specific area, high electrical and thermal conductivity, the ability to develop insulating layers through nanomaterials-polymer interaction, and conjugate crystalline-amorphous nature. These attributes ensure the potential application of nanostructured flame retardants in controlling fire in crop fields and livestock. Some promising NFRs are nanoclays, carbon nanotubes (CNTs), polyhedral oligosilsesquioxane (POSS), graphene-like 2D nanomaterials, and polymer-clay nanocomposites. These NFRs can be used in conjugation with conventional flame retardants to ensure the effectiveness of flame retardancy.