首页 > 最新文献

Progress in Polymer Science最新文献

英文 中文
Promising strategies and new opportunities for high barrier polymer packaging films 高阻隔聚合物包装薄膜的发展前景与新机遇
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2023-09-01 DOI: 10.1016/j.progpolymsci.2023.101722
Hua-Dong Huang , Peng-Gang Ren , Gan-Ji Zhong , Andrew Olah , Zhong-Ming Li , Eric Baer , Lei Zhu

The past decades have witnessed the rapidly growing interest in polymer films as the most commonly used packaging material due to their lightweight, versatility, low cost, and ease of manufacturing. However, there is a noticeable mismatch between the demanding requirements of various oxygen- or humidity-sensitive commodities and the poor barrier properties of single-component polymer films, thus giving rise to food spoilage, drug failure, as well as corrosion damage of electronic devices. In this review, we provide an in-depth introduction on the most promising strategies for developing high barrier polymer packaging films, including surface coating, polymer blending, and polymer nanocomposites. Specifically, the types of surface coatings, the dispersed phase morphology in polymer blends, the main factors for polymer nanocomposites containing large-aspect-ratio nanoplatelets, their dispersion morphology, the interfacial structure, and the crystalline structure of the matrix polymers can be tailored to maximize the gas barrier performance. Also, current challenges and perspectives for future development of high barrier polymer packaging materials are proposed. The new insight into the relationship between polymer processing, microscopic architecture, and barrier properties of polymer materials are expected to provide a valuable guide for developing high-barrier polymer packaging materials.

在过去的几十年里,人们对聚合物薄膜作为最常用的包装材料的兴趣迅速增长,因为它们重量轻,多功能性,低成本,易于制造。然而,各种对氧气或湿度敏感的商品的苛刻要求与单组分聚合物薄膜的差阻隔性能之间存在明显的不匹配,从而导致食品变质,药物失效以及电子设备的腐蚀损坏。本文从表面涂覆、聚合物共混、聚合物纳米复合等方面综述了高阻隔性聚合物包装薄膜的发展策略。具体来说,表面涂层的类型、聚合物共混物中的分散相形态、包含大纵横比纳米片的聚合物纳米复合材料的主要因素、它们的分散形态、界面结构和基体聚合物的晶体结构可以定制,以最大限度地提高气体阻隔性能。最后,提出了高阻隔性高分子包装材料目前面临的挑战和未来发展的展望。对聚合物加工、微观结构和聚合物材料阻隔性能之间关系的新认识,有望为开发高阻隔聚合物包装材料提供有价值的指导。
{"title":"Promising strategies and new opportunities for high barrier polymer packaging films","authors":"Hua-Dong Huang ,&nbsp;Peng-Gang Ren ,&nbsp;Gan-Ji Zhong ,&nbsp;Andrew Olah ,&nbsp;Zhong-Ming Li ,&nbsp;Eric Baer ,&nbsp;Lei Zhu","doi":"10.1016/j.progpolymsci.2023.101722","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101722","url":null,"abstract":"<div><p><span><span>The past decades have witnessed the rapidly growing interest in polymer films<span> as the most commonly used packaging material due to their lightweight, versatility, low cost, and ease of manufacturing. However, there is a noticeable mismatch between the demanding requirements of various oxygen- or humidity-sensitive commodities and the poor barrier properties of single-component polymer films, thus giving rise to food spoilage, drug failure, as well as corrosion damage of electronic devices. In this review, we provide an in-depth introduction on the most promising strategies for developing high barrier polymer packaging films, including surface coating, polymer blending, and </span></span>polymer nanocomposites. Specifically, the types of surface coatings, the dispersed phase morphology in </span>polymer blends<span><span>, the main factors for polymer nanocomposites containing large-aspect-ratio nanoplatelets, their dispersion morphology, the </span>interfacial structure<span><span>, and the crystalline structure of the matrix polymers can be tailored to maximize the gas barrier performance. Also, current challenges and perspectives for future development of high barrier polymer packaging materials are proposed. The new insight into the relationship between </span>polymer processing, microscopic architecture, and barrier properties of polymer materials are expected to provide a valuable guide for developing high-barrier polymer packaging materials.</span></span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"144 ","pages":"Article 101722"},"PeriodicalIF":27.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1822385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Crystallization in thin films of polymer glasses: The role of free surfaces, solid interfaces and their competition 聚合物玻璃薄膜的结晶:自由表面、固体界面的作用及其竞争
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2023-09-01 DOI: 10.1016/j.progpolymsci.2023.101725
Yuhui Yang , Houkuan Tian , Simone Napolitano , Biao Zuo

Polymer coatings of nanometric thickness are about to enter in everyday life as part of a wide range of applications such as protective layers, stimuli-responsive membranes or as components of flexible electronics devices. In the past 30 years, these polymer nanomaterial systems have been at the center of research interest due to the opportunities to control relevant material properties like the phase transition temperature, viscosity, permeability, or thermal expansion by variation of the film thickness. One of the key factors responsible for the deviation from bulk behavior is known as 1D confinement that describes the increasing impact of interfacial layers when reducing film thickness. This review provides a comprehensive discussion of the role of the free surface at the boundary with air and the interfacial layer in proximity of a supporting substrate on the crystallization of thin polymer films. First, the dynamics of polymers near the free surface and its impact on the crystallization of films is discussed. Subsequently, the effect of solid substrates on crystallization in thin films is elaborated, including the formation of irreversible adsorption layers, alteration of crystalline structure and the kinetics of crystallization. Subsequently, the competition between surface and interface effects on the formation of ordered structures in thin polymer films is discussed. A perspective on challenges and opportunities in the field of thin film crystallization is provided to inspire future research and development in the field. This review thus provides an up-to-date analysis of current understanding of crystallization of polymer glasses under 1D confinement, aimed at supporting the manipulation and control of the properties of polymer-based nanodevices.

纳米厚度的聚合物涂层即将进入日常生活,作为广泛应用的一部分,如保护层,刺激响应膜或柔性电子设备的组件。在过去的30年里,这些聚合物纳米材料系统一直是研究兴趣的中心,因为有机会通过改变薄膜厚度来控制相关的材料特性,如相变温度、粘度、渗透率或热膨胀。造成与体行为偏差的关键因素之一是一维约束,它描述了当膜厚度减小时界面层的影响越来越大。本文综述了与空气交界的自由表面和靠近支撑基板的界面层在聚合物薄膜结晶过程中的作用。首先,讨论了聚合物在自由表面附近的动力学及其对薄膜结晶的影响。随后,阐述了固体基质对薄膜结晶的影响,包括不可逆吸附层的形成、晶体结构的改变和结晶动力学。随后,讨论了表面和界面效应之间的竞争对聚合物薄膜有序结构形成的影响。展望了薄膜结晶领域面临的挑战和机遇,以期对未来的研究和发展有所启发。因此,本文综述了目前对聚合物玻璃在一维约束下结晶的理解的最新分析,旨在支持对聚合物基纳米器件性能的操纵和控制。
{"title":"Crystallization in thin films of polymer glasses: The role of free surfaces, solid interfaces and their competition","authors":"Yuhui Yang ,&nbsp;Houkuan Tian ,&nbsp;Simone Napolitano ,&nbsp;Biao Zuo","doi":"10.1016/j.progpolymsci.2023.101725","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101725","url":null,"abstract":"<div><p><span>Polymer coatings<span> of nanometric thickness are about to enter in everyday life as part of a wide range of applications such as protective layers, stimuli-responsive membranes or as components of flexible electronics devices. In the past 30 years, these polymer nanomaterial systems have been at the center of research interest due to the opportunities to control relevant </span></span>material properties<span><span> like the phase transition temperature, viscosity, permeability, or thermal expansion<span> by variation of the film thickness. One of the key factors responsible for the deviation from bulk behavior is known as 1D confinement that describes the increasing impact of interfacial layers when reducing film thickness. This review provides a comprehensive discussion of the role of the free surface at the boundary with air and the interfacial layer in proximity of a supporting substrate on the crystallization of thin polymer films<span>. First, the dynamics of polymers near the free surface and its impact on the crystallization of films is discussed. Subsequently, the effect of solid substrates on crystallization in thin films is elaborated, including the formation of irreversible adsorption layers, alteration of crystalline structure and the kinetics of crystallization. Subsequently, the competition between surface and interface effects on the formation of ordered structures in thin polymer films is discussed. A perspective on challenges and opportunities in the field of thin film crystallization is provided to inspire future research and development in the field. This review thus provides an up-to-date analysis of current understanding of crystallization of polymer glasses under 1D confinement, aimed at supporting the manipulation and control of the properties of polymer-based </span></span></span>nanodevices.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"144 ","pages":"Article 101725"},"PeriodicalIF":27.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3082041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Self-healable functional polymers and polymer-based composites 自愈功能聚合物和聚合物基复合材料
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2023-09-01 DOI: 10.1016/j.progpolymsci.2023.101724
Ze Ping Zhang, Min Zhi Rong, Ming Qiu Zhang

Polymers and polymer composites with advanced functions have attracted great attention following the development of modern science and technologies. Nevertheless, damages of microstructures and variations of chemical constitutes are inevitably induced during their manufacturing and operation, causing undesired attenuation or even loss of functionalities. To address the problems, self-healable functional polymeric materials, which focus on autonomous restoration of non-structural functionalities for improving the lifespan and durability, have emerged in recent years as a huge surge of interest because of their apparent potential benefits. As dictated by the diverse working principles of the individual functionalities, the technical advance of self-healing functional polymers and composites exhibits distinct characteristics from that of self-healing structural materials specializing in strength recovery. This review summarizes the state-of-the-art achievements in the field, and discusses the common features and issues in most of the reported self-healing functional materials including healable electroconductive, thermally conductive, dielectric, optically transparent, superhydrophobic, superhydrophilic, and power conversion and storage related polymers. The review will subsequently discuss (i) the damage modes relating to different causes, (ii) the mechanisms of self-healing based on chemical and physical methodologies, and (iii) molecular level design schemes and synthesis strategies for self-healing functional polymeric materials. The advantages and inadequacies of representative works are discussed, and the critical challenges and opportunities for future research are highlighted. It is hoped that the present article would inspire more innovative explorations of self-healing functional polymeric materials, as well as promote their practical application.

随着现代科学技术的发展,具有先进功能的聚合物和聚合物复合材料受到了人们的广泛关注。然而,在其制造和使用过程中,不可避免地会引起微结构的破坏和化学成分的变化,从而导致不希望的衰减甚至丧失功能。为了解决这些问题,近年来,由于具有明显的潜在优势,自修复功能聚合物材料引起了人们的极大兴趣。自修复功能聚合物材料专注于非结构功能的自动修复,以提高使用寿命和耐久性。由于单个功能的不同工作原理,自修复功能聚合物和复合材料的技术进步与专门从事强度恢复的自修复结构材料表现出截然不同的特征。本文综述了该领域的最新研究成果,讨论了目前报道的自修复功能材料的共同特点和存在的问题,包括可修复的导电、导热、介电、光学透明、超疏水、超亲水性以及与能量转换和存储相关的聚合物。随后将讨论(i)与不同原因相关的损伤模式,(ii)基于化学和物理方法的自修复机制,以及(iii)自修复功能聚合物材料的分子水平设计方案和合成策略。讨论了代表性作品的优点和不足,并强调了未来研究的关键挑战和机遇。希望本文的研究成果能够启发人们对自修复功能高分子材料进行更多的创新探索,并促进其实际应用。
{"title":"Self-healable functional polymers and polymer-based composites","authors":"Ze Ping Zhang,&nbsp;Min Zhi Rong,&nbsp;Ming Qiu Zhang","doi":"10.1016/j.progpolymsci.2023.101724","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101724","url":null,"abstract":"<div><p><span>Polymers and polymer composites with advanced functions have attracted great attention following the development of modern science and technologies. Nevertheless, damages of microstructures and variations of chemical constitutes are inevitably induced during their manufacturing and operation, causing undesired attenuation or even loss of functionalities. To address the problems, self-healable functional polymeric materials, which focus on autonomous restoration of non-structural functionalities for improving the lifespan and durability, have emerged in recent years as a huge surge of interest because of their apparent potential benefits. As dictated by the diverse working principles of the individual functionalities, the technical advance of self-healing </span>functional polymers<span><span> and composites exhibits distinct characteristics from that of self-healing structural materials specializing in strength<span> recovery. This review summarizes the state-of-the-art achievements in the field, and discusses the common features and issues in most of the reported self-healing functional materials including healable electroconductive, thermally conductive, dielectric, optically transparent, </span></span>superhydrophobic, superhydrophilic, and power conversion and storage related polymers. The review will subsequently discuss (i) the damage modes relating to different causes, (ii) the mechanisms of self-healing based on chemical and physical methodologies, and (iii) molecular level design schemes and synthesis strategies for self-healing functional polymeric materials. The advantages and inadequacies of representative works are discussed, and the critical challenges and opportunities for future research are highlighted. It is hoped that the present article would inspire more innovative explorations of self-healing functional polymeric materials, as well as promote their practical application.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"144 ","pages":"Article 101724"},"PeriodicalIF":27.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2619259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Dynamic Covalent Bond: Modes of Activation of the C—ON Bond in Alkoxyamines 动态共价键:烷氧基胺中C-ON键的激活模式
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2023-09-01 DOI: 10.1016/j.progpolymsci.2023.101726
Gérard Audran , Elena G. Bagryanskaya , Raphaël Bikanga , Michelle L. Coote , Olga Guselnikova , Chelsey L. Hammill , Sylvain R.A. Marque , Philippe Mellet , Pavel S. Postnikov

The materials of future depend a lot on properties that are due to “non stable” molecules. Hence, Dynamic Covalent Bonds (DCB) are covalent bonds that are labile under specific stimuli and are integral to the design of next generation materials. Alkoxyamines R1R2NO—R3 exhibit a unique C—O DCB that is nonsymmetric between the adjacent O- and C-atoms. This bond can be cleaved homolytically, heterolytically and mesolytically in response to a wide variety of physical, chemical and biological stimuli, and the kinetics and thermodynamics of cleavage can be tuned on-demand by varying the structure of R1, R2 and R3. Alkoxyamines are easily incorporated into polymers via nitroxide mediated polymerisation (NMP) however, their dynamic covalent properties are yet to be fully exploited in materials sciences. This is in part because reports on C—ON activation are scattered through the broader synthetic, physical and biological chemistry literature, and a comprehensive review of them has been lacking. Herein, 20 leading C—ON activation processes using UV-light, surface plasmon resonance, magnetothermy, electrochemistry, chemical oxidation, protonation, non-covalent bonding, sonication, enzymatic activation among others, are presented and discussed, along with primary examples of their application.

未来的材料在很大程度上取决于“不稳定”分子的特性。因此,动态共价键(DCB)是在特定刺激下不稳定的共价键,是下一代材料设计的组成部分。烷氧胺R1R2NO-R3表现出独特的C-O DCB,在相邻的O-和c -原子之间不对称。该键可以响应各种物理、化学和生物刺激进行均解、异解和中解裂解,并且可以通过改变R1、R2和R3的结构来按需调节裂解的动力学和热力学。烷氧胺很容易通过氮氧化物介导聚合(NMP)结合到聚合物中,然而,它们的动态共价性质尚未在材料科学中得到充分利用。部分原因是关于C-ON活化的报道分散在更广泛的合成、物理和生物化学文献中,缺乏对它们的全面回顾。本文介绍和讨论了20种主要的C-ON活化工艺,包括紫外线、表面等离子体共振、磁热、电化学、化学氧化、质子化、非共价键、超声、酶活化等,并给出了它们的应用实例。
{"title":"Dynamic Covalent Bond: Modes of Activation of the C—ON Bond in Alkoxyamines","authors":"Gérard Audran ,&nbsp;Elena G. Bagryanskaya ,&nbsp;Raphaël Bikanga ,&nbsp;Michelle L. Coote ,&nbsp;Olga Guselnikova ,&nbsp;Chelsey L. Hammill ,&nbsp;Sylvain R.A. Marque ,&nbsp;Philippe Mellet ,&nbsp;Pavel S. Postnikov","doi":"10.1016/j.progpolymsci.2023.101726","DOIUrl":"10.1016/j.progpolymsci.2023.101726","url":null,"abstract":"<div><p><span>The materials of future depend a lot on properties that are due to “non stable” molecules. Hence, Dynamic Covalent Bonds (DCB) are covalent bonds that are labile under specific stimuli and are integral to the design of next generation materials. Alkoxyamines R</span><sup>1</sup>R<sup>2</sup>NO—R<sup>3</sup> exhibit a unique C—O DCB that is nonsymmetric between the adjacent O- and C-atoms. This bond can be cleaved homolytically, heterolytically and mesolytically in response to a wide variety of physical, chemical and biological stimuli, and the kinetics and thermodynamics of cleavage can be tuned on-demand by varying the structure of R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup><span><span><span><span>. Alkoxyamines are easily incorporated into polymers via nitroxide mediated polymerisation (NMP) however, their dynamic covalent properties are yet to be fully exploited in materials sciences. This is in part because reports on C—ON activation are scattered through the broader synthetic, physical and biological </span>chemistry literature, and a comprehensive review of them has been lacking. Herein, 20 leading C—ON activation processes using UV-light, </span>surface plasmon resonance<span><span>, magnetothermy, electrochemistry, chemical </span>oxidation, protonation, non-covalent bonding, </span></span>sonication, enzymatic activation among others, are presented and discussed, along with primary examples of their application.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"144 ","pages":"Article 101726"},"PeriodicalIF":27.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49084021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-dimensional conjugated polymer frameworks for solar fuel generation from water 二维共轭聚合物框架用于水太阳能燃料发电
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2023-08-16 DOI: 10.1016/j.progpolymsci.2023.101734
Lei Wang, Hangxun Xu

Solar-to-chemical energy conversion through artificial photosynthesis is an ideal route to address the global energy crisis and realize carbon neutrality in the future. Over the past decade, two-dimensional conjugated polymer frameworks (2D CPFs), including conjugated microporous polymers, covalent organic frameworks, and covalent triazine frameworks, have emerged as a promising class of photocatalysts for solar fuel generation. They exhibit highly tunable chemical and optoelectronic structures which can be precisely controlled at the molecular level. Meanwhile, the 2D planar structure with in-plane periodicity offers many unique features for solar-driven catalytic energy conversion, including large surface areas, high absorption coefficients, efficient charge transport, and facile formation of heterostructures. In addition, their surface active sites can be rationally constructed from numerous molecular building blocks to optimize their photocatalytic performances. Herein, we comprehensively summarize recent progress in developing 2D CPFs for solar fuel generation from water, including photocatalytic overall water splitting, hydrogen peroxide production, carbon dioxide reduction, and nitrogen fixation. Basic principles in these photocatalytic reactions are described. In-depth insights into the structure-property relationships between 2D CPFs and their reaction mechanisms are discussed in detail. Moreover, recent advances in applications of 2D CPFs in photoelectrochemical energy conversion are also highlighted. Finally, the remaining challenges and research opportunities for the future development of efficient 2D CPFs toward solar fuel generation are presented.

通过人工光合作用将太阳能转化为化学能是未来解决全球能源危机、实现碳中和的理想途径。在过去的十年中,二维共轭聚合物框架(2D CPFs),包括共轭微孔聚合物、共价有机框架和共价三嗪框架,已经成为一类有前途的太阳能燃料发电光催化剂。它们具有高度可调的化学和光电子结构,可以在分子水平上精确控制。同时,具有平面内周期性的二维平面结构为太阳能驱动的催化能量转换提供了许多独特的特性,包括大表面积、高吸收系数、高效的电荷传输和易于形成异质结构。此外,它们的表面活性位点可以由众多的分子构建块合理构建,以优化它们的光催化性能。在此,我们全面总结了用于水太阳能发电的二维CPFs的最新进展,包括光催化整体水分解、过氧化氢生产、二氧化碳还原和固氮。介绍了这些光催化反应的基本原理。深入探讨了二维CPFs之间的结构-性质关系及其反应机制。此外,还重点介绍了二维CPFs在光电化学能量转换方面的最新研究进展。最后,提出了用于太阳能发电的高效二维CPFs的未来发展面临的挑战和研究机会。
{"title":"Two-dimensional conjugated polymer frameworks for solar fuel generation from water","authors":"Lei Wang,&nbsp;Hangxun Xu","doi":"10.1016/j.progpolymsci.2023.101734","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101734","url":null,"abstract":"<div><p><span><span><span>Solar-to-chemical energy conversion through artificial photosynthesis is an ideal route to address the global energy crisis and realize </span>carbon neutrality in the future. Over the past decade, two-dimensional </span>conjugated polymer<span><span> frameworks (2D CPFs), including conjugated microporous polymers, </span>covalent organic frameworks<span>, and covalent triazine<span> frameworks, have emerged as a promising class of photocatalysts<span> for solar fuel generation. They exhibit highly tunable chemical and optoelectronic structures which can be precisely controlled at the molecular level. Meanwhile, the 2D planar structure with in-plane periodicity offers many unique features for solar-driven catalytic energy conversion, including large surface areas, high absorption coefficients, efficient charge transport, and facile formation of </span></span></span></span></span>heterostructures<span><span>. In addition, their surface active sites can be rationally constructed from numerous molecular building blocks to optimize their photocatalytic performances. Herein, we comprehensively summarize recent progress in developing 2D CPFs for solar fuel generation from water, including photocatalytic overall water splitting, hydrogen peroxide production, carbon dioxide reduction, and </span>nitrogen fixation. Basic principles in these photocatalytic reactions are described. In-depth insights into the structure-property relationships between 2D CPFs and their reaction mechanisms are discussed in detail. Moreover, recent advances in applications of 2D CPFs in photoelectrochemical energy conversion are also highlighted. Finally, the remaining challenges and research opportunities for the future development of efficient 2D CPFs toward solar fuel generation are presented.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"145 ","pages":"Article 101734"},"PeriodicalIF":27.1,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3143394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Polymers for flexible energy storage devices 柔性储能装置用聚合物
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2023-08-01 DOI: 10.1016/j.progpolymsci.2023.101714
Chuanfa Li , Kun Zhang , Xiangran Cheng, Jiaxin Li, Yi Jiang, Pengzhou Li, Bingjie Wang, Huisheng Peng

Flexible energy storage devices have received much attention owing to their promising applications in rising wearable electronics. By virtue of their high designability, light weight, low cost, high stability, and mechanical flexibility, polymer materials have been widely used for realizing high electrochemical performance and excellent flexibility of energy storage devices. In this review, flexible energy storage devices including supercapacitors and batteries are firstly introduced briefly. Then the design requirements and specific applications of polymer materials as electrodes, electrolytes, separators, and packaging layers of flexible energy storage devices are systematically discussed with an emphasis on the material design and device performance. The remaining challenges and future directions are finally summarized to guide future studies on the development of polymer materials for flexible energy storage devices.

柔性储能装置由于在新兴的可穿戴电子产品中具有广阔的应用前景而备受关注。高分子材料以其高可设计性、轻量化、低成本、高稳定性和机械柔韧性等优点,被广泛应用于实现高电化学性能和优异柔韧性的储能器件。本文首先简要介绍了包括超级电容器和电池在内的柔性储能装置。然后系统讨论了高分子材料作为柔性储能器件的电极、电解质、隔膜和封装层的设计要求和具体应用,重点讨论了材料设计和器件性能。最后总结了柔性储能器件聚合物材料研究中存在的挑战和未来发展方向,以指导柔性储能器件聚合物材料的研究发展。
{"title":"Polymers for flexible energy storage devices","authors":"Chuanfa Li ,&nbsp;Kun Zhang ,&nbsp;Xiangran Cheng,&nbsp;Jiaxin Li,&nbsp;Yi Jiang,&nbsp;Pengzhou Li,&nbsp;Bingjie Wang,&nbsp;Huisheng Peng","doi":"10.1016/j.progpolymsci.2023.101714","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101714","url":null,"abstract":"<div><p>Flexible energy storage devices have received much attention owing to their promising applications in rising wearable electronics. By virtue of their high designability, light weight, low cost, high stability, and mechanical flexibility, polymer materials have been widely used for realizing high electrochemical performance and excellent flexibility of energy storage devices. In this review, flexible energy storage devices including supercapacitors and batteries are firstly introduced briefly. Then the design requirements and specific applications of polymer materials as electrodes, electrolytes, separators, and packaging layers of flexible energy storage devices are systematically discussed with an emphasis on the material design and device performance. The remaining challenges and future directions are finally summarized to guide future studies on the development of polymer materials for flexible energy storage devices.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"143 ","pages":"Article 101714"},"PeriodicalIF":27.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3203136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Engineering interactions between nanoparticles using polymers 利用聚合物设计纳米颗粒之间的相互作用
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2023-08-01 DOI: 10.1016/j.progpolymsci.2023.101710
Huibin He , Xiaoxue Shen , Zhihong Nie

Nanoparticle assembly offers a versatile tool for constructing new structural materials with emergent or collective properties beyond individual nanoparticles. The achievement of desired properties and functions of these assembly materials often require delicate control over the interactions between nanoparticle building blocks. As of now, tremendous efforts have been devoted to manipulating the interparticle interactions by functionalizing the surface of nanoparticles with different ligands (e.g., small molecules, DNAs, proteins, and polymers). Among others, polymers are particularly attractive, owing to their tailorable molecular structures, rich functionalities, tunable responsiveness, superior biodegradability and biocompatibility, and easy mass production at low cost, etc. In this review, we present a summary of recent advances in engineering interparticle interactions between nanoparticles, especially inorganic nanoparticles with different sizes, shapes, and compositions, by tailoring the structurally defined polymers grafted or absorbed on the surface of nanoparticles. Discussions are focused on various interactions (i.e., steric repulsion, Coulombic interaction, hydrophobic interaction, hydrogen bonding, chemical reaction-induced recognitive interaction, and entropic effect) dominating the assembly of polymer-modified nanoparticles. Furthermore, the effect of external fields (e.g., light field, electric field, etc.) on the interactions between polymer-modified nanoparticles is presented.

纳米粒子组装提供了一种多功能的工具,用于构建具有紧急或集体特性的新结构材料,而不仅仅是单个纳米粒子。要实现这些组装材料所需的性能和功能,通常需要对纳米颗粒构建块之间的相互作用进行精细控制。到目前为止,人们已经做出了巨大的努力,通过用不同的配体(如小分子、dna、蛋白质和聚合物)功能化纳米颗粒的表面来操纵粒子间的相互作用。其中,聚合物因其具有可定制的分子结构、丰富的功能、可调节的响应性、优越的生物降解性和生物相容性以及易于低成本批量生产等特点,尤其具有吸引力。在这篇综述中,我们总结了近年来通过在纳米颗粒表面接枝或吸收结构明确的聚合物来修饰纳米颗粒,特别是不同尺寸、形状和成分的无机纳米颗粒之间的工程相互作用的进展。讨论的重点是各种相互作用(即,空间排斥,库仑相互作用,疏水相互作用,氢键,化学反应诱导的识别相互作用,熵效应)主导聚合物修饰纳米颗粒的组装。此外,还研究了外加场(如光场、电场等)对聚合物修饰纳米粒子相互作用的影响。
{"title":"Engineering interactions between nanoparticles using polymers","authors":"Huibin He ,&nbsp;Xiaoxue Shen ,&nbsp;Zhihong Nie","doi":"10.1016/j.progpolymsci.2023.101710","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101710","url":null,"abstract":"<div><p><span>Nanoparticle assembly offers a versatile tool for constructing new structural materials with emergent or collective properties beyond individual nanoparticles. The achievement of desired properties and functions of these assembly materials often require delicate control over the interactions between nanoparticle building blocks. As of now, tremendous efforts have been devoted to manipulating the interparticle interactions by functionalizing the surface of nanoparticles with different ligands (</span><em>e.g.</em><span>, small molecules, DNAs<span>, proteins, and polymers). Among others, polymers are particularly attractive, owing to their tailorable molecular structures, rich functionalities, tunable responsiveness, superior biodegradability and biocompatibility, and easy mass production at low cost, </span></span><em>etc</em><span>. In this review, we present a summary of recent advances in engineering interparticle interactions between nanoparticles, especially inorganic nanoparticles with different sizes, shapes, and compositions, by tailoring the structurally defined polymers grafted or absorbed on the surface of nanoparticles. Discussions are focused on various interactions (</span><em>i.e.</em><span>, steric repulsion, Coulombic interaction, hydrophobic interaction, hydrogen bonding, chemical reaction-induced recognitive interaction, and entropic effect) dominating the assembly of polymer-modified nanoparticles. Furthermore, the effect of external fields (</span><em>e.g.</em>, light field, electric field, <em>etc</em>.) on the interactions between polymer-modified nanoparticles is presented.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"143 ","pages":"Article 101710"},"PeriodicalIF":27.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1759877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Recent Progress in π-Conjugated Polymers for Organic Photovoltaics: Solar Cells and Photodetectors 有机光伏材料中π共轭聚合物的研究进展:太阳能电池和光电探测器
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2023-08-01 DOI: 10.1016/j.progpolymsci.2023.101711
Chunchen Liu, Lin Shao, Shihao Chen, Zhengwei Hu, Houji Cai, Fei Huang

π-Conjugated polymers show promising potential in the application of organic photovoltaics, including organic solar cells (OSCs) and organic photodetectors (OPDs) because of merits of light-weight, flexibility, facilely tuned color, large-scaled solution-processability, etc. Over the past three decades, various π-conjugated polymers have been developed owing to the continuous efforts of researchers, which significantly promote the OPVs technology to an unprecedented stage. In order to reveal the relationship among polymer structures to the optical and electronic properties and interchain aggregation and morphology and finally to device performance, it is of great significance to review the progress of π-conjugated polymers for OPVs, particularly for outstanding achievements in recent all-polymer solar cells (all-PSCs), indoor organic photovoltaics (IOPVs), thick-film OSCs, single-component organic solar cells (SCOSCs) and short-wave infrared (SWIR) OPDs. This review highlights general design strategies of π-conjugated polymers for high-performance OPVs, including conjugated backbone engineering, side-chains engineering, regioregularity engineering, halogen substitution and molecular weight control. Then, the development of conjugated polymers for all-PSCs, IOPVs, thick-film OSCs, SCOSCs and OPDs has been summarized. At the end, we summarize the challenges and future directions for studying π-conjugated polymers for OPVs. Therefore, an in-depth understanding of designing π-conjugated polymers is speculated to advance the development of current OPV materials and thus accelerate the ultimate industrialization of the OPV technology.

π共轭聚合物具有重量轻、柔韧性好、颜色易调、可大规模溶液加工等优点,在有机光伏电池(OSCs)和有机光电探测器(OPDs)等领域具有广阔的应用前景。近三十年来,经过研究人员的不断努力,各种π共轭聚合物被开发出来,极大地将opv技术推向了一个前所未有的阶段。为了揭示聚合物结构与光学和电子性能、链间聚集和形态以及器件性能之间的关系,回顾π共轭聚合物用于opv的研究进展,特别是近年来在全聚合物太阳能电池(all-PSCs)、室内有机光伏电池(IOPVs)、厚膜OSCs、单组分有机太阳能电池(SCOSCs)和短波红外(SWIR) opd方面取得的突出成就,具有重要意义。本文综述了用于高性能opv的π共轭聚合物的一般设计策略,包括共轭主链工程、侧链工程、区域规则工程、卤素取代和分子量控制。然后,对全pscs、iopv、厚膜OSCs、SCOSCs和opd的共轭聚合物的发展进行了综述。最后,总结了opv用π共轭聚合物研究面临的挑战和未来的发展方向。因此,深入理解π共轭聚合物的设计可以促进当前OPV材料的发展,从而加速OPV技术的最终产业化。
{"title":"Recent Progress in π-Conjugated Polymers for Organic Photovoltaics: Solar Cells and Photodetectors","authors":"Chunchen Liu,&nbsp;Lin Shao,&nbsp;Shihao Chen,&nbsp;Zhengwei Hu,&nbsp;Houji Cai,&nbsp;Fei Huang","doi":"10.1016/j.progpolymsci.2023.101711","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101711","url":null,"abstract":"<div><p><span><span>π-Conjugated polymers show promising potential in the application of organic photovoltaics, including organic solar cells (OSCs) and organic </span>photodetectors (OPDs) because of merits of light-weight, flexibility, facilely tuned color, large-scaled solution-processability, </span><em>etc</em><span>. Over the past three decades, various π-conjugated polymers have been developed owing to the continuous efforts of researchers, which significantly promote the OPVs technology to an unprecedented stage. In order to reveal the relationship among polymer structures<span> to the optical and electronic properties and interchain aggregation and morphology and finally to device performance, it is of great significance to review the progress of π-conjugated polymers for OPVs, particularly for outstanding achievements in recent all-polymer solar cells (all-PSCs), indoor organic photovoltaics (IOPVs), thick-film OSCs, single-component organic solar cells (SCOSCs) and short-wave infrared (SWIR) OPDs. This review highlights general design strategies of π-conjugated polymers for high-performance OPVs, including conjugated backbone engineering, side-chains engineering, regioregularity engineering, halogen substitution and molecular weight control. Then, the development of conjugated polymers for all-PSCs, IOPVs, thick-film OSCs, SCOSCs and OPDs has been summarized. At the end, we summarize the challenges and future directions for studying π-conjugated polymers for OPVs. Therefore, an in-depth understanding of designing π-conjugated polymers is speculated to advance the development of current OPV materials and thus accelerate the ultimate industrialization of the OPV technology.</span></span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"143 ","pages":"Article 101711"},"PeriodicalIF":27.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Sustainable developments in polyolefin chemistry: Progress, challenges, and outlook 聚烯烃化学的可持续发展:进展、挑战与展望
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2023-08-01 DOI: 10.1016/j.progpolymsci.2023.101713
Xiao-Yan Wang , Yanshan Gao , Yong Tang

Polyolefins are the largest-scale synthetic plastics and play a key role in modern society. Their production consumes huge amounts of fossil-derived monomer feedstocks, which unfortunately became discarded wastes after use with a very low recycling ratio, causing severe environmental pollution and huge consumption of non-renewable resources. This lack of sustainability could in principle be solved by reusing the waste polyolefins repeatedly as virgin materials or recovering olefin monomers for re-entering the polyolefin cycle. However, it is challenging due to their chemical inertness (C-H and C-C bonds) and lack of degradation sites along the polyolefin chains. Therefore, to make polyolefins more sustainable, degrading or modifying the waste polyolefins on large scales could facilitate their reuse as virgin polyolefins or recovery to polymerizable feedstocks, rethinking the design and synthesis from monomer feedstocks could afford inherently recyclable and thus more sustainable polyolefin or polyolefin-like materials. Given the above, this review will introduce recent progress in the rapidly advancing field: 1) Recycling and upcycling to fuels and other small molecule products, olefin monomer, telechelic products, reprocessable and functional polyolefin materials; 2) Increasing sustainability by the de novo design and synthesis of new degradable and reprocessable polyolefin and polyolefin-like polymers.

聚烯烃是规模最大的合成塑料,在现代社会中发挥着关键作用。它们的生产消耗了大量来源于化石的单体原料,这些原料在使用后不幸成为废弃废物,回收率很低,造成了严重的环境污染和不可再生资源的巨大消耗。这种缺乏可持续性的问题原则上可以通过重复利用废弃聚烯烃作为原始材料或回收烯烃单体重新进入聚烯烃循环来解决。然而,由于它们的化学惰性(C-H和C-C键)和缺乏沿聚烯烃链的降解位点,这是具有挑战性的。因此,为了使聚烯烃更具可持续性,大规模降解或改性废弃聚烯烃可以促进其作为原始聚烯烃的再利用或可聚合原料的回收,重新考虑单体原料的设计和合成可以提供固有的可回收性,因此更具可持续性的聚烯烃或类聚烯烃材料。鉴于此,本文将介绍这一快速发展的领域的最新进展:1)回收和升级为燃料和其他小分子产品、烯烃单体、远旋产物、可再加工和功能聚烯烃材料;2)通过重新设计和合成新的可降解和可再加工的聚烯烃和聚烯烃类聚合物来提高可持续性。
{"title":"Sustainable developments in polyolefin chemistry: Progress, challenges, and outlook","authors":"Xiao-Yan Wang ,&nbsp;Yanshan Gao ,&nbsp;Yong Tang","doi":"10.1016/j.progpolymsci.2023.101713","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101713","url":null,"abstract":"<div><p><span>Polyolefins are the largest-scale synthetic plastics and play a key role in modern society. Their production consumes huge amounts of fossil-derived </span>monomer<span><span> feedstocks, which unfortunately became discarded wastes after use with a very low recycling ratio, causing severe environmental pollution and huge consumption of non-renewable resources. This lack of sustainability could in principle be solved by reusing the waste polyolefins repeatedly as virgin materials or recovering </span>olefin monomers for re-entering the polyolefin cycle. However, it is challenging due to their chemical inertness (C-H and C-C bonds) and lack of degradation sites along the polyolefin chains. Therefore, to make polyolefins more sustainable, degrading or modifying the waste polyolefins on large scales could facilitate their reuse as virgin polyolefins or recovery to polymerizable feedstocks, rethinking the design and synthesis from monomer feedstocks could afford inherently recyclable and thus more sustainable polyolefin or polyolefin-like materials. Given the above, this review will introduce recent progress in the rapidly advancing field: 1) Recycling and upcycling to fuels and other small molecule products, olefin monomer, telechelic products, reprocessable and functional polyolefin materials; 2) Increasing sustainability by the de novo design and synthesis of new degradable and reprocessable polyolefin and polyolefin-like polymers.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"143 ","pages":"Article 101713"},"PeriodicalIF":27.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3203137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Porous organic polymers with defined morphologies: Synthesis, assembly, and emerging applications 具有定义形态的多孔有机聚合物:合成,组装和新兴应用
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2023-07-01 DOI: 10.1016/j.progpolymsci.2023.101691
Wenliang Song , Yu Zhang , Chinh Hoang Tran , Ha Kyung Choi , Deng-Guang Yu , Il Kim

Porous organic polymers (POPs) have well-defined porosities, high surface areas, and attractive surface chemical functionalities. Because of these properties, POPs and their derivatives, including their pyrolysis (carbonaceous) products, have broad applications in catalysis, absorption, separation, sensing, biomedical engineering, and energy storage/conversion. In particular, both the porosity and morphology of porous materials have crucial impacts on their performance. The controlled synthesis of morphological defined POPs via various assembly approaches offers an effective route to prepare novel nanomaterials with broad application scope in the above-mentioned fields. Therefore, a summary of recent research related to POPs will stimulate researchers to explore this field at a deeper level. This review provides a summary and analysis of progress in the last decade toward the development of morphologically controlled POPs. Established works and recent progress in the synthesis of these materials are first reviewed, followed by the systematic discussion of the methodologies and key parameters for the fabrication of diverse morphology-controlled POPs. The various emerging applications afforded by the POPs are summarized, and special attention is paid to the relationship between the morphology and performance of POP materials. Finally, current challenges in the development of application-driven morphological control are addressed, revealing areas for future investigation. We hope that this review will encourage future investigation of POPs with defined morphologies as well as exploration on hitherto unknown characteries of the morphology derived innovative applications.

多孔有机聚合物(pop)具有明确的孔隙度、高表面积和吸引人的表面化学功能。由于这些特性,持久性有机污染物及其衍生物,包括其热解(碳质)产物,在催化、吸收、分离、传感、生物医学工程和能量储存/转换等方面有着广泛的应用。特别是多孔材料的孔隙率和形貌对其性能有着至关重要的影响。通过多种组装方法合成具有形态定义的持久性有机污染物,为制备具有广泛应用前景的新型纳米材料提供了有效途径。因此,总结最近与持久性有机污染物有关的研究将激励研究人员在更深层次上探索这一领域。本文综述和分析了近十年来在形态控制持久性有机污染物方面取得的进展。本文首先回顾了这些材料合成的现有工作和最新进展,然后系统地讨论了制造各种形态可控持久性有机污染物的方法和关键参数。总结了持久性有机污染物的各种新应用,并特别关注了持久性有机污染物材料的形态与性能之间的关系。最后,讨论了当前应用驱动形态控制发展中存在的挑战,并指出了未来研究的领域。我们希望这一综述将鼓励对具有明确形态的持久性有机污染物的未来研究,以及探索迄今为止未知的由形态衍生的创新应用的特征。
{"title":"Porous organic polymers with defined morphologies: Synthesis, assembly, and emerging applications","authors":"Wenliang Song ,&nbsp;Yu Zhang ,&nbsp;Chinh Hoang Tran ,&nbsp;Ha Kyung Choi ,&nbsp;Deng-Guang Yu ,&nbsp;Il Kim","doi":"10.1016/j.progpolymsci.2023.101691","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2023.101691","url":null,"abstract":"<div><p>Porous organic polymers<span> (POPs) have well-defined porosities, high surface areas, and attractive surface chemical functionalities. Because of these properties, POPs and their derivatives, including their pyrolysis (carbonaceous) products, have broad applications in catalysis, absorption, separation, sensing, biomedical engineering, and energy storage/conversion. In particular, both the porosity and morphology of porous materials have crucial impacts on their performance. The controlled synthesis of morphological defined POPs via various assembly approaches offers an effective route to prepare novel nanomaterials with broad application scope in the above-mentioned fields. Therefore, a summary of recent research related to POPs will stimulate researchers to explore this field at a deeper level. This review provides a summary and analysis of progress in the last decade toward the development of morphologically controlled POPs. Established works and recent progress in the synthesis of these materials are first reviewed, followed by the systematic discussion of the methodologies and key parameters for the fabrication of diverse morphology-controlled POPs. The various emerging applications afforded by the POPs are summarized, and special attention is paid to the relationship between the morphology and performance of POP materials. Finally, current challenges in the development of application-driven morphological control are addressed, revealing areas for future investigation. We hope that this review will encourage future investigation of POPs with defined morphologies as well as exploration on hitherto unknown characteries of the morphology derived innovative applications.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"142 ","pages":"Article 101691"},"PeriodicalIF":27.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3082042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
期刊
Progress in Polymer Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1