This study investigates the effect of dispersion gas (DG) flow on the formation and properties of maghemite (γ-Fe2O3) nanoparticles using standardized SpraySyn burners (SS1 and SS2). Several diagnostics were employed to characterize the spray and nanoparticles.
Increasing DG flow (612 slm) results in smaller droplet sizes (DS), cooler flame temperatures, shorter high-temperature droplet/particle residence times, and smaller agglomerates in the size range of 512 nm with narrower primary particle size distribution, corresponding to higher mass fractal dimensions, as supported by TEM and SMPS analysis, resulting in more compact agglomerates. BET and TEM confirmed decreasing primary particle sizes with increasing DG flow. Raman and XRD analyses predominantly identified maghemite, which shows a bimodal distribution of crystallite sizes, while SS1 samples have a greater proportion of larger crystallites.
The self-preserving size distributions of agglomerates with a geometric standard deviation of 1.5 are reached faster with increasing DG flow. The barrier effect of DG observed in SS1 leads to slower droplet combustion kinetics, higher temperatures, and delayed precursor release, which, along with downstream flow recirculation, result in significantly higher agglomeration rates outside the visible flame. SS2 demonstrates improved atomization, more stable flames, and finer, uniform nanoparticles with less carbonaceous residues (CR). Conversely, SS1 showed broader DS distributions and higher CR levels on the γ-Fe2O3 surface, especially at higher DG flow.
This work highlights the essential role of DG flow and nozzle geometry in controlling droplet evaporation, flame stability, and nanoparticle growth, offering insights for optimizing SFS and validating numerical models.
扫码关注我们
求助内容:
应助结果提醒方式:
