首页 > 最新文献

Progress in Solid State Chemistry最新文献

英文 中文
Optical Properties of Solids 固体的光学性质
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2020-08-03 DOI: 10.1201/9780429027284-8
{"title":"Optical Properties of Solids","authors":"E. Moore, L. Smart","doi":"10.1201/9780429027284-8","DOIUrl":"https://doi.org/10.1201/9780429027284-8","url":null,"abstract":"","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"16 1","pages":""},"PeriodicalIF":12.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88386384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Electronic and magnetic properties of the quasi-skutterudite RT2X8 intermetallic compounds 准角钨矿RT2X8金属间化合物的电子和磁性能
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2020-06-01 DOI: 10.1016/j.progsolidstchem.2020.100275

The series RT2X8 (R = La–Nd, Sm, Eu, Yb, Ca and Sr; T = Fe, Co, Ni, Ru, Rh and Ir; X = Al, Ga and In) belong to a class of quasi-skutterudite intermetallic compounds which crystallize in the orthorhombic CaCo2Al8-type structure with space group Pbam (No. 55). A new member of the series CePd2Al8 crystallizes in a monoclinic structure of its own type with space group C2/m (No. 12). While this family of compounds are still largely unexplored, recent studies have revealed the evolution of interesting electronic and magnetic ground states in certain members of the series. Due to an increasing interest in the study of compounds with cage-like structures owing to their promising properties for thermoelectric applications and the search for heavy fermion superconductivity, it is therefore imperative to put into perspective the observations and important results in previous studies on the RT2X8 series. Besides the macroscopic properties such as specific heat, transport properties and magnetization, other important results from techniques such as neutron scattering, X-ray absorption spectroscopy and Mössbauer spectroscopy are also presented for some of the compounds.

系列RT2X8 (R = La-Nd, Sm, Eu, Yb, Ca, Sr;T = Fe, Co, Ni, Ru, Rh, Ir;X = Al, Ga和In)属于一类准角晶型金属间化合物,晶体结构为正交caco2al8型,具有空间群pham (No. 55)。CePd2Al8系列的新成员在空间群C2/m (No. 12)中以其自身类型的单斜结构结晶。虽然这类化合物在很大程度上仍未被探索,但最近的研究揭示了该系列某些成员中有趣的电子基态和磁性基态的演变。由于具有笼状结构的化合物具有热电应用和重费米子超导性的前景,因此对其研究的兴趣越来越大,因此有必要对RT2X8系列先前研究中的观察和重要结果进行正确的认识。除了比热、输运和磁化等宏观性质外,还介绍了一些化合物的中子散射、x射线吸收光谱和Mössbauer光谱等重要技术结果。
{"title":"Electronic and magnetic properties of the quasi-skutterudite RT2X8 intermetallic compounds","authors":"Michael O. Ogunbunmi","doi":"10.1016/j.progsolidstchem.2020.100275","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2020.100275","url":null,"abstract":"<div><p>The series <span><math><mrow><mi>R</mi><msub><mi>T</mi><mn>2</mn></msub><msub><mi>X</mi><mn>8</mn></msub></mrow></math></span> (<em>R</em> = La–Nd, Sm, Eu, Yb, Ca and Sr; <em>T</em> = Fe, Co, Ni, Ru, Rh and Ir; <em>X</em><span> = Al, Ga and In) belong to a class of quasi-skutterudite intermetallic compounds which crystallize in the orthorhombic CaCo</span><sub>2</sub>Al<sub>8</sub>-type structure with space group <span><math><mrow><mi>P</mi><mi>b</mi><mi>a</mi><mi>m</mi></mrow></math></span> (No. 55). A new member of the series CePd<sub>2</sub>Al<sub>8</sub> crystallizes in a monoclinic structure of its own type with space group <em>C</em>2/<em>m</em><span> (No. 12). While this family of compounds are still largely unexplored, recent studies have revealed the evolution of interesting electronic and magnetic ground states in certain members of the series. Due to an increasing interest in the study of compounds with cage-like structures owing to their promising properties for thermoelectric<span> applications and the search for heavy fermion<span> superconductivity, it is therefore imperative to put into perspective the observations and important results in previous studies on the </span></span></span><span><math><mrow><mi>R</mi><msub><mi>T</mi><mn>2</mn></msub><msub><mi>X</mi><mn>8</mn></msub></mrow></math></span><span><span> series. Besides the macroscopic properties such as specific heat, transport properties and magnetization, other important results from techniques such as neutron scattering, X-ray absorption spectroscopy and </span>Mössbauer spectroscopy are also presented for some of the compounds.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"58 ","pages":"Article 100275"},"PeriodicalIF":12.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2020.100275","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2414520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications 电池和超级电容器走向绿色:二维材料及其纳米复合材料的储能应用
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2020-06-01 DOI: 10.1016/j.progsolidstchem.2019.100254

Environmental pollution is one of the significant area under discussion that the world is facing nowadays and it is increasing day by day and leading to serious and dangerous consequence to this world. Electrical energy storage (EES) plays a very important part in everyday life because of our reliance on various transportable devices. Nano- and atomic-level two-dimensional (2D) materials have broad applications in optoelectronic devices. This review deals with the cutting edge of EES devices, highlights advances to overcome present restrictions, and helps us to go further to get future advanced EES technology based devices, whose uniqueness symbolizes an exact hybridization of batteries and capacitors. The essential features of 2D materials are illustrated, and their energy storage systems are also reviewed. Secondly, energy storage performances of 2D materials-based batteries and supercapacitors (SC) will also be highlighted. At last, a few efficient schemes for boosting their performance based on 2D materials are also explained. The prospect and challenges of the 2D-material-based energy storage at commercial level are also provided.

环境污染是当今世界面临的重要问题之一,它正日益加剧,并给世界带来了严重而危险的后果。由于我们对各种可移动设备的依赖,电能存储在日常生活中起着非常重要的作用。纳米级和原子级二维材料在光电器件中有着广泛的应用。这篇综述涉及了EES设备的前沿,突出了克服当前限制的进展,并帮助我们进一步获得未来先进的基于EES技术的设备,其独特性象征着电池和电容器的精确杂交。阐述了二维材料的基本特征,并对其储能系统进行了综述。其次,还将重点介绍二维材料电池和超级电容器(SC)的储能性能。最后,介绍了几种基于二维材料提高其性能的有效方案。提出了基于二维材料的储能技术在商业层面的发展前景和挑战。
{"title":"Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications","authors":"Karim Khan ,&nbsp;Ayesha Khan Tareen ,&nbsp;Muhammad Aslam ,&nbsp;Asif Mahmood ,&nbsp;Qasim khan ,&nbsp;Yupeng Zhang ,&nbsp;Zhengbiao Ouyang ,&nbsp;Zhongyi Guo ,&nbsp;Han Zhang","doi":"10.1016/j.progsolidstchem.2019.100254","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2019.100254","url":null,"abstract":"<div><p>Environmental pollution is one of the significant area under discussion that the world is facing nowadays and it is increasing day by day and leading to serious and dangerous consequence to this world. Electrical energy storage<span><span> (EES) plays a very important part in everyday life because of our reliance on various transportable devices. Nano- and atomic-level two-dimensional (2D) materials have broad applications in optoelectronic devices. This review deals with the cutting edge of EES devices, highlights advances to overcome present restrictions, and helps us to go further to get future advanced EES technology based devices, whose uniqueness symbolizes an exact hybridization of batteries and capacitors. The essential features of 2D materials are illustrated, and their energy storage systems are also reviewed. Secondly, energy storage performances of 2D materials-based batteries and </span>supercapacitors (SC) will also be highlighted. At last, a few efficient schemes for boosting their performance based on 2D materials are also explained. The prospect and challenges of the 2D-material-based energy storage at commercial level are also provided.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"58 ","pages":"Article 100254"},"PeriodicalIF":12.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2019.100254","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3388498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 78
Recent advances on morphological changes in chemically engineered rare earth doped phosphor materials 化学工程稀土掺杂荧光粉材料形态变化研究进展
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2020-03-01 DOI: 10.1016/j.progsolidstchem.2019.100267

The photoluminescent phosphor materials nowadays are extremely important source of light to fulfill the technological demand over the conventional light source for eco-friendly environment. This review brings the morphological and optical properties of the chemically engineered rare earth doped photoluminescent materials at one platform. The recent developments have been incorporated and different processes involved in the morphological changes of these materials are discussed. The optical properties of different mono-, di- and tri-rare earth doped phosphors have been analyzed and evaluated using various sensitizers and surface modifiers. The photoluminescence intensity of the materials is greatly affected by changing the morphology of the phosphors via some sensitizers and surface modifiers. The large photoluminescence intensity thus obtained has been summarized due to change in the morphology. The future aspects of change in the morphological properties of the chemically engineered rare earth doped phosphors have been also proposed.

光致发光荧光粉材料是当今满足传统光源对生态环境技术要求的极其重要的光源。本文综述了化学工程稀土掺杂光致发光材料在一个平台上的形态学和光学性质。最近的发展已经纳入和不同的过程涉及这些材料的形态变化进行了讨论。采用不同的增敏剂和表面改性剂,对不同的单、二、三稀土掺杂荧光粉的光学性能进行了分析和评价。通过一些增敏剂和表面改性剂改变荧光粉的形态,对材料的光致发光强度有很大影响。由此获得的大光致发光强度已被总结为由于形态的变化。对化学工程稀土掺杂荧光粉的形态特性变化的未来方向进行了展望。
{"title":"Recent advances on morphological changes in chemically engineered rare earth doped phosphor materials","authors":"R.S. Yadav ,&nbsp;Monika ,&nbsp;S.B. Rai ,&nbsp;S.J. Dhoble","doi":"10.1016/j.progsolidstchem.2019.100267","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2019.100267","url":null,"abstract":"<div><p><span>The photoluminescent phosphor materials nowadays are extremely important source of light to fulfill the technological demand over the conventional light source for eco-friendly environment. This review brings the morphological and optical properties of the chemically engineered rare earth doped photoluminescent materials at one platform. The recent developments have been incorporated and different processes involved in the morphological changes of these materials are discussed. The optical properties of different mono-, di- and tri-rare earth doped phosphors have been analyzed and evaluated using various sensitizers and surface modifiers. The </span>photoluminescence intensity of the materials is greatly affected by changing the morphology of the phosphors via some sensitizers and surface modifiers. The large photoluminescence intensity thus obtained has been summarized due to change in the morphology. The future aspects of change in the morphological properties of the chemically engineered rare earth doped phosphors have been also proposed.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"57 ","pages":"Article 100267"},"PeriodicalIF":12.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2019.100267","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2414521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
Fullerene derivatives with amino acids, peptides and proteins: From synthesis to biomedical application 含氨基酸、多肽和蛋白质的富勒烯衍生物:从合成到生物医学应用
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2020-03-01 DOI: 10.1016/j.progsolidstchem.2019.100255

Fullerene derivatives with amino acids, peptides and proteins have wide perspectives in biomedical applications. Thus, development and up-scaling of synthesis procedures, as well as investigation of the physico-chemical and biological properties of these derivatives, are extremely important. The present paper systematizes the current literature data on synthesis, physico-chemical properties and application of fullerene derivatives with amino acids, peptides and proteins in biomedicine. Experimental and theoretical data presented in the review give a comprehensive overview of these substances and can be valuable for specialists in the fields of nanotechnology, nanomaterials and bionanomedicine.

富勒烯与氨基酸、多肽和蛋白质的衍生物在生物医学上有着广泛的应用前景。因此,开发和扩大合成程序,以及研究这些衍生物的物理化学和生物特性,是极其重要的。本文对富勒烯类氨基酸、多肽和蛋白质衍生物的合成、理化性质及其在生物医学中的应用等方面的文献资料进行了系统综述。这篇综述中提出的实验和理论数据对这些物质进行了全面的概述,对纳米技术、纳米材料和生物纳米医学领域的专家有价值。
{"title":"Fullerene derivatives with amino acids, peptides and proteins: From synthesis to biomedical application","authors":"Evgeniia I. Pochkaeva ,&nbsp;Nikita E. Podolsky ,&nbsp;Dmitry N. Zakusilo ,&nbsp;Andrey V. Petrov ,&nbsp;Nikolay A. Charykov ,&nbsp;Timur D. Vlasov ,&nbsp;Anastasia V. Penkova ,&nbsp;Lubov V. Vasina ,&nbsp;Igor V. Murin ,&nbsp;Vladimir V. Sharoyko ,&nbsp;Konstantin N. Semenov","doi":"10.1016/j.progsolidstchem.2019.100255","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2019.100255","url":null,"abstract":"<div><p><span>Fullerene derivatives with amino acids, peptides and proteins have wide perspectives in biomedical applications. Thus, development and up-scaling of synthesis procedures, as well as investigation of the physico-chemical and biological properties of these derivatives, are extremely important. The present paper systematizes the current literature data on synthesis, physico-chemical properties and application of fullerene derivatives with amino acids, peptides and proteins in biomedicine. Experimental and theoretical data presented in the review give a comprehensive overview of these substances and can be valuable for specialists in the fields of nanotechnology, </span>nanomaterials and bionanomedicine.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"57 ","pages":"Article 100255"},"PeriodicalIF":12.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2019.100255","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2601337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 40
Comparison of the crystal chemistry of tellurium (VI), molybdenum (VI), and tungsten (VI) in double perovskite oxides and related materials 双钙钛矿氧化物及相关材料中碲(VI)、钼(VI)、钨(VI)的晶体化学比较
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2019-12-01 DOI: 10.1016/j.progsolidstchem.2019.100251

A comprehensive structural comparison of 56 Te6+-, Mo6+-, and W6+-containing oxides with the double perovskite stoichiometry (A2BB′O6) is presented. This work shows that much like d0 Mo6+- and W6+-containing perovskites, p0 Te6+-containing compositions are strongly affected by the tolerance factor and identities of the A- and B-cations. To make this comparison more complete, the ambient temperature crystal structures of five A2BTeO6 (A = Ca2+, Sr2+, or Ba2+; B = Zn2+ or Cd2+) perovskites were determined via powder diffraction and their vibronic and electronic structures were probed via infrared and diffuse reflectance spectroscopy. The new structural information reported here coupled with a thorough review of relevant literature demonstrates that Te6+, with its sigma bonding preference and lack of allowed orbital mixing gives rise to additional structure types that are not commonly observed in the Mo6+ or W6+ analogues. Analysis of double perovskites containing the hexavalent cations comparing the tolerance factor to the difference in ionic radii of the cations with octahedral coordination is presented. Additionally, examination of the Coulombic repulsions between the B and Te6+ cations plotted as a function of difference in the twelve- and seven-coordinate ionic radii for the A- and B-cations respectively provides new insight on why A2BTeO6 and A2BWO6 (A = B = Sr2+ or Ba2+) adopt perovskite structures with non-cooperative octahedral tilting distortions, while cooperative octahedral distortions are observed when the A and B sites are occupied by smaller cations like Ca2+ and Cd2+.

用双钙钛矿化学计量学(A2BB 'O6)对56种含Te6+-、Mo6+-和W6+的氧化物进行了全面的结构比较。这项工作表明,与含Mo6+和W6+的钙钛矿非常相似,含Te6+的钙钛矿的组成受到A和b阳离子的耐受性因子和特性的强烈影响。为了使这个比较更完整,五种A2BTeO6 (A = Ca2+, Sr2+,或Ba2+;用粉末衍射法测定了B = Zn2+或Cd2+)钙钛矿的结构,并用红外和漫反射光谱法探测了它们的振动和电子结构。本文报道的新结构信息,加上对相关文献的全面回顾,表明Te6+具有sigma键偏好和缺乏允许的轨道混合,导致了在Mo6+或W6+类似物中不常见的额外结构类型。对含六价阳离子的双钙钛矿进行了分析,比较了其容差因子与八面体配位阳离子离子半径的差异。此外,对B和Te6+阳离子之间的库仑斥力(分别作为a -和B-阳离子十二坐标和七坐标离子半径差异的函数)的研究,为A2BTeO6和A2BWO6 (a = B = Sr2+或Ba2+)采用具有非合作八面体倾斜畸变的钙钛矿结构,而当a和B位点被Ca2+和Cd2+等较小的阳离子占据时,观察到合作八面体畸变提供了新的视角。
{"title":"Comparison of the crystal chemistry of tellurium (VI), molybdenum (VI), and tungsten (VI) in double perovskite oxides and related materials","authors":"Ashley V. Flores ,&nbsp;Austyn E. Krueger ,&nbsp;Amanda J. Stiner ,&nbsp;Hailey M. Albert ,&nbsp;Travis Mansur ,&nbsp;Victoria Willis ,&nbsp;Chanel C. Lee ,&nbsp;Luis J. Garay ,&nbsp;Loi T. Nguyen ,&nbsp;Matthew A. Frank ,&nbsp;Paris W. Barnes ,&nbsp;Allyson M. Fry-Petit","doi":"10.1016/j.progsolidstchem.2019.100251","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2019.100251","url":null,"abstract":"<div><p>A comprehensive structural comparison of 56 Te<sup>6+</sup>-, Mo<sup>6+</sup>-, and W<sup>6+</sup><span>-containing oxides with the double perovskite<span> stoichiometry (</span></span><em>A</em><sub>2</sub><em>BB</em>′O<sub>6</sub>) is presented. This work shows that much like <em>d</em><sup>0</sup> Mo<sup>6+</sup>- and W<sup>6+</sup>-containing perovskites, <em>p</em><sup>0</sup> Te<sup>6+</sup>-containing compositions are strongly affected by the tolerance factor and identities of the <em>A</em>- and <em>B</em>-cations. To make this comparison more complete, the ambient temperature crystal structures of five <em>A</em><sub>2</sub><em>B</em>TeO<sub>6</sub> (<em>A</em> = Ca<sup>2+</sup>, Sr<sup>2+</sup>, or Ba<sup>2+</sup>; <em>B</em> = Zn<sup>2+</sup> or Cd<sup>2+</sup><span>) perovskites were determined via powder diffraction and their vibronic and electronic structures were probed via infrared and diffuse reflectance spectroscopy. The new structural information reported here coupled with a thorough review of relevant literature demonstrates that Te</span><sup>6+</sup>, with its sigma bonding preference and lack of allowed orbital mixing gives rise to additional structure types that are not commonly observed in the Mo<sup>6+</sup> or W<sup>6+</sup> analogues. Analysis of double perovskites containing the hexavalent cations comparing the tolerance factor to the difference in ionic radii of the cations with octahedral coordination is presented. Additionally, examination of the Coulombic repulsions between the <em>B</em> and Te<sup>6+</sup> cations plotted as a function of difference in the twelve- and seven-coordinate ionic radii for the <em>A</em>- and <em>B</em>-cations respectively provides new insight on why <em>A</em><sub>2</sub><em>B</em>TeO<sub>6</sub> and <em>A</em><sub>2</sub><em>B</em>WO<sub>6</sub> (<em>A</em> = <em>B</em> = Sr<sup>2+</sup> or Ba<sup>2+</sup>) adopt perovskite structures with non-cooperative octahedral tilting distortions, while cooperative octahedral distortions are observed when the <em>A</em> and <em>B</em> sites are occupied by smaller cations like Ca<sup>2+</sup> and Cd<sup>2+</sup>.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"56 ","pages":"Article 100251"},"PeriodicalIF":12.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2019.100251","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2601340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Joint stereochemical and ab initio overview of SnII electron lone pairs (E) and F−(E) triplets effects on the crystal networks, the bonding and the electronic structures in a family of tin fluorides SnII电子孤对(E)和F−(E)三重电子对一类氟化锡晶体网络、成键和电子结构影响的联合立体化学和从头计算综述
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2019-12-01 DOI: 10.1016/j.progsolidstchem.2019.100252

The stereochemistry of 5s2 (E) lone pair of divalent Sn (SnII designated by M*) and the lone pair triplet around the fluorine ions are examined complementarily with stereo-chemical approach and ab initio quantum investigations focusing on the electron localization and pertaining electronic structure properties, obtained within Density Functional Theory (DFT) and derived Electron Localization Function (ELF) mapping. The review completes a series of former ones focusing on the stereochemical role played by electron lone pairs LP. We start by examining LP-free SnIVF4 then develop on SnIIF2E in its three crystal varieties (α, β, γ). The investigation then extends to study two mixed-valence fluorides: Sn2IISnIVF6E2 and SnIISnIVF6E. The lone pair presence is readily detected in the crystalline network by its sphere of influence characterized by a radius rE, and M*-E directions; all distances are also detailed and assessed. The observations point to significant modifications of the structure which are also analyzed with the electronic density of states DOS projected over the different atomic constituents. Within the selected fluorides details of SnII various coordination numbers (CN) generally indicate one-sided coordination; specifically: CN = 4 + 1 SnF4E triangular bipyramid, CN = 5 + 1 SnF5E distorted octahedron (square pyramid with E roughly symmetric of its F apex) and CN = 6 octahedron [SnE]F6. In the latter, the rotation speed of E (which increases with Z number due to relativistic effects) and the size of the F polyhedron make it favorable enough to E rotating around Sn2+ with the particularity of its transformation into a large cation [SnE]2+ with a size comparable to Ca2+, Sr2+ or Ba2+.

利用密度泛函理论(DFT)和衍生的电子定位函数(ELF)映射获得的立体化学方法和从头算量子研究,互补地研究了二价Sn (SnII由M*指定)的5s2 (E)孤对和氟离子周围的孤对三重态的电子定位和相关电子结构性质。本文对电子孤对LP的立体化学作用进行了综述。我们首先研究了无lp的sniff4,然后在其三个晶体品种(α, β, γ)中对SnIIF2E进行开发。该研究随后扩展到研究两种混合价氟化物:Sn2IISnIVF6E2和snisnivf6e。通过其半径为rE和M*-E方向的影响范围,可以很容易地在晶体网络中检测到孤对的存在;所有的距离也被详细和评估。观察结果指出了结构的显著变化,并分析了不同原子成分上投影的态电子密度。在所选的氟化物中,SnII的各种配位数(CN)一般表明单侧配位;具体为:CN = 4 + 1 SnF4E三角双金字塔,CN = 5 + 1 SnF5E畸变八面体(E与F顶点大致对称的方形金字塔)和CN = 6八面体[SnE]F6。在后者中,E的旋转速度(由于相对论效应而随着Z数的增加而增加)和F多面体的大小使其足以有利于E围绕Sn2+旋转,并具有其转化为与Ca2+, Sr2+或Ba2+大小相当的大阳离子[SnE]2+的特殊性。
{"title":"Joint stereochemical and ab initio overview of SnII electron lone pairs (E) and F−(E) triplets effects on the crystal networks, the bonding and the electronic structures in a family of tin fluorides","authors":"Jean Galy ,&nbsp;Samir F. Matar","doi":"10.1016/j.progsolidstchem.2019.100252","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2019.100252","url":null,"abstract":"<div><p><span>The stereochemistry of 5s</span><sup>2</sup> (E) lone pair of divalent Sn (Sn<sup>II</sup><span> designated by M*) and the lone pair triplet around the fluorine ions are examined complementarily with stereo-chemical approach and ab initio quantum investigations focusing on the electron localization and pertaining electronic structure properties, obtained within Density Functional Theory (DFT) and derived Electron Localization Function (ELF) mapping. The review completes a series of former ones focusing on the stereochemical role played by electron lone pairs LP. We start by examining LP-free Sn</span><sup>IV</sup>F<sub>4</sub> then develop on Sn<sup>II</sup>F<sub>2</sub>E in its three crystal varieties (α, β, γ). The investigation then extends to study two mixed-valence fluorides: Sn<sub>2</sub><sup>II</sup>Sn<sup>IV</sup>F<sub>6</sub>E<sub>2</sub> and Sn<sup>II</sup>Sn<sup>IV</sup>F<sub>6</sub><span>E. The lone pair presence is readily detected in the crystalline network by its sphere of influence characterized by a radius rE, and M*-E directions; all distances are also detailed and assessed. The observations point to significant modifications of the structure which are also analyzed with the electronic density of states DOS projected over the different atomic constituents. Within the selected fluorides details of Sn</span><sup>II</sup> various coordination numbers (CN) generally indicate one-sided coordination; specifically: CN = 4 + 1 SnF<sub>4</sub>E triangular bipyramid, CN = 5 + 1 SnF<sub>5</sub>E distorted octahedron (square pyramid with E roughly symmetric of its F apex) and CN = 6 octahedron [SnE]F<sub>6</sub>. In the latter, the rotation speed of E (which increases with Z number due to relativistic effects) and the size of the F polyhedron make it favorable enough to E rotating around Sn<sup>2+</sup> with the particularity of its transformation into a large cation [SnE]<sup>2+</sup> with a size comparable to Ca<sup>2+</sup>, Sr<sup>2+</sup> or Ba<sup>2+</sup>.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"56 ","pages":"Article 100252"},"PeriodicalIF":12.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2019.100252","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2344691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Multifield-resolved phonon spectrometrics: structured crystals and liquids 多场分辨声子光谱:结构晶体和液体
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2019-09-01 DOI: 10.1016/j.progsolidstchem.2019.07.001

Bond relaxation from one equilibrium to another under perturbation matters uniquely the performance of a substance and thus it has enormous impact to materials science and engineering. However, the basic rules for the perturbation-bond-property correlation and efficient probing strategies for high-resolution detection stay yet great challenge. This treatise features recent progress in this regard with focus on the multifield bond oscillation notion and the theory-enabled phonon spectrometrics. From the perspective of Fourier transformation and the Taylor series of the potentials, we correlate the phonon spectral signatures directly to the transition of the characteristic bonds in terms of stiffness (frequency shift), number fraction (integral of the differential spectral peak), structure fluctuation (linewidth), and the macroscopic properties of the substance. A systematic examination of the spectral feature evolution for group IV, III-V, II-VI crystals, layered graphene nanoribbons, black phosphor, (W, Mo)(S2, Se2) flakes, typical nanocrystals, and liquid water and aqueous solutions under perturbation has enabled the ever-unexpected information on the perturbation-bond-property regulations. Consistency between predictions and measurements of the crystal size-resolved phonon frequency shift clarifies that atomic dimer oscillation dictates the vibration modes showing blueshift while the collective vibration of oscillators formed between a certain atom and its nearest neighbors governs the modes of redshift when the sample size is reduced. Theoretical matching to the phonon frequency shift due to atomic undercoordination, mechanical and thermal activation, and aqueous charge injection by solvation has been realized. The reproduction of experimental measurements has turned out quantitative information of bond length, bond energy, single bond force constant, binding energy density, vibration mode activation energy, Debye temperature, elastic modulus, and the number and stiffness transition of bonds from the mode of references to the conditioned upon perturbation. Findings prove not only the essentiality of the multifield lattice oscillating dynamics but also the immense power of the phonon spectrometrics in revealing the bond-phonon-property correlation of solid and liquid substance.

在扰动作用下,从一种平衡态到另一种平衡态的键弛豫关系到物质的独特性能,因此对材料科学和工程有着巨大的影响。然而,微扰-键-性质相关的基本规律和高分辨率探测的有效探测策略仍然存在很大的挑战。这篇论文介绍了这方面的最新进展,重点是多场键振荡概念和理论支持的声子谱学。从傅里叶变换和电位的泰勒级数的角度,我们将声子光谱特征直接与特征键的跃迁联系起来,包括刚度(频移)、数量分数(微分光谱峰的积分)、结构波动(线宽)和物质的宏观性质。系统地研究了IV族、III-V族、II-VI族晶体、层状石墨烯纳米带、黑色荧光粉、(W, Mo)(S2, Se2)薄片、典型纳米晶体、液态水和水溶液在摄动下的光谱特征演变,从而获得了关于摄动键性质规律的意想不到的信息。晶体尺寸分辨声子频移的预测和测量结果之间的一致性澄清了原子二聚体振荡决定了显示蓝移的振动模式,而当样本大小减小时,在某个原子与其最近邻之间形成的振荡子的集体振动决定了红移模式。原子欠配位引起的声子频移、机械活化和热活化以及溶剂化引起的水相电荷注入的理论匹配已经实现。实验测量的再现得到了键长、键能、单键力常数、结合能密度、振动模式活化能、德拜温度、弹性模量以及参考模式到摄动条件下键的数量和刚度转变等定量信息。这些发现不仅证明了多场晶格振荡动力学的重要性,而且证明了声子谱学在揭示固体和液体物质的键-声子-性质关联方面的巨大力量。
{"title":"Multifield-resolved phonon spectrometrics: structured crystals and liquids","authors":"Xuexian Yang ,&nbsp;Cheng Peng ,&nbsp;Lei Li ,&nbsp;Maolin Bo ,&nbsp;Yi Sun ,&nbsp;Yongli Huang ,&nbsp;Chang Q. Sun","doi":"10.1016/j.progsolidstchem.2019.07.001","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2019.07.001","url":null,"abstract":"<div><p><span><span>Bond relaxation from one equilibrium to another under perturbation matters uniquely the performance of a substance and thus it has enormous impact to materials science and engineering. However, the basic rules for the perturbation-bond-property correlation and efficient probing strategies for high-resolution detection stay yet great challenge. This treatise features recent progress in this regard with focus on the multifield bond oscillation notion and the theory-enabled phonon spectrometrics. From the perspective of Fourier transformation and the Taylor series of the potentials, we correlate the phonon </span>spectral signatures<span> directly to the transition of the characteristic bonds in terms of stiffness (frequency shift), number fraction (integral of the differential spectral peak), structure fluctuation (linewidth), and the macroscopic properties of the substance. A systematic examination of the spectral feature evolution for group IV, III-V, II-VI crystals, layered graphene nanoribbons, black phosphor, (W, Mo)(S</span></span><sub>2</sub>, Se<sub>2</sub><span><span>) flakes, typical nanocrystals, and liquid water and aqueous solutions under perturbation has enabled the ever-unexpected information on the perturbation-bond-property regulations. Consistency between predictions and measurements of the crystal size-resolved phonon frequency shift clarifies that atomic dimer oscillation dictates the vibration modes showing blueshift while the collective vibration of </span>oscillators<span> formed between a certain atom and its nearest neighbors governs the modes of redshift when the sample size is reduced. Theoretical matching to the phonon frequency shift due to atomic undercoordination, mechanical and thermal activation, and aqueous charge injection by solvation<span><span> has been realized. The reproduction of experimental measurements has turned out quantitative information of bond length, bond energy, single bond force constant, binding energy density, vibration mode </span>activation energy<span>, Debye temperature, elastic modulus, and the number and stiffness transition of bonds from the mode of references to the conditioned upon perturbation. Findings prove not only the essentiality of the multifield lattice oscillating dynamics but also the immense power of the phonon spectrometrics in revealing the bond-phonon-property correlation of solid and liquid substance.</span></span></span></span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"55 ","pages":"Pages 20-66"},"PeriodicalIF":12.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2019.07.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2005440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Review of functional titanium oxides. II: Hydrogen-modified TiO2 功能氧化钛的研究进展。II:氢修饰TiO2
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2019-09-01 DOI: 10.1016/j.progsolidstchem.2019.04.003

Band gap engineering of TiO2 has attracted many researchers looking to extend its applicability as a functional material. Although TiO2 has been commercialised in applications that utilise its special properties, its band gap should be modified to improve its performance, especially as an active photo catalyst. Reduction of TiO2 under a hydrogen atmosphere is a promising method which can increase the visible-light absorption efficiency of TiO2 and enhance its electrochemical and other properties related to electronic band structure. In this second review paper, the production and influence of O vacancies (VO) and other defects, such as interstitial cations, under vacuum and hydrogen are reviewed for the common phases of TiO2. The particular modification TiO2–x in which O is randomly removed from the crystal structure is considered in detail. Despite early evidence that hydrogen is absorbed into the bulk of TiO2, the action of hydrogen has become controversial in recent years, with claims that surface disorder is responsible for the enhanced photoactivity induced by exposure to hydrogen. The many published experimental and density-functional-theory modelling studies are surveyed with the aims of determining what is agreed or contested, and relating defect structure to band structure. It is concluded that further work is needed to clarify the mechanisms of defect production and defect diffusion, as well as the origins of the numerous sample colours observed following treatment in vacuum or hydrogen.

二氧化钛的带隙工程吸引了许多研究人员希望扩展其作为功能材料的适用性。虽然二氧化钛已经在利用其特殊性能的应用中商业化,但它的带隙应该被修改以提高其性能,特别是作为一种活性光催化剂。在氢气气氛下还原TiO2是一种很有前途的方法,它可以提高TiO2的可见光吸收效率,增强其电化学和其他与电子能带结构相关的性能。在第二篇综述中,综述了二氧化钛常见相在真空和氢气条件下O空位(VO)和其他缺陷(如间隙阳离子)的产生及其影响。详细讨论了从晶体结构中随机去除O的特殊改性TiO2-x。尽管早期的证据表明氢被吸收到TiO2的主体中,但近年来氢的作用变得有争议,有人声称表面紊乱是暴露于氢引起的光活性增强的原因。许多已发表的实验和密度功能理论模型研究被调查,目的是确定什么是同意的或有争议的,并将缺陷结构与能带结构联系起来。结论是,需要进一步的工作来阐明缺陷产生和扩散的机制,以及在真空或氢气处理后观察到的许多样品颜色的来源。
{"title":"Review of functional titanium oxides. II: Hydrogen-modified TiO2","authors":"Nazanin Rahimi ,&nbsp;Randolph Pax ,&nbsp;Evan MacA. Gray","doi":"10.1016/j.progsolidstchem.2019.04.003","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2019.04.003","url":null,"abstract":"<div><p>Band gap engineering of TiO<sub>2</sub> has attracted many researchers looking to extend its applicability as a functional material. Although TiO<sub>2</sub> has been commercialised in applications that utilise its special properties, its band gap should be modified to improve its performance, especially as an active photo catalyst. Reduction of TiO<sub>2</sub> under a hydrogen atmosphere is a promising method which can increase the visible-light absorption efficiency of TiO<sub>2</sub><span> and enhance its electrochemical and other properties related to electronic band structure. In this second review paper, the production and influence of O vacancies </span><span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span><span> and other defects, such as interstitial cations, under vacuum and hydrogen are reviewed for the common phases of TiO</span><sub>2</sub>. The particular modification TiO<sub>2–<em>x</em></sub> in which O is randomly removed from the crystal structure is considered in detail. Despite early evidence that hydrogen is absorbed into the bulk of TiO<sub>2</sub><span><span>, the action of hydrogen has become controversial in recent years, with claims that surface disorder is responsible for the enhanced photoactivity induced by exposure to hydrogen. The many published experimental and density-functional-theory modelling studies are surveyed with the aims of determining what is agreed or contested, and relating defect structure to band structure. It is concluded that further work is needed to clarify the mechanisms of defect production and defect </span>diffusion, as well as the origins of the numerous sample colours observed following treatment in vacuum or hydrogen.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"55 ","pages":"Pages 1-19"},"PeriodicalIF":12.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2019.04.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2005439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Chemical ordering and electronic properties of lone pair chalcogenide semiconductors 孤对硫族半导体的化学有序性和电子性质
IF 12 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2019-06-01 DOI: 10.1016/j.progsolidstchem.2019.04.001

Chalcogenide lone pair semiconducting materials are important materials due to their prospective applications in thermoelectrics, phase change memories, topological insulators etc. Investigating these lone pair semiconductors for versatile applications, different electronic properties were studied by researchers world-wide. Analyses of these semiconducting materials in bulk and thin films for electronic properties like dark and photo-conductivity, photosensitivity, carrier concentration, carrier type, relaxation time and thermopower are the major constituents while accepting them for applications. This review stresses on the electronic properties of several binary, ternary and quaternary lone pair chalcogenide systems. The electronic properties are generally discussed on the basis of chemical ordering in system. A brief discussion on some theoretical background of conduction mechanism has also been incorporated for new researchers in this field. Potential applications of chalcogenide semiconducting materials have been outlined.

硫族化合物孤对半导体材料在热电学、相变存储器、拓扑绝缘体等方面具有重要的应用前景。为了研究这些多用途的孤对半导体,世界各地的研究人员研究了不同的电子特性。在接受这些半导体材料的应用时,对这些半导体材料的散装和薄膜的电子特性(如暗和光导电性、光敏性、载流子浓度、载流子类型、弛豫时间和热功率)进行分析是主要成分。本文综述了几种二元、三元和四元孤对硫族化合物体系的电子性质。电子性质一般是根据体系中的化学顺序来讨论的。本文还对传导机理的一些理论背景作了简要的讨论,供本领域的新研究者参考。概述了硫族半导体材料的潜在应用。
{"title":"Chemical ordering and electronic properties of lone pair chalcogenide semiconductors","authors":"Vineet Sharma ,&nbsp;Sunanda Sharda ,&nbsp;Neha Sharma ,&nbsp;S.C. Katyal ,&nbsp;Pankaj Sharma","doi":"10.1016/j.progsolidstchem.2019.04.001","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2019.04.001","url":null,"abstract":"<div><p><span>Chalcogenide lone pair semiconducting materials<span> are important materials due to their prospective applications in thermoelectrics<span><span>, phase change memories, </span>topological insulators </span></span></span><em>etc</em><span>. Investigating these lone pair semiconductors for versatile applications, different electronic properties were studied by researchers world-wide. Analyses of these semiconducting materials in bulk and thin films for electronic properties like dark and photo-conductivity, photosensitivity, carrier concentration, carrier type, relaxation time and thermopower are the major constituents while accepting them for applications. This review stresses on the electronic properties of several binary, ternary and quaternary lone pair chalcogenide systems. The electronic properties are generally discussed on the basis of chemical ordering in system. A brief discussion on some theoretical background of conduction mechanism has also been incorporated for new researchers in this field. Potential applications of chalcogenide semiconducting materials have been outlined.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"54 ","pages":"Pages 31-44"},"PeriodicalIF":12.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2019.04.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3388500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
期刊
Progress in Solid State Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1