Pub Date : 2025-03-07DOI: 10.1016/j.orgel.2025.107236
Xixuan Wang, Guimin Zhao, Wei Jiang, Yueming Sun
The design and development of large steric-hindrance host materials can effectively solve the quenching of triplet excitons, so as to improve the utilization of excitons and the performance of organic light-emitting diodes (OLED) devices. In this work, four large volume thermally activated delayed fluorescence (TADF) host materials were synthesized using triazine derivatives as electron acceptors and indolocarbazole derivatives as electron donors. Systematic studies demonstrated that introducing tert-butyl carbazole into indolocarbazole derivatives not only increased the steric hindrance of the molecule but also improved its thermodynamic stability. The decomposition temperatures (Td) of TRZ-tCzICz and MeTRZ-tCzICz reached 449 °C and 481 °C, and there was no significant glassing transition temperature (Tg) in the range of 20–200 °C. The strategy of introducing methyl into triazine effectively separated HOMO and LUMO of molecule, resulting in smaller singlet-triplet splitting (ΔEST) and larger reverse intersystem crossing rates (kRISC). Among the four molecules, the kRISC of TRZ-tCzICz and MeTRZ-tCzICz reached 2.07 × 106 s−1 and 2.16 × 106 s−1, respectively. All four synthesized molecules had relatively high triplet energy levels and can serve as host materials for green TADF compounds. With 4CzIPN as the dopant, the solution processable OLED devices based the four compounds as the host materials achieved maximum external quantum efficiency (EQEmax) of 11.13 %.
{"title":"Thermally activated delayed fluorescence host materials with bulky indolocarbazole derivatives acceptors for high-performance solution-processed OLEDs","authors":"Xixuan Wang, Guimin Zhao, Wei Jiang, Yueming Sun","doi":"10.1016/j.orgel.2025.107236","DOIUrl":"10.1016/j.orgel.2025.107236","url":null,"abstract":"<div><div>The design and development of large steric-hindrance host materials can effectively solve the quenching of triplet excitons, so as to improve the utilization of excitons and the performance of organic light-emitting diodes (OLED) devices. In this work, four large volume thermally activated delayed fluorescence (TADF) host materials were synthesized using triazine derivatives as electron acceptors and indolocarbazole derivatives as electron donors. Systematic studies demonstrated that introducing tert-butyl carbazole into indolocarbazole derivatives not only increased the steric hindrance of the molecule but also improved its thermodynamic stability. The decomposition temperatures (T<sub>d</sub>) of TRZ-tCzICz and MeTRZ-tCzICz reached 449 °C and 481 °C, and there was no significant glassing transition temperature (T<sub>g</sub>) in the range of 20–200 °C. The strategy of introducing methyl into triazine effectively separated HOMO and LUMO of molecule, resulting in smaller singlet-triplet splitting (Δ<em>E</em>ST) and larger reverse intersystem crossing rates (<em>k</em><sub>RISC</sub>). Among the four molecules, the <em>k</em><sub>RISC</sub> of TRZ-tCzICz and MeTRZ-tCzICz reached 2.07 × 10<sup>6</sup> s<sup>−1</sup> and 2.16 × 10<sup>6</sup> s<sup>−1</sup>, respectively. All four synthesized molecules had relatively high triplet energy levels and can serve as host materials for green TADF compounds. With 4CzIPN as the dopant, the solution processable OLED devices based the four compounds as the host materials achieved maximum external quantum efficiency (EQE<sub>max</sub>) of 11.13 %.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"141 ","pages":"Article 107236"},"PeriodicalIF":2.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143619119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01DOI: 10.1016/j.orgel.2025.107229
Zeyu Jia, Xiangqiong Xie, Zhenyong Guo, Zhiqi Kou
In this work, we present a high-performance warm white organic light-emitting diode (WOLED) achieving a maximum color rendering index (CRI) of 95, based on a novel TADF-Doped Exciplex Co-host Structure. The device design integrates a blue exciplex (mCP:PO-T2T) as the host material, sensitizing ultrathin phosphorescent layers emitting green, yellow, and red light. By systematically varying the thickness of spacer and ultrathin layers, the position of the exciton recombination zone was finely tuned, revealing its critical role in exciton transport dynamics and energy transfer efficiency. To optimize exciton transport pathways, the TADF material 4CzTPN was strategically incorporated into the spacer layers. This incorporation significantly altered the exciton transfer mechanism by facilitating efficient reverse intersystem crossing (RISC) and promoting Förster energy transfer from the exciplex to phosphorescent emitters. Consequently, this approach not only reduces triplet exciton density, mitigating Dexter transfer losses, but also enhances exciton utilization efficiency. As a result, the WOLED achieves warm white light emission with a high CRI closely aligned with the Planckian locus on the CIE chromaticity diagram. These findings demonstrate the transformative potential of the TADF-Doped Exciplex Co-host Structure for developing efficient and color-stable WOLEDs, paving the way for next-generation lighting and display technologies.
{"title":"High-CRI warm white OLEDs based on TADF-Doped Exciplex Co-host Structure enabled by efficient reverse intersystem crossing","authors":"Zeyu Jia, Xiangqiong Xie, Zhenyong Guo, Zhiqi Kou","doi":"10.1016/j.orgel.2025.107229","DOIUrl":"10.1016/j.orgel.2025.107229","url":null,"abstract":"<div><div>In this work, we present a high-performance warm white organic light-emitting diode (WOLED) achieving a maximum color rendering index (CRI) of 95, based on a novel TADF-Doped Exciplex Co-host Structure. The device design integrates a blue exciplex (mCP:PO-T2T) as the host material, sensitizing ultrathin phosphorescent layers emitting green, yellow, and red light. By systematically varying the thickness of spacer and ultrathin layers, the position of the exciton recombination zone was finely tuned, revealing its critical role in exciton transport dynamics and energy transfer efficiency. To optimize exciton transport pathways, the TADF material 4CzTPN was strategically incorporated into the spacer layers. This incorporation significantly altered the exciton transfer mechanism by facilitating efficient reverse intersystem crossing (RISC) and promoting Förster energy transfer from the exciplex to phosphorescent emitters. Consequently, this approach not only reduces triplet exciton density, mitigating Dexter transfer losses, but also enhances exciton utilization efficiency. As a result, the WOLED achieves warm white light emission with a high CRI closely aligned with the Planckian locus on the CIE chromaticity diagram. These findings demonstrate the transformative potential of the TADF-Doped Exciplex Co-host Structure for developing efficient and color-stable WOLEDs, paving the way for next-generation lighting and display technologies.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"141 ","pages":"Article 107229"},"PeriodicalIF":2.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143578807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01DOI: 10.1016/j.orgel.2025.107228
Fu Liu , Yijun Zhu , Jian Xiong , Zhen He , Yuanwei Pu , Yongchao Liang , Qiaofei Hu , Yinqi Zuo , Qiyu Yang , Dongjie Wang , Yu Huang , Qiaogan Liao , Zheling Zhang , Jian Zhang
Recombination losses from perovskite/fullerene interface issues significantly limit the performance and stability of inverted perovskite solar cells (PSCs). A simple post-treatment method based on Boc-D-Val-OH (BDVO) is developed to overcome these issues. A systematic study has been conducted on the impact of BDVO on the physical properties of the film and the device. The results confirm that BDVO post-treatment can passivate trap states of the perovskite film surface, improve contact at the perovskite/fullerene interface, and enhance the built-in interface electrical field of the device. That improvements lead to enhanced carrier transport dynamics, as well as improves the performance and stability of PSCs. A relatively higher power conversion efficiency (PCE) of 23.02 % is achieved by BDVO post-treatment. Additionally, after storage in air (30–40 RH%) for 264 h (12 days) and in N2 for 312 h (13 days), the PCE of the BDVO devices can remain at 90 % and 95 % of their initial values, respectively, while the control devices under the same exposure conditions only maintain 83 % and 88 % of their initial PCE values. The study sheds light on the pathway for perovskite/fullerene interface material selection and design, aimed at enhancing device performance and stability through streamlined post-treatment.
{"title":"Efficient post-treatment strategy for enhancing the performance and stability of the inverted perovskite solar cells based on Boc-D-Val-OH","authors":"Fu Liu , Yijun Zhu , Jian Xiong , Zhen He , Yuanwei Pu , Yongchao Liang , Qiaofei Hu , Yinqi Zuo , Qiyu Yang , Dongjie Wang , Yu Huang , Qiaogan Liao , Zheling Zhang , Jian Zhang","doi":"10.1016/j.orgel.2025.107228","DOIUrl":"10.1016/j.orgel.2025.107228","url":null,"abstract":"<div><div>Recombination losses from perovskite/fullerene interface issues significantly limit the performance and stability of inverted perovskite solar cells (PSCs). A simple post-treatment method based on Boc-D-Val-OH (BDVO) is developed to overcome these issues. A systematic study has been conducted on the impact of BDVO on the physical properties of the film and the device. The results confirm that BDVO post-treatment can passivate trap states of the perovskite film surface, improve contact at the perovskite/fullerene interface, and enhance the built-in interface electrical field of the device. That improvements lead to enhanced carrier transport dynamics, as well as improves the performance and stability of PSCs. A relatively higher power conversion efficiency (PCE) of 23.02 % is achieved by BDVO post-treatment. Additionally, after storage in air (30–40 RH%) for 264 h (12 days) and in N<sub>2</sub> for 312 h (13 days), the PCE of the BDVO devices can remain at 90 % and 95 % of their initial values, respectively, while the control devices under the same exposure conditions only maintain 83 % and 88 % of their initial PCE values. The study sheds light on the pathway for perovskite/fullerene interface material selection and design, aimed at enhancing device performance and stability through streamlined post-treatment.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"141 ","pages":"Article 107228"},"PeriodicalIF":2.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143547938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-22DOI: 10.1016/j.orgel.2025.107227
Abrar U. Hassan , Cihat Güleryüz , Sajjad H. Sumrra , Sadaf Noreen , Mohamed H.H. Mahmoud
As global energy demands escalate, developing high-performance photovoltaic (PV) materials through accelerated design methodologies is imperative. A machine learning (ML) assisted predictive models are used to accelerate the design of benzodithiophene (BDT)-based polymers for their PV applications. The current approach leverages a curated dataset of 191 compounds with experimental UV–Vis spectra, mapped to molecular electronic descriptors via RDKit. Random Forest modeling yields a predictive framework (R2 = 0.98) for predicting their maximum absorption (λmax). After it, their 5000 new designs as novel polymers, identifying top performers with Synthetic Accessibility Likelihood Index scores up to 57, ensuring synthesis feasibility have also been designed. Feature importance analysis highlights MaxPartialCharge and Aromatic rings as crucial descriptors. The designed materials exhibit optimal energy gaps (1.35–2.0 eV), paving the way for efficient PV devices. The computed UV–Vis spectra of best predicted polymers are studied with their λmax range of 487–987 nm showing a significant redshift behavior. The designed polymers presents and good potential towards and they can be good candidates for organic solar cell applications.
{"title":"A rapid UV/Vis assisted designing of benzodithiophene based polymers by machine learning to predict their light absorption for photovoltaics","authors":"Abrar U. Hassan , Cihat Güleryüz , Sajjad H. Sumrra , Sadaf Noreen , Mohamed H.H. Mahmoud","doi":"10.1016/j.orgel.2025.107227","DOIUrl":"10.1016/j.orgel.2025.107227","url":null,"abstract":"<div><div>As global energy demands escalate, developing high-performance photovoltaic (PV) materials through accelerated design methodologies is imperative. A machine learning (ML) assisted predictive models are used to accelerate the design of benzodithiophene (BDT)-based polymers for their PV applications. The current approach leverages a curated dataset of 191 compounds with experimental UV–Vis spectra, mapped to molecular electronic descriptors via RDKit. Random Forest modeling yields a predictive framework (R<sup>2</sup> = 0.98) for predicting their maximum absorption (<em>λ</em><sub>max</sub>). After it, their 5000 new designs as novel polymers, identifying top performers with Synthetic Accessibility Likelihood Index scores up to 57, ensuring synthesis feasibility have also been designed. Feature importance analysis highlights MaxPartialCharge and Aromatic rings as crucial descriptors. The designed materials exhibit optimal energy gaps (1.35–2.0 eV), paving the way for efficient PV devices. The computed UV–Vis spectra of best predicted polymers are studied with their <em>λ</em><sub>max</sub> range of 487–987 nm showing a significant redshift behavior. The designed polymers presents and good potential towards and they can be good candidates for organic solar cell applications.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"141 ","pages":"Article 107227"},"PeriodicalIF":2.7,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-21DOI: 10.1016/j.orgel.2025.107226
Walid Taouali , Amel Azazi , Rym Hassani , Entesar H. EL-Araby , Kamel Alimi
In this study, density functional theory (DFT) and time-dependent (TD) DFT were employed in order to conduct electronic structure predictions of four novel non-fullerene acceptors (NF2-NF5) generated from the recently synthesized acceptor BTPT-OD (NF1). We provided detailed information about charge transfer and optoelectronic properties of tailored structures, and we compared them to the reference compound. Compared to the energy gap of the reference molecule (2.09 eV), all developed molecules showed a smaller energy gap (2.00–2.08 eV). The created molecules, NF3 and NF4, exhibit high dipole moments of 8.902 D and 6.988 D, respectively, which may enhance the charge transfer rate. Maximum absorption of NF3-NF5 compounds (λmax, 686.7–694.6 nm) revealed a red shift in absorption as compared to the primary molecule NF1 (λmax = 676.9 nm). Based on the earlier research (J. Comput. Chem. 2023, 44, 2130–2148), we employed the recently modified Scharber plot to highlight the role of a narrower electronic gap in the proposed non-fullerene acceptors to enhance the power conversion efficiency. Among all tailored molecules, NF3 showed enhanced photovoltaic parameters; it exhibits a short circuit current density of Jsc = 11.34 mA/cm2, an open circuit voltage of VOC = 1.09 V, and a power conversion efficiency of PCE = 5.35 %, while reference molecule photovoltaic parameters are Jsc = 09.43 mA/cm2, VOC = 1.03 V, and PCE = 4.21 %.
{"title":"Developed non-fullerene acceptors with modified BTPT-OD donor core: A DFT and TD-DFT methods to boost organic solar cell performances","authors":"Walid Taouali , Amel Azazi , Rym Hassani , Entesar H. EL-Araby , Kamel Alimi","doi":"10.1016/j.orgel.2025.107226","DOIUrl":"10.1016/j.orgel.2025.107226","url":null,"abstract":"<div><div>In this study, density functional theory (DFT) and time-dependent (TD) DFT were employed in order to conduct electronic structure predictions of four novel non-fullerene acceptors (NF2-NF5) generated from the recently synthesized acceptor BTPT-OD (NF1). We provided detailed information about charge transfer and optoelectronic properties of tailored structures, and we compared them to the reference compound. Compared to the energy gap of the reference molecule (2.09 eV), all developed molecules showed a smaller energy gap (2.00–2.08 eV). The created molecules, NF3 and NF4, exhibit high dipole moments of 8.902 D and 6.988 D, respectively, which may enhance the charge transfer rate. Maximum absorption of NF3-NF5 compounds (<em>λ</em><sub>max</sub>, 686.7–694.6 nm) revealed a red shift in absorption as compared to the primary molecule NF1 (<em>λ</em><sub>max</sub> = 676.9 nm). Based on the earlier research (J. Comput. Chem. 2023, 44, 2130–2148), we employed the recently modified Scharber plot to highlight the role of a narrower electronic gap in the proposed non-fullerene acceptors to enhance the power conversion efficiency. Among all tailored molecules, NF3 showed enhanced photovoltaic parameters; it exhibits a short circuit current density of J<sub>sc</sub> = 11.34 mA/cm<sup>2</sup>, an open circuit voltage of V<sub>OC</sub> = 1.09 V, and a power conversion efficiency of PCE = 5.35 %, while reference molecule photovoltaic parameters are J<sub>sc</sub> = 09.43 mA/cm<sup>2</sup>, V<sub>OC</sub> = 1.03 V, and PCE = 4.21 %.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"140 ","pages":"Article 107226"},"PeriodicalIF":2.7,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143488939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-20DOI: 10.1016/j.orgel.2025.107222
Liang Yin, Jiaye Shen, Nianduan Lu
Compact model of threshold voltage plays an important role in circuit design, material screening, and device analysis for organic thin-film transistors (OTFTs). In this work, by using the variable range hopping theory and the concept of transport energy, a novel compact model for the threshold voltage of organic thin film transistor has proposed. Based on the presented model, the varieties of temperature, channel length and drain voltage dependence of threshold voltage can be well described. Good agreement between the model and experimental data is demonstrated.
{"title":"Compact model for threshold voltage of organic thin film transistors","authors":"Liang Yin, Jiaye Shen, Nianduan Lu","doi":"10.1016/j.orgel.2025.107222","DOIUrl":"10.1016/j.orgel.2025.107222","url":null,"abstract":"<div><div>Compact model of threshold voltage plays an important role in circuit design, material screening, and device analysis for organic thin-film transistors (OTFTs). In this work, by using the variable range hopping theory and the concept of transport energy, a novel compact model for the threshold voltage of organic thin film transistor has proposed. Based on the presented model, the varieties of temperature, channel length and drain voltage dependence of threshold voltage can be well described. Good agreement between the model and experimental data is demonstrated.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"140 ","pages":"Article 107222"},"PeriodicalIF":2.7,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143509982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-20DOI: 10.1016/j.orgel.2025.107223
Ruiqi Sun , Xiaobin Dong , Maoxing Yu , Zeyan Zhuang , Ben Zhong Tang , Zujin Zhao
Robust host materials play a critical role in improving efficiency and stability for organic light-emitting diodes (OLEDs). To address the challenges of exciton quenching and imbalanced charge transport in traditional unipolar host systems, herein, we design two V-shaped bipolar host materials, v-CzTRZ and v-InCzTRZ, consisting of a carbazole (Cz)/7,7-dimethyl-5,7-dihydroindeno[2,1-b]carbazole (InCz) donor, a triazine (TRZ) acceptor and a o-terphenyl bridge. Their thermal stability, electrochemical properties, electrical structures, optical characteristics, charge transport capabilities, and applicability as host materials are systematically investigated. v-InCzTRZ exhibits pronounced thermally activated delayed fluorescence (TADF) property and superior charge transport ability, rendering it an efficient and versatile host material for a wide range of luminescent materials, including noble metal-containing phosphors, and purely organic classical TADF and multi-resonance (MR) TADF emitters. The OLED using v-InCzTRZ as host for phosphorescent Ir(tptpy)2acac exhibits an excellent maximum external quantum efficiency (ηext,max) of 37.24 % and an ultrahigh luminance of 248500 cd m−2 with a minimal efficiency roll-off of only 2.8 % at 1000 cd m−2 luminance. Besides, the OLED utilizing v-InCzTRZ as host for MR-TADF emitter of BN2 achieves an outstanding ηext,max of 38.78 %, much better than those using common host materials. These results demonstrate the high potential of V-shaped bipolar hosts for high-performance OLEDs.
{"title":"Robust universal bipolar host materials with thermally activated delayed fluorescence for high-performance OLEDs","authors":"Ruiqi Sun , Xiaobin Dong , Maoxing Yu , Zeyan Zhuang , Ben Zhong Tang , Zujin Zhao","doi":"10.1016/j.orgel.2025.107223","DOIUrl":"10.1016/j.orgel.2025.107223","url":null,"abstract":"<div><div>Robust host materials play a critical role in improving efficiency and stability for organic light-emitting diodes (OLEDs). To address the challenges of exciton quenching and imbalanced charge transport in traditional unipolar host systems, herein, we design two V-shaped bipolar host materials, <em>v</em>-CzTRZ and <em>v</em>-InCzTRZ, consisting of a carbazole (Cz)/7,7-dimethyl-5,7-dihydroindeno[2,1-<em>b</em>]carbazole (InCz) donor, a triazine (TRZ) acceptor and a <em>o</em>-terphenyl bridge. Their thermal stability, electrochemical properties, electrical structures, optical characteristics, charge transport capabilities, and applicability as host materials are systematically investigated. <em>v</em>-InCzTRZ exhibits pronounced thermally activated delayed fluorescence (TADF) property and superior charge transport ability, rendering it an efficient and versatile host material for a wide range of luminescent materials, including noble metal-containing phosphors, and purely organic classical TADF and multi-resonance (MR) TADF emitters. The OLED using <em>v</em>-InCzTRZ as host for phosphorescent Ir(tptpy)<sub>2</sub>acac exhibits an excellent maximum external quantum efficiency (<em>η</em><sub>ext,max</sub>) of 37.24 % and an ultrahigh luminance of 248500 cd m<sup>−2</sup> with a minimal efficiency roll-off of only 2.8 % at 1000 cd m<sup>−2</sup> luminance. Besides, the OLED utilizing <em>v</em>-InCzTRZ as host for MR-TADF emitter of BN2 achieves an outstanding <em>η</em><sub>ext,max</sub> of 38.78 %, much better than those using common host materials. These results demonstrate the high potential of V-shaped bipolar hosts for high-performance OLEDs.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"140 ","pages":"Article 107223"},"PeriodicalIF":2.7,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143478575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-19DOI: 10.1016/j.orgel.2025.107215
Ruoyao Xu , Xiaoyun Liu , Zhuye Bi , Xinyi Zhu , Peizhou Li , Xiangrong Cao , Yulu Sun , Zhiyuan Xu , Hebing Tang , Jungang Wang , Weilun Cai , Daolei Mo , Yunxuan Wang , Jie Xu , Yingzhuang Ma , Hua Dong , Fang Yuan
Low-dimensional copper-based halides have attracted significant attention in the development of ultraviolet photodetectors (PDs) owing to their non-toxic nature, wide band gap, strong light absorption, and long carrier diffusion length. However, the performance of these devices has been constrained by the material's intrinsically low photoluminescence quantum yields (PLQYs), uneven grain size, and agglomeration. In this study, we synthesized a novel 0D copper-based halide [N(C2H5)4]2Cu2Br4 (TEA2Cu2Br4) using a simple solution-based method and demonstrated high-performance ultraviolet PDs based on this material. TEA2Cu2Br4 exhibits a unique dendritic structure with exceptionally long crystals and an outstanding PLQY approaching unity, reflecting a very low trap density and excellent stability. Moreover, the PD device based on TEA2Cu2Br4 crystals achieved remarkably impressive responsivity (R) of 5.07 A/W, high detectivity (D∗) of 7.04 × 1012 Jones, and fast response rates (τr of 11.52 ms and τf of 11.22 ms), demonstrating superior detection capabilities. Notably, the device maintains 90 % of its photocurrent output after 3000 h of aging without encapsulation, highlighting its exceptional stability. This work indicates TEA2Cu2Br4 as an ideal active material for the development of high-performance and stable PDs, offering a promising pathway towards environmentally friendly optoelectronic devices.
{"title":"Novel near-unity 0D organic-inorganic copper-based halide TEA2Cu2Br4 for high-efficiency and stable ultraviolet photodetectors","authors":"Ruoyao Xu , Xiaoyun Liu , Zhuye Bi , Xinyi Zhu , Peizhou Li , Xiangrong Cao , Yulu Sun , Zhiyuan Xu , Hebing Tang , Jungang Wang , Weilun Cai , Daolei Mo , Yunxuan Wang , Jie Xu , Yingzhuang Ma , Hua Dong , Fang Yuan","doi":"10.1016/j.orgel.2025.107215","DOIUrl":"10.1016/j.orgel.2025.107215","url":null,"abstract":"<div><div>Low-dimensional copper-based halides have attracted significant attention in the development of ultraviolet photodetectors (PDs) owing to their non-toxic nature, wide band gap, strong light absorption, and long carrier diffusion length. However, the performance of these devices has been constrained by the material's intrinsically low photoluminescence quantum yields (PLQYs), uneven grain size, and agglomeration. In this study, we synthesized a novel 0D copper-based halide [N(C<sub>2</sub>H<sub>5</sub>)<sub>4</sub>]<sub>2</sub>Cu<sub>2</sub>Br<sub>4</sub> (TEA<sub>2</sub>Cu<sub>2</sub>Br<sub>4</sub>) using a simple solution-based method and demonstrated high-performance ultraviolet PDs based on this material. TEA<sub>2</sub>Cu<sub>2</sub>Br<sub>4</sub> exhibits a unique dendritic structure with exceptionally long crystals and an outstanding PLQY approaching unity, reflecting a very low trap density and excellent stability. Moreover, the PD device based on TEA<sub>2</sub>Cu<sub>2</sub>Br<sub>4</sub> crystals achieved remarkably impressive responsivity (<em>R</em>) of 5.07 A/W, high detectivity (<em>D</em>∗) of 7.04 × 10<sup>12</sup> Jones, and fast response rates (<em>τ</em><sub>r</sub> of 11.52 ms and <em>τ</em><sub>f</sub> of 11.22 ms), demonstrating superior detection capabilities. Notably, the device maintains 90 % of its photocurrent output after 3000 h of aging without encapsulation, highlighting its exceptional stability. This work indicates TEA<sub>2</sub>Cu<sub>2</sub>Br<sub>4</sub> as an ideal active material for the development of high-performance and stable PDs, offering a promising pathway towards environmentally friendly optoelectronic devices.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"140 ","pages":"Article 107215"},"PeriodicalIF":2.7,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143474605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stretchable organic light-emitting diodes (SOLEDs) based on buckled structures have been widely studied and offer broad application prospects in wearable electronics, deformable displays and electronic skin due to their high brightness and efficiency, large stretchability, and straightforward fabrication process. However, buckles are composed of a large number of wavy microstructures which bring large bending strain and uneven surface to the light-emitting regions. These negative factors increase the risk of device performance degradation, reduce the brightness uniformity, and distort the pixels. The negative effects are amplified by changes of the buckles’ morphology during stretching. In this paper, we solve these issues in buckled SOLEDs by strain engineering. Strain isolation islands are introduced into the flexible substrate to bear the compressive stress from the elastic tape and protect the light-emitting regions from forming buckles. As a result, a buckled SOLED array with planar light-emitting regions have been obtained. It shows a maximum one-dimensional (1D) stretchability of 50 % and a two-dimensional stretchability (2D) of 30 %. The pixels in the SOELD array exhibit efficient, stable and uniform electroluminescent (EL) performance. After 1000 times of cyclic stretching, the current efficiency, shape and area of each pixel in the array barely change, demonstrating the potential of the SOLEDs for stretchable display applications.
{"title":"Buckled stretchable organic light-emitting diode array with planar light-emitting pixels by strain engineering","authors":"Shi-Xin Jia, Da Yin, Hao-Yang Zhang, Su-Heng Li, Yue-Feng Liu, Jing Feng","doi":"10.1016/j.orgel.2025.107216","DOIUrl":"10.1016/j.orgel.2025.107216","url":null,"abstract":"<div><div>Stretchable organic light-emitting diodes (SOLEDs) based on buckled structures have been widely studied and offer broad application prospects in wearable electronics, deformable displays and electronic skin due to their high brightness and efficiency, large stretchability, and straightforward fabrication process. However, buckles are composed of a large number of wavy microstructures which bring large bending strain and uneven surface to the light-emitting regions. These negative factors increase the risk of device performance degradation, reduce the brightness uniformity, and distort the pixels. The negative effects are amplified by changes of the buckles’ morphology during stretching. In this paper, we solve these issues in buckled SOLEDs by strain engineering. Strain isolation islands are introduced into the flexible substrate to bear the compressive stress from the elastic tape and protect the light-emitting regions from forming buckles. As a result, a buckled SOLED array with planar light-emitting regions have been obtained. It shows a maximum one-dimensional (1D) stretchability of 50 % and a two-dimensional stretchability (2D) of 30 %. The pixels in the SOELD array exhibit efficient, stable and uniform electroluminescent (EL) performance. After 1000 times of cyclic stretching, the current efficiency, shape and area of each pixel in the array barely change, demonstrating the potential of the SOLEDs for stretchable display applications.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"140 ","pages":"Article 107216"},"PeriodicalIF":2.7,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143478574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-16DOI: 10.1016/j.orgel.2025.107214
Marzieh Rabiei , Raheleh Ghahary , Mozhgan Hosseinnezhad , Arvydas Palevicius , Andrius Vilkauskas , Giedrius Janusas , Sohrab Nasiri , Jean Michel Nunzi , Juozas Padgurskas , Raimundas Rukuiza
This study surveys the design and synthesis of fish-shaped structures based on carbazole derivatives for applications in light-emitting electrochemical cells (LEECs). Two thermally activated delayed fluorescent dyes (TADF) 5-(3,6-di-tert-butyl-9H-carbazol-9-yl)-10-((3-methoxy-9H-carbazol-9-yl) phenyl) anthracene (dye 1) and 5-(phenoxazine)-10-((3-methoxy-9H-carbazol-9-yl) phenyl) anthracene (dye 2) were synthesized as emitters in the active layer by coupling reaction technique. Separation of the HOMO-LUMO distributions was observed when the HOMOs localized on the methoxycarbazole and phenoxazine derivatives, respectively, and the LUMO consistently localized on the anthracene derivative. The dye consisting of a tert-butyl carbazole derivative showed a lower the variation of singlet-triplet splitting (ΔEST) value of 0.04 eV than the other counterpart, and reverse intersystem crossing (RISC) dominated for both dyes. The crystalline dyes exhibited mechanochromic behavior when the photoluminescence (PL) spectrum of the mechanically stimulated dyes was red-shifted. The space charge limited current (SCLC) technique proved that the dye consisting of a phenoxazine derivative had a higher carrier mobility of 6.14 × 10−4 for holes and 2.12 × 10−4 cm2 V−1 s−1 for electrons in tandem. Based on the mechanochromic behavior of the dyes initially, the fabricated LEECs also exhibited mechanochromic feature, and the EL spectra of the flexible devices showed a red shift in the emission spectra after stretching. In addition, the external quantum efficiency (EQE) of both flexible devices increased to 0.33 % after stretching. Furthermore, iridium complex [Ir(buoppy)2(dmapzpy)]PF6 is used as a promising host for the development of high-performance LEECs. Therefore, brightness and EQE values were increased to 6629 cd m−2 and 7.13 %, respectively.
{"title":"Light-emitting electrochemical cells based on mechanochromic, thermally activated delayed fluorescence fish-shaped structures consisting of carbazole derivatives as emitters in the active layer","authors":"Marzieh Rabiei , Raheleh Ghahary , Mozhgan Hosseinnezhad , Arvydas Palevicius , Andrius Vilkauskas , Giedrius Janusas , Sohrab Nasiri , Jean Michel Nunzi , Juozas Padgurskas , Raimundas Rukuiza","doi":"10.1016/j.orgel.2025.107214","DOIUrl":"10.1016/j.orgel.2025.107214","url":null,"abstract":"<div><div>This study surveys the design and synthesis of fish-shaped structures based on carbazole derivatives for applications in light-emitting electrochemical cells (LEECs). Two thermally activated delayed fluorescent dyes (TADF) 5-(3,6-di-tert-butyl-9H-carbazol-9-yl)-10-((3-methoxy-9H-carbazol-9-yl) phenyl) anthracene (dye 1) and 5-(phenoxazine)-10-((3-methoxy-9H-carbazol-9-yl) phenyl) anthracene (dye 2) were synthesized as emitters in the active layer by coupling reaction technique. Separation of the HOMO-LUMO distributions was observed when the HOMOs localized on the methoxycarbazole and phenoxazine derivatives, respectively, and the LUMO consistently localized on the anthracene derivative. The dye consisting of a tert-butyl carbazole derivative showed a lower the variation of singlet-triplet splitting (ΔE<sub>ST</sub>) value of 0.04 eV than the other counterpart, and reverse intersystem crossing (RISC) dominated for both dyes. The crystalline dyes exhibited mechanochromic behavior when the photoluminescence (PL) spectrum of the mechanically stimulated dyes was red-shifted. The space charge limited current (SCLC) technique proved that the dye consisting of a phenoxazine derivative had a higher carrier mobility of 6.14 × 10<sup>−4</sup> for holes and 2.12 × 10<sup>−4</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> for electrons in tandem. Based on the mechanochromic behavior of the dyes initially, the fabricated LEECs also exhibited mechanochromic feature, and the EL spectra of the flexible devices showed a red shift in the emission spectra after stretching. In addition, the external quantum efficiency (EQE) of both flexible devices increased to 0.33 % after stretching. Furthermore, iridium complex [Ir(buoppy)<sub>2</sub>(dmapzpy)]PF<sub>6</sub> is used as a promising host for the development of high-performance LEECs. Therefore, brightness and EQE values were increased to 6629 cd m<sup>−2</sup> and 7.13 %, respectively.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"141 ","pages":"Article 107214"},"PeriodicalIF":2.7,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143526580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}