首页 > 最新文献

Progress in Solid State Chemistry最新文献

英文 中文
Review of functional titanium oxides. II: Hydrogen-modified TiO2 功能氧化钛的研究进展。II:氢修饰TiO2
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2019-09-01 DOI: 10.1016/j.progsolidstchem.2019.04.003
Nazanin Rahimi , Randolph Pax , Evan MacA. Gray

Band gap engineering of TiO2 has attracted many researchers looking to extend its applicability as a functional material. Although TiO2 has been commercialised in applications that utilise its special properties, its band gap should be modified to improve its performance, especially as an active photo catalyst. Reduction of TiO2 under a hydrogen atmosphere is a promising method which can increase the visible-light absorption efficiency of TiO2 and enhance its electrochemical and other properties related to electronic band structure. In this second review paper, the production and influence of O vacancies (VO) and other defects, such as interstitial cations, under vacuum and hydrogen are reviewed for the common phases of TiO2. The particular modification TiO2–x in which O is randomly removed from the crystal structure is considered in detail. Despite early evidence that hydrogen is absorbed into the bulk of TiO2, the action of hydrogen has become controversial in recent years, with claims that surface disorder is responsible for the enhanced photoactivity induced by exposure to hydrogen. The many published experimental and density-functional-theory modelling studies are surveyed with the aims of determining what is agreed or contested, and relating defect structure to band structure. It is concluded that further work is needed to clarify the mechanisms of defect production and defect diffusion, as well as the origins of the numerous sample colours observed following treatment in vacuum or hydrogen.

二氧化钛的带隙工程吸引了许多研究人员希望扩展其作为功能材料的适用性。虽然二氧化钛已经在利用其特殊性能的应用中商业化,但它的带隙应该被修改以提高其性能,特别是作为一种活性光催化剂。在氢气气氛下还原TiO2是一种很有前途的方法,它可以提高TiO2的可见光吸收效率,增强其电化学和其他与电子能带结构相关的性能。在第二篇综述中,综述了二氧化钛常见相在真空和氢气条件下O空位(VO)和其他缺陷(如间隙阳离子)的产生及其影响。详细讨论了从晶体结构中随机去除O的特殊改性TiO2-x。尽管早期的证据表明氢被吸收到TiO2的主体中,但近年来氢的作用变得有争议,有人声称表面紊乱是暴露于氢引起的光活性增强的原因。许多已发表的实验和密度功能理论模型研究被调查,目的是确定什么是同意的或有争议的,并将缺陷结构与能带结构联系起来。结论是,需要进一步的工作来阐明缺陷产生和扩散的机制,以及在真空或氢气处理后观察到的许多样品颜色的来源。
{"title":"Review of functional titanium oxides. II: Hydrogen-modified TiO2","authors":"Nazanin Rahimi ,&nbsp;Randolph Pax ,&nbsp;Evan MacA. Gray","doi":"10.1016/j.progsolidstchem.2019.04.003","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2019.04.003","url":null,"abstract":"<div><p>Band gap engineering of TiO<sub>2</sub> has attracted many researchers looking to extend its applicability as a functional material. Although TiO<sub>2</sub> has been commercialised in applications that utilise its special properties, its band gap should be modified to improve its performance, especially as an active photo catalyst. Reduction of TiO<sub>2</sub> under a hydrogen atmosphere is a promising method which can increase the visible-light absorption efficiency of TiO<sub>2</sub><span> and enhance its electrochemical and other properties related to electronic band structure. In this second review paper, the production and influence of O vacancies </span><span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span><span> and other defects, such as interstitial cations, under vacuum and hydrogen are reviewed for the common phases of TiO</span><sub>2</sub>. The particular modification TiO<sub>2–<em>x</em></sub> in which O is randomly removed from the crystal structure is considered in detail. Despite early evidence that hydrogen is absorbed into the bulk of TiO<sub>2</sub><span><span>, the action of hydrogen has become controversial in recent years, with claims that surface disorder is responsible for the enhanced photoactivity induced by exposure to hydrogen. The many published experimental and density-functional-theory modelling studies are surveyed with the aims of determining what is agreed or contested, and relating defect structure to band structure. It is concluded that further work is needed to clarify the mechanisms of defect production and defect </span>diffusion, as well as the origins of the numerous sample colours observed following treatment in vacuum or hydrogen.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":12.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2019.04.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2005439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Chemical ordering and electronic properties of lone pair chalcogenide semiconductors 孤对硫族半导体的化学有序性和电子性质
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2019-06-01 DOI: 10.1016/j.progsolidstchem.2019.04.001
Vineet Sharma , Sunanda Sharda , Neha Sharma , S.C. Katyal , Pankaj Sharma

Chalcogenide lone pair semiconducting materials are important materials due to their prospective applications in thermoelectrics, phase change memories, topological insulators etc. Investigating these lone pair semiconductors for versatile applications, different electronic properties were studied by researchers world-wide. Analyses of these semiconducting materials in bulk and thin films for electronic properties like dark and photo-conductivity, photosensitivity, carrier concentration, carrier type, relaxation time and thermopower are the major constituents while accepting them for applications. This review stresses on the electronic properties of several binary, ternary and quaternary lone pair chalcogenide systems. The electronic properties are generally discussed on the basis of chemical ordering in system. A brief discussion on some theoretical background of conduction mechanism has also been incorporated for new researchers in this field. Potential applications of chalcogenide semiconducting materials have been outlined.

硫族化合物孤对半导体材料在热电学、相变存储器、拓扑绝缘体等方面具有重要的应用前景。为了研究这些多用途的孤对半导体,世界各地的研究人员研究了不同的电子特性。在接受这些半导体材料的应用时,对这些半导体材料的散装和薄膜的电子特性(如暗和光导电性、光敏性、载流子浓度、载流子类型、弛豫时间和热功率)进行分析是主要成分。本文综述了几种二元、三元和四元孤对硫族化合物体系的电子性质。电子性质一般是根据体系中的化学顺序来讨论的。本文还对传导机理的一些理论背景作了简要的讨论,供本领域的新研究者参考。概述了硫族半导体材料的潜在应用。
{"title":"Chemical ordering and electronic properties of lone pair chalcogenide semiconductors","authors":"Vineet Sharma ,&nbsp;Sunanda Sharda ,&nbsp;Neha Sharma ,&nbsp;S.C. Katyal ,&nbsp;Pankaj Sharma","doi":"10.1016/j.progsolidstchem.2019.04.001","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2019.04.001","url":null,"abstract":"<div><p><span>Chalcogenide lone pair semiconducting materials<span> are important materials due to their prospective applications in thermoelectrics<span><span>, phase change memories, </span>topological insulators </span></span></span><em>etc</em><span>. Investigating these lone pair semiconductors for versatile applications, different electronic properties were studied by researchers world-wide. Analyses of these semiconducting materials in bulk and thin films for electronic properties like dark and photo-conductivity, photosensitivity, carrier concentration, carrier type, relaxation time and thermopower are the major constituents while accepting them for applications. This review stresses on the electronic properties of several binary, ternary and quaternary lone pair chalcogenide systems. The electronic properties are generally discussed on the basis of chemical ordering in system. A brief discussion on some theoretical background of conduction mechanism has also been incorporated for new researchers in this field. Potential applications of chalcogenide semiconducting materials have been outlined.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":12.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2019.04.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3388500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
A comprehensive review on synthesis of pristine and doped inorganic room temperature stable mayenite electride, [Ca24Al28O64]4+(e−)4 and its applications as a catalyst [Ca24Al28O64]4+(e−)4的合成及其催化剂应用综述
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2019-06-01 DOI: 10.1016/j.progsolidstchem.2018.12.001
Karim Khan , Ayesha Khan Tareen , Muhammad Aslam , Khalid Hussain Thebo , Usman Khan , Renheng Wang , S. Saqib Shams , Zhang Han , Zhengbiao Ouyang

Advances in the device fabrication in all emerging fields with promising features and improved control on material properties provide a strong motivation for researchers to reveal, recognize the potential of existing materials and to develop new ones with excellent properties by scheme a low cost syntheses method. Since the discovery of abundant, inorganic mayenite electride, [Ca24Al28O64]4+(e)4 (thereafter, C12A7:e) (2003), it has attracted much attention due to its unique and unconventional properties such as high electron concentration (∼2.3–7 × 1021 cm−3) and low work function (WF∼2.4 eV), which are comparable value with alkali metals, but is chemically inert in an ambient atmosphere. Furthermore, a severe reducing environment enables us to substitute electrons almost completely for anions in the cages, forming a stable inorganic electride, C12A7:e. Finally, the formation of these active anions in this material has potential application as a catalyst support in the NH3 synthesis/decomposition, CO2 dissociation and specially recently introduced by our group as electrocatalyst in fuel cell. To further boost these applications the important thing was to synthesize high specific surface area, nanosized C12A7:e powder with enhanced conductivity, that can be done by cation doping. Over the last decade, experimental studies supported by theoretical calculations have demonstrated that cation elements doping can further boost its electrical properties. Therefore, our group studied doping with more suitable cations, Si, Sn, Ga, V etc in C12A7:e and we will explain each in detail. In this review we are going to describe progress in the synthesis of C12A7:e especially in nanosized powder material, and about most important recent challenges towards the suitable cations doping in C12A7:e electride and finally its industrial important applications as a catalyst.

在所有新兴领域中,器件制造的进步具有前景的特征和对材料性能的改进控制,为研究人员揭示,认识现有材料的潜力并通过设计低成本的合成方法开发具有优异性能的新材料提供了强大的动力。自从发现了丰富的无机电性梅氏岩[Ca24Al28O64]4+(e−)4(后来称为C12A7:e−)(2003)以来,由于其独特和非常规的性质,如高电子浓度(~ 2.3-7 × 1021 cm−3)和低功函数(WF ~ 2.4 eV),与碱金属相当,但在环境气氛中具有化学惰性,引起了人们的广泛关注。此外,严酷的还原环境使我们能够在笼中几乎完全取代阴离子,形成稳定的无机电极C12A7:e−。最后,在这种材料中形成的这些活性阴离子作为NH3合成/分解、CO2解离的催化剂载体具有潜在的应用前景,特别是最近本课题组在燃料电池中引入的电催化剂。为了进一步促进这些应用,重要的是通过阳离子掺杂来合成具有增强电导率的高比表面积纳米级C12A7:e -粉末。在过去的十年中,理论计算支持的实验研究表明,阳离子元素的掺杂可以进一步提高其电性能。因此,我们小组研究了在C12A7:e−中掺杂更合适的阳离子,Si, Sn, Ga, V等,我们将详细解释。本文将介绍C12A7:e -的合成进展,特别是在纳米级粉末材料中,以及在C12A7:e -电化物中合适的阳离子掺杂的最新挑战,最后介绍C12A7:e -作为催化剂的工业应用。
{"title":"A comprehensive review on synthesis of pristine and doped inorganic room temperature stable mayenite electride, [Ca24Al28O64]4+(e−)4 and its applications as a catalyst","authors":"Karim Khan ,&nbsp;Ayesha Khan Tareen ,&nbsp;Muhammad Aslam ,&nbsp;Khalid Hussain Thebo ,&nbsp;Usman Khan ,&nbsp;Renheng Wang ,&nbsp;S. Saqib Shams ,&nbsp;Zhang Han ,&nbsp;Zhengbiao Ouyang","doi":"10.1016/j.progsolidstchem.2018.12.001","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2018.12.001","url":null,"abstract":"<div><p><span><span>Advances in the device fabrication in all emerging fields with promising features and improved control on </span>material properties provide a strong motivation for researchers to reveal, recognize the potential of existing materials and to develop new ones with excellent properties by scheme a low cost syntheses method. Since the discovery of abundant, inorganic mayenite electride, [Ca</span><sub>24</sub>Al<sub>28</sub>O<sub>64</sub>]<sup>4+</sup>(e<sup>−</sup>)<sub>4</sub> (thereafter, C12A7:e<sup>−</sup>) (2003), it has attracted much attention due to its unique and unconventional properties such as high electron concentration (∼2.3–7 × 10<sup>21</sup> cm<sup>−3</sup><span>) and low work function (WF∼2.4 eV), which are comparable value with alkali metals, but is chemically inert in an ambient atmosphere. Furthermore, a severe reducing environment enables us to substitute electrons almost completely for anions in the cages, forming a stable inorganic electride, C12A7:e</span><sup>−</sup>. Finally, the formation of these active anions in this material has potential application as a catalyst support in the NH<sub>3</sub> synthesis/decomposition, CO<sub>2</sub><span> dissociation and specially recently introduced by our group as electrocatalyst in fuel cell. To further boost these applications the important thing was to synthesize high specific surface area, nanosized C12A7:e</span><sup>−</sup><span> powder with enhanced conductivity, that can be done by cation doping. Over the last decade, experimental studies supported by theoretical calculations have demonstrated that cation elements doping can further boost its electrical properties. Therefore, our group studied doping with more suitable cations, Si, Sn, Ga, V etc in C12A7:e</span><sup>−</sup> and we will explain each in detail. In this review we are going to describe progress in the synthesis of C12A7:e<sup>−</sup> especially in nanosized powder material, and about most important recent challenges towards the suitable cations doping in C12A7:e<sup>−</sup> electride and finally its industrial important applications as a catalyst.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":12.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2018.12.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2601342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 53
Structure-magnetic property relations in FeNbO4 polymorphs: A spin glass perspective FeNbO4多晶的结构-磁性关系:自旋玻璃视角
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2019-06-01 DOI: 10.1016/j.progsolidstchem.2019.03.001
N. Lakshminarasimhan , A.K. Nanda Kumar , S. Selva Chandrasekaran , P. Murugan

Spin glass state originating from the magnetic frustration due to the geometric arrangement or cation disorder is an interesting topic of research. FeNbO4, exhibiting multifarious applications, crystallizes mainly in three different polymorphic forms with cation ordered and disordered structures. Despite their antiferromagnetic nature, the orthorhombic (o-FeNbO4) and monoclinic FeNbO4 (m-FeNbO4) polymorphs exhibit a difference in their magnetic properties at low temperatures. Here, we report our observation of spin glass behaviour of o-FeNbO4 with a cation disordered structure. Our work is a combined experimental and theoretical study of structure-magnetic property relations of the antiferromagnetic o- and m-FeNbO4 with the Néel temperatures of 30 and 46 K, respectively. o-FeNbO4 contrasted itself from m-FeNbO4 as a spin glass by exhibiting field-dependent bifurcation in ZFC and FC magnetization, frequency-dependent AC susceptibility, memory effect, thermoremanence, and anamoly in the heat capacity. The presence of antiphase domains and boundaries due to cation order/disorder in both the structural polymorphs was evidenced from the electron diffraction analyses that account for the observed low temperature magnetic interactions. Further, modeling the structures with varying amounts of cation disorder using first principles calculations revealed the structural stability and competing spin interactions that support our experimentally observed spin glass behaviour of o-FeNbO4.

自旋玻璃态是由几何排列或阳离子无序引起的磁受挫引起的,是一个有趣的研究课题。FeNbO4主要以三种不同的多晶形式结晶,具有阳离子有序和无序结构,具有多种应用。尽管具有反铁磁性,但正交晶型(o-FeNbO4)和单斜晶型(m-FeNbO4)在低温下表现出不同的磁性。在这里,我们报告了我们对具有阳离子无序结构的o-FeNbO4的自旋玻璃行为的观察。我们的工作是结合实验和理论研究反铁磁性o-和m-FeNbO4在n温度分别为30和46 K时的结构-磁性关系。作为自旋玻璃,o-FeNbO4与m-FeNbO4相比,表现出ZFC和FC磁化的场相关分岔、频率相关的交流磁化率、记忆效应、导热性和热容的异常。电子衍射分析证明了两种结构多晶中存在由阳离子有序/无序引起的反相畴和边界,这解释了观察到的低温磁相互作用。此外,利用第一性原理计算对具有不同数量阳离子无序的结构进行建模,揭示了结构稳定性和竞争自旋相互作用,支持我们实验观察到的o-FeNbO4的自旋玻璃行为。
{"title":"Structure-magnetic property relations in FeNbO4 polymorphs: A spin glass perspective","authors":"N. Lakshminarasimhan ,&nbsp;A.K. Nanda Kumar ,&nbsp;S. Selva Chandrasekaran ,&nbsp;P. Murugan","doi":"10.1016/j.progsolidstchem.2019.03.001","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2019.03.001","url":null,"abstract":"<div><p>Spin glass state originating from the magnetic frustration due to the geometric arrangement or cation disorder is an interesting topic of research. FeNbO<sub>4</sub>, exhibiting multifarious applications, crystallizes mainly in three different polymorphic forms with cation ordered and disordered structures. Despite their antiferromagnetic nature, the orthorhombic (<em>o</em>-FeNbO<sub>4</sub>) and monoclinic FeNbO<sub>4</sub> (<em>m</em>-FeNbO<sub>4</sub><span>) polymorphs exhibit a difference in their magnetic properties at low temperatures. Here, we report our observation of spin glass behaviour of </span><em>o</em>-FeNbO<sub>4</sub> with a cation disordered structure. Our work is a combined experimental and theoretical study of structure-magnetic property relations of the antiferromagnetic <em>o</em>- and <em>m</em>-FeNbO<sub>4</sub><span> with the Néel temperatures of 30 and 46 K, respectively. </span><em>o</em>-FeNbO<sub>4</sub> contrasted itself from <em>m</em>-FeNbO<sub>4</sub><span><span> as a spin glass by exhibiting field-dependent bifurcation in ZFC and FC magnetization, frequency-dependent AC susceptibility, memory effect, thermoremanence, and anamoly in the heat capacity. The presence of antiphase domains and boundaries due to cation order/disorder in both the structural polymorphs was evidenced from the electron diffraction analyses that account for the observed low temperature magnetic interactions. Further, modeling the structures with varying amounts of cation disorder using </span>first principles calculations revealed the structural stability and competing spin interactions that support our experimentally observed spin glass behaviour of </span><em>o</em>-FeNbO<sub>4</sub>.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":12.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2019.03.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2601343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
WITHDRAWN: Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: overview and forecast 摘要:氧化钛基光催化材料的发展及其在大气污染物降解中的作用:综述与展望
IF 12 2区 化学 Q1 Physics and Astronomy Pub Date : 2019-05-01 DOI: 10.1016/J.PROGSOLIDSTCHEM.2019.04.002
C. Tsang, Kai Li, Yuxuan Zeng, Wei Zhao, Tao Zhang, Yujie Zhan, R. Xie, D. Leung, Haibao Huang
{"title":"WITHDRAWN: Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: overview and forecast","authors":"C. Tsang, Kai Li, Yuxuan Zeng, Wei Zhao, Tao Zhang, Yujie Zhan, R. Xie, D. Leung, Haibao Huang","doi":"10.1016/J.PROGSOLIDSTCHEM.2019.04.002","DOIUrl":"https://doi.org/10.1016/J.PROGSOLIDSTCHEM.2019.04.002","url":null,"abstract":"","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":12.0,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/J.PROGSOLIDSTCHEM.2019.04.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42623753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Mixed ternary transition metal nitrides: A comprehensive review of synthesis, electronic structure, and properties of engineering relevance 混合三元过渡金属氮化物:合成、电子结构和工程相关性质的综合综述
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2019-03-01 DOI: 10.1016/j.progsolidstchem.2018.11.001
Ayesha Khan Tareen , G. Sudha Priyanga , Santosh Behara , Tiju Thomas , Minghui Yang

Ternary transition metal nitrides (TTMNs) have acquired substantial attention due to the ability to offer for tuning properties. Furthermore efforts to develop new TTMNs have resulted in the development of new syntheses approaches. In this review, recent progress made regarding investigations on electronic structure, stoichiometry, crystal structures, synthesis and applications are reviewed. Intermediate bonding in these solids exist in the structure types revealed so far. Bonding in these systems are an intriguing mix of ionic (oxide-like) and covalent (carbide-like). This enhances the possibilities of finding unique structures (i.e. anti-fluorite analogous [1]). A good case in point is the Delafosite types and η-nitrides structures found commonly in TTMNs which are typically associated with ABOx type oxides and carbides. Due to the rich structural chemistry associated with TTMNs, their study is considered a growing area in solid state and applied chemistry. Advancement made in the synthesis of powder and thin film materials of TTMNs are discussed. The powder methods involve the following methods: solid state, high-pressure-high temperature, solvothermal method, ammonothermal method, sol-gel method, Pechini method, temperature-programmed reduction, thermal degradation of metal complex, solid-state metal oxide-organic reaction, solid state ion exchange reaction, and electrodeposition replacement method. On the other hand, the TTMN thin film fabrication is based on two types of methods; physical vapor deposition (PVD) and chemical vapor deposition (CVD) method. The PVD involve deposition using different ways using laser or plasma based approaches (eg. pulsed laser deposition (PLD)) and magnetron sputtering. Chemical vapor deposition methods involve electrodeposition reaction method. Among all synthesis methods, the sol-gel process following the ammonolysis is considered comparatively better for large scale production owing to the simple apparatus setup. Different synthesis methods are deployable based on the application at hand. Applications can be range from electrocatalysts in ORR reaction [2,3], electrocatalysts as sensor [4], supercapacitors [2,3,5], solar cell [6], magnetic, superconducting [7], hard coating materials [8] e.g. protective, functional, conductive, wear-resistance and decorative coating, NH3 synthesis [9], and hydrogenation process in hydrocarbon reactions [10].

三元过渡金属氮化物(TTMNs)由于具有调谐性能而受到广泛关注。此外,开发新的ttmn的努力导致了新的合成方法的发展。本文综述了近年来在电子结构、化学计量学、晶体结构、合成和应用等方面的研究进展。这些固体中的中间键存在于目前所揭示的结构类型中。这些系统中的键合是离子(类氧化物)和共价键(类碳化物)的奇妙混合。这增加了发现独特结构(即反萤石类似物[1])的可能性。一个很好的例子是在ttmn中常见的delafote类型和η-氮化物结构,它们通常与ABOx型氧化物和碳化物有关。由于与ttmn相关的丰富的结构化学,它们的研究被认为是固体化学和应用化学的一个新兴领域。讨论了ttmn粉末材料和薄膜材料的合成进展。粉末法涉及以下方法:固相法、高压-高温法、溶剂热法、氨热法、溶胶-凝胶法、Pechini法、程序升温还原法、金属配合物热降解法、固态金属氧化物-有机反应法、固态离子交换反应法、电沉积置换法。另一方面,TTMN薄膜的制备基于两种方法;物理气相沉积法(PVD)和化学气相沉积法(CVD)。PVD包括使用不同的方法沉积,使用激光或等离子体为基础的方法(例如。脉冲激光沉积(PLD)和磁控溅射。化学气相沉积法涉及电沉积反应法。在所有的合成方法中,氨解后的溶胶-凝胶法由于装置简单,被认为比较适合大规模生产。根据手头的应用程序,可以部署不同的综合方法。应用范围包括ORR反应中的电催化剂[2,3],传感器中的电催化剂[4],超级电容器[2,3,5],太阳能电池[6],磁性,超导[7],硬质涂层材料[8],如保护,功能,导电,耐磨和装饰涂层,NH3合成[9]和碳氢化合物反应中的加氢过程[10]。
{"title":"Mixed ternary transition metal nitrides: A comprehensive review of synthesis, electronic structure, and properties of engineering relevance","authors":"Ayesha Khan Tareen ,&nbsp;G. Sudha Priyanga ,&nbsp;Santosh Behara ,&nbsp;Tiju Thomas ,&nbsp;Minghui Yang","doi":"10.1016/j.progsolidstchem.2018.11.001","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2018.11.001","url":null,"abstract":"<div><p><span>Ternary transition metal nitrides<span> (TTMNs) have acquired substantial attention due to the ability to offer for tuning properties. Furthermore efforts to develop new TTMNs have resulted in the development of new syntheses approaches. In this review, recent progress made regarding investigations on electronic structure, stoichiometry, crystal structures, synthesis and applications are reviewed. Intermediate bonding in these solids exist in the structure types revealed so far. Bonding in these systems are an intriguing mix of ionic (oxide-like) and covalent (carbide-like). This enhances the possibilities of finding unique structures (i.e. anti-fluorite analogous [1]). A good case in point is the Delafosite types and η-nitrides structures found commonly in TTMNs which are typically associated with ABO</span></span><sub>x</sub><span><span> type oxides and carbides. Due to the rich structural chemistry associated with TTMNs, their study is considered a growing area in solid state and applied chemistry. Advancement made in the synthesis of powder and thin film<span><span><span> materials of TTMNs are discussed. The powder methods involve the following methods: solid state, high-pressure-high temperature, solvothermal method, ammonothermal method, sol-gel method, Pechini method, temperature-programmed reduction, </span>thermal degradation of metal complex, solid-state metal oxide-organic reaction, solid state </span>ion exchange reaction<span>, and electrodeposition replacement method. On the other hand, the TTMN thin film fabrication is based on two types of methods; physical </span></span></span>vapor deposition<span> (PVD) and chemical vapor deposition (CVD) method. The PVD involve deposition using different ways using laser or plasma based approaches (eg. pulsed laser deposition<span> (PLD)) and magnetron sputtering<span>. Chemical vapor deposition methods involve electrodeposition reaction method. Among all synthesis methods, the sol-gel process following the ammonolysis<span><span> is considered comparatively better for large scale production owing to the simple apparatus setup. Different synthesis methods are deployable based on the application at hand. Applications can be range from electrocatalysts in </span>ORR<span> reaction [2,3], electrocatalysts as sensor [4], supercapacitors [2,3,5], solar cell [6], magnetic, superconducting [7], hard coating materials [8] e.g. protective, functional, conductive, wear-resistance and decorative coating, NH</span></span></span></span></span></span><sub>3</sub> synthesis [9], and hydrogenation process in hydrocarbon reactions [10].</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":12.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2018.11.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2414525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 51
The complex nonstoichiometry of wüstite Fe1-zO: Review and comments w<s:1> stite Fe1-zO的复杂非化学计量:综述与评论
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2019-03-01 DOI: 10.1016/j.progsolidstchem.2018.10.001
Jean-Raymond Gavarri , Claude Carel

Thermodynamic properties and structural aspects of the nonstoichiometric wüstite Fe1-zO, and its modifications - the so-called pseudo-phases - as functions of departure z from stoichiometry and of equilibrium temperature are reviewed from 1960 to present. The complexity of the equilibrium phase diagram is described in some details. The first order transition W ⇆ W′ is specified on the iron/wüstite boundary near 1185 K. Transitions correlated to the modifications Wi at T(W) > 1185 K and W'j at T(W′) < 1185 K (i and j = 1,2,3) are re-examined. Structural determinations based on the characterization of point defects stabilization and of their clustering are reviewed. Additionally, the pseudo-phases are examined based on the transformation of defect clusters or of their mode of distribution (i.e., percolation or superstructure) with the inclusion of changes in electronic charge carriers.

本文回顾了自1960年至今非化学计量的w stite Fe1-zO的热力学性质和结构方面,以及它的修饰——所谓的伪相——作为偏离化学计量的z和平衡温度的函数。文中还详细描述了平衡相图的复杂性。在1185 K附近的iron/ w stite边界上指定了一阶跃迁W′;重新考察了与T(W) > 1185 K和W'j at T(W ') < 1185 K (i和j = 1,2,3)相关的转换。综述了基于点缺陷稳定性及其聚类特征的结构确定方法。此外,伪相是基于缺陷簇的转变或它们的分布模式(即,渗透或上层结构),包括电子载流子的变化来检查的。
{"title":"The complex nonstoichiometry of wüstite Fe1-zO: Review and comments","authors":"Jean-Raymond Gavarri ,&nbsp;Claude Carel","doi":"10.1016/j.progsolidstchem.2018.10.001","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2018.10.001","url":null,"abstract":"<div><p>Thermodynamic properties and structural aspects of the nonstoichiometric wüstite Fe<sub>1-<strong><em>z</em></strong></sub>O, and its modifications - the so-called pseudo-phases - as functions of departure <strong><em>z</em></strong><span> from stoichiometry<span><span> and of equilibrium temperature are reviewed from 1960 to present. The complexity of the equilibrium phase diagram is described in some details. The first order transition W ⇆ W′ is specified on the iron/wüstite boundary near 1185 K. Transitions correlated to the modifications Wi at T(W) &gt; 1185 K and W'j at T(W′) &lt; 1185 K (i and j = 1,2,3) are re-examined. Structural determinations based on the characterization of </span>point defects stabilization and of their clustering are reviewed. Additionally, the pseudo-phases are examined based on the transformation of defect clusters or of their mode of distribution (</span></span><em>i.e.,</em><span> percolation or superstructure) with the inclusion of changes in electronic charge carriers.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":12.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2018.10.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2344692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Synthetically tuned electronic and geometrical properties of intermetallic compounds as effective heterogeneous catalysts 合成调谐的金属间化合物的电子和几何性质作为有效的非均相催化剂
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2018-12-01 DOI: 10.1016/j.progsolidstchem.2018.09.001
Vijaykumar S. Marakatti, Sebastian C. Peter

Intermetallic compounds (IMCs) exhibits unique structural features accompanied by appropriate changes in the electronic structures. These electronically and geometrically tuned structures found to be the excellent catalysts for selected chemical reactions. There is not enough literature comprising detailed synthesis, properties and catalytic activity of IMCs. In this review, a complete overview of the IMCs in the field of heterogeneous catalysis has been discussed in detail. The review starts with understanding IMCs and how are they different from alloys, solid solutions and bimetallic. The physicochemical properties such as electronic effect, geometrical effect, steric effect and ordering of the IMCs are explained with appropriate examples. The comprehensive discussion on the synthesis and characterization of IMCs by various methods are also included in the review. The review cover the classification of IMCs into mainly 3 groups based on the active metal a) Platinum b) Palladium c) Nickel and the compounds based on each of these family is discussed along with the structure-activity correlation in different organic reactions. Several miscellaneous examples including other active metals Rh, Ru, Al, and Co are also included in the review followed by the future perspective. Overall, one can fine-tune and design the essential electronic -geometrical properties in the IMCs by combining appropriate metals, leading to the new surface properties suitable for the important organic reactions.

金属间化合物(IMCs)具有独特的结构特征,并伴随着电子结构的适当变化。这些电子和几何调谐的结构被发现是某些化学反应的优秀催化剂。目前还没有足够的文献详细地介绍了IMCs的合成、性质和催化活性。本文对异相催化领域的IMCs进行了较为全面的综述。本文首先介绍了IMCs及其与合金、固溶体和双金属的区别。并举例说明了IMCs的电子效应、几何效应、空间效应和有序等物理化学性质。本文还对各种方法合成和表征IMCs进行了全面的讨论。本文综述了以活性金属为基础将IMCs主要分为3类(a)铂、b)钯、c)镍,并讨论了每一类化合物在不同有机反应中的构效关系。包括其他活性金属Rh, Ru, Al和Co在内的几个杂项示例也包括在综述中,然后是未来的展望。总的来说,人们可以通过组合适当的金属来微调和设计imc中基本的电子几何性质,从而获得适合重要有机反应的新表面性质。
{"title":"Synthetically tuned electronic and geometrical properties of intermetallic compounds as effective heterogeneous catalysts","authors":"Vijaykumar S. Marakatti,&nbsp;Sebastian C. Peter","doi":"10.1016/j.progsolidstchem.2018.09.001","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2018.09.001","url":null,"abstract":"<div><p><span>Intermetallic compounds (IMCs) exhibits unique structural features accompanied by appropriate changes in the electronic structures. These electronically and geometrically tuned structures found to be the excellent catalysts for selected chemical reactions. There is not enough literature comprising detailed synthesis, properties and catalytic activity of IMCs. In this review, a complete overview of the IMCs in the field of </span>heterogeneous catalysis<span><span> has been discussed in detail. The review starts with understanding IMCs and how are they different from alloys, solid solutions and bimetallic. The physicochemical properties such as electronic effect, geometrical effect, steric effect and ordering of the IMCs are explained with appropriate examples. The comprehensive discussion on the synthesis and characterization of IMCs by various methods are also included in the review. The review cover the classification of IMCs into mainly 3 groups based on the active metal a) Platinum b) Palladium c) Nickel and the compounds based on each of these family is discussed along with the structure-activity correlation in different organic reactions. Several miscellaneous examples including other active metals Rh, </span>Ru, Al, and Co are also included in the review followed by the future perspective. Overall, one can fine-tune and design the essential electronic -geometrical properties in the IMCs by combining appropriate metals, leading to the new surface properties suitable for the important organic reactions.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":12.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2018.09.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2660429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 45
CO2 reduction using oxynitrides and nitrides under visible light 利用氮氧化物和氮化物在可见光下减少二氧化碳
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2018-09-01 DOI: 10.1016/j.progsolidstchem.2017.11.003
Kazuhiko Maeda

Reduction of CO2 using a heterogeneous photocatalyst under visible light has been studied as a potential means to address the problems of global warming and the depletion of fossil fuels. Recently, hybrid photocatalysts constructed with a metal complex and a particulate semiconductor are of particular interest because of the excellent electrochemical (and/or photocatalytic) ability of the metal complexes for CO2 reduction and the high efficiency of the semiconductors for oxidation reactions, where the ultimate target of oxidation reaction is water oxidation to form molecular O2. This review article highlights our recent progress in the development of metal-complex/semiconductor hybrid materials for visible-light CO2 reduction with a focus on oxynitride and nitride materials as the semiconductor component.

在可见光下使用多相光催化剂减少二氧化碳已被研究作为解决全球变暖和化石燃料枯竭问题的潜在手段。最近,由金属配合物和微粒半导体构成的混合光催化剂受到了特别的关注,因为金属配合物具有出色的电化学(和/或光催化)能力来还原CO2,而半导体在氧化反应中的效率很高,其中氧化反应的最终目标是水氧化形成分子O2。本文综述了近年来用于可见光CO2还原的金属-配合物/半导体杂化材料的研究进展,重点介绍了氮化氧材料和氮化氮材料的半导体成分。
{"title":"CO2 reduction using oxynitrides and nitrides under visible light","authors":"Kazuhiko Maeda","doi":"10.1016/j.progsolidstchem.2017.11.003","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2017.11.003","url":null,"abstract":"<div><p>Reduction of CO<sub>2</sub><span><span> using a heterogeneous photocatalyst under </span>visible light has been studied as a potential means to address the problems of global warming and the depletion of fossil fuels. Recently, hybrid photocatalysts constructed with a metal complex and a particulate semiconductor are of particular interest because of the excellent electrochemical (and/or photocatalytic) ability of the metal complexes for CO</span><sub>2</sub><span> reduction and the high efficiency of the semiconductors for oxidation reactions, where the ultimate target of oxidation reaction is water oxidation to form molecular O</span><sub>2</sub><span>. This review article highlights our recent progress in the development of metal-complex/semiconductor hybrid materials for visible-light CO</span><sub>2</sub><span> reduction with a focus on oxynitride<span> and nitride materials as the semiconductor component.</span></span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":12.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2017.11.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2660431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Remarkable effects of local structure in tantalum and niobium oxynitrides 氮化钽和氮化铌中局部结构的显著影响
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2018-09-01 DOI: 10.1016/j.progsolidstchem.2017.08.001
Shinichi Kikkawa, Akira Hosono, Yuji Masubuchi

Compounds that contain two types of anion are attracting attention as a new field of solid state chemistry. The nitride anion is similar to the oxide anion in size and nature. They coordinate together to cations in oxynitrides to form characteristic local structures around them in a certain way. Special properties induced by the specific local structure have been observed in oxynitrides. Ferroelectricity was identified in oxynitride perovskites, especially those of tantalum, because the oxide and nitride anions form a polar ordered local crystal structure around Ta5+ in the 5d0 electron configuration. The critical current density in superconductivity was enhanced by the formation of clusters in niobium oxynitrides with the rocksalt-type structure. Main group elements doped into the niobium oxynitrides, especially silicon, are coordinated mainly by oxides with some amount of nitrides to form silicon oxide-like clusters. The niobium in the oxynitride has some 4d electrons to maintain the superconductivity in the niobium oxynitride host. Here, the preparation, crystal structure and properties of oxynitrides formed with tantalum and niobium are reviewed.

含两种阴离子的化合物作为固体化学的一个新领域正受到人们的关注。氮阴离子在大小和性质上与氧化阴离子相似。它们与氮氧化物中的阳离子配合,以某种方式在它们周围形成特有的局部结构。在氮氧化物中观察到由特定局部结构引起的特殊性能。铁电性在氮氧钙钛矿中被发现,特别是在钽钙钛矿中,因为氧化物和氮离子在5d0电子构型中围绕Ta5+形成极性有序的局部晶体结构。具有岩盐型结构的氧化氮化铌簇的形成提高了超导临界电流密度。氧化氮化铌中掺杂的主要族元素,尤其是硅,主要与氧化物配位,形成类氧化硅簇。氮化氧中的铌具有四维电子,以维持氮化氧中铌的超导性。本文综述了钽和铌合成氮氧化物的制备方法、晶体结构和性能。
{"title":"Remarkable effects of local structure in tantalum and niobium oxynitrides","authors":"Shinichi Kikkawa,&nbsp;Akira Hosono,&nbsp;Yuji Masubuchi","doi":"10.1016/j.progsolidstchem.2017.08.001","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2017.08.001","url":null,"abstract":"<div><p><span>Compounds that contain two types of anion are attracting attention as a new field of solid state chemistry. The nitride<span><span> anion is similar to the oxide anion in size and nature. They coordinate together to cations in oxynitrides to form characteristic local structures around them in a certain way. Special properties induced by the specific local structure have been observed in oxynitrides. </span>Ferroelectricity<span><span> was identified in oxynitride perovskites, especially those of </span>tantalum, because the oxide and nitride anions form a polar ordered local crystal structure around Ta</span></span></span><sup>5+</sup> in the 5d<sup>0</sup><span><span> electron configuration. The critical current density in superconductivity<span> was enhanced by the formation of clusters in niobium oxynitrides with the rocksalt-type structure. Main group elements doped into the niobium oxynitrides, especially </span></span>silicon, are coordinated mainly by oxides with some amount of nitrides to form silicon oxide-like clusters. The niobium in the oxynitride has some 4d electrons to maintain the superconductivity in the niobium oxynitride host. Here, the preparation, crystal structure and properties of oxynitrides formed with tantalum and niobium are reviewed.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":12.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2017.08.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2601339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
期刊
Progress in Solid State Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1