Pub Date : 2024-11-06DOI: 10.1016/j.renene.2024.121819
Chaofan Li , Dongzhi Liu , Yalei Zhang , Shuangfei Li , Deqiang He , Yanjun Chen
Volumetric solar steam generation has a wide range of applications in many fields such as electricity generation, water purification, seawater desalination, and wastewater treatment. However, the efficiency of volumetric evaporation using nanofluids as photothermal conversion materials is still low. In this paper, electric field is applied to the volumetric solar steam generation system to enhance steam generation efficiency by utilizing the effect of electric field on nanoparticle resuspension as well as the formation and escape of nanobubbles. The results show that the electric field promotes steam generation at high solar radiation intensities and the promotion is enhanced with the increase of voltage. The steam generation of 0.09 vol% TiN-water nanofluid at 10 kV and solar radiation intensity of 3 sun significantly increases by 21.71 % than that without electric field. Electric field provides an external force for the movement of nanobubble-particle complexes, accelerating the process of rise, fusion, and escape of nanobubbles, and accelerating the resuspension as well as upward and downward circulation of nanoparticles in the cavity. Thus, the vapor generation efficiency is enhanced. The research in this paper provides theoretical guidance to enhance vapor generation in the solar steam generator.
{"title":"Experimental study of electric field combined nanofluid to enhance vapor generation in the solar steam generator","authors":"Chaofan Li , Dongzhi Liu , Yalei Zhang , Shuangfei Li , Deqiang He , Yanjun Chen","doi":"10.1016/j.renene.2024.121819","DOIUrl":"10.1016/j.renene.2024.121819","url":null,"abstract":"<div><div>Volumetric solar steam generation has a wide range of applications in many fields such as electricity generation, water purification, seawater desalination, and wastewater treatment. However, the efficiency of volumetric evaporation using nanofluids as photothermal conversion materials is still low. In this paper, electric field is applied to the volumetric solar steam generation system to enhance steam generation efficiency by utilizing the effect of electric field on nanoparticle resuspension as well as the formation and escape of nanobubbles. The results show that the electric field promotes steam generation at high solar radiation intensities and the promotion is enhanced with the increase of voltage. The steam generation of 0.09 vol% TiN-water nanofluid at 10 kV and solar radiation intensity of 3 sun significantly increases by 21.71 % than that without electric field. Electric field provides an external force for the movement of nanobubble-particle complexes, accelerating the process of rise, fusion, and escape of nanobubbles, and accelerating the resuspension as well as upward and downward circulation of nanoparticles in the cavity. Thus, the vapor generation efficiency is enhanced. The research in this paper provides theoretical guidance to enhance vapor generation in the solar steam generator.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121819"},"PeriodicalIF":9.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.renene.2024.121832
Ali Trueworthy , Aeron Roach , Bryony DuPont , Thomas Mathai , Jesse Roberts , Jochem Weber , Robert Preus , Benjamin D. Maurer
The design of wave energy converters (WECs) has been explored with interest, with varying design concepts emerging across both research and industry. One critical element that governs the speed of adoption is the performance of a WEC concept. WEC performance has been assessed using the Technology Performance Level (TPL) assessment, which provides designers with a quantitative score, situating a grid-scale WEC concept on a scale from 1 to 9. The TPL assessment is designed to be used during design iteration, when a WEC concept is fully ideated, to enable designers to consider potential means of improving the downstream performance of the concept. One concern that may be slowing developers’ adoption of TPL is the inherent uncertainty in the assessment, and how uncertainty in the individual questions may contribute to the final score. In this work, we quantify the uncertainty present in the assessment using both traditional mathematical operations and a Monte Carlo simulation. Results show areas of improvement of the TPL assessment, enabling TPL practitioners and users to understand with more accuracy those design elements that can be improved to impact device performance.
{"title":"Understanding the uncertainty in the technical performance level assessment for wave energy","authors":"Ali Trueworthy , Aeron Roach , Bryony DuPont , Thomas Mathai , Jesse Roberts , Jochem Weber , Robert Preus , Benjamin D. Maurer","doi":"10.1016/j.renene.2024.121832","DOIUrl":"10.1016/j.renene.2024.121832","url":null,"abstract":"<div><div>The design of wave energy converters (WECs) has been explored with interest, with varying design concepts emerging across both research and industry. One critical element that governs the speed of adoption is the <em>performance</em> of a WEC concept. WEC performance has been assessed using the Technology Performance Level (TPL) assessment, which provides designers with a quantitative score, situating a grid-scale WEC concept on a scale from 1 to 9. The TPL assessment is designed to be used during design iteration, when a WEC concept is fully ideated, to enable designers to consider potential means of improving the downstream performance of the concept. One concern that may be slowing developers’ adoption of TPL is the inherent uncertainty in the assessment, and how uncertainty in the individual questions may contribute to the final score. In this work, we quantify the uncertainty present in the assessment using both traditional mathematical operations and a Monte Carlo simulation. Results show areas of improvement of the TPL assessment, enabling TPL practitioners and users to understand with more accuracy those design elements that can be improved to impact device performance.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121832"},"PeriodicalIF":9.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.renene.2024.121834
Mao Yang, Yue Jiang, Wei Zhang, Yi Li, Xin Su
Short-term photovoltaic (PV) power interval prediction provides a basis for day-ahead power dispatching and generation planning. However, the current gridded numerical weather prediction (NWP) has poor matching in specific PV stations, and the lack of consideration of PV power mutation characteristics and historical correlation in interval prediction, which further limit the improvement of PV power prediction accuracy. In this regard, this paper proposes a novel short-term interval prediction strategy for PV power. Based on the second-order extended hidden Markov model (HMM), the key meteorological elements of the PV station with poor matching are reconstructed. In the interval prediction, the trend mutation and historical correlation characteristics of the PV sequence are fully considered, and a PV power interval prediction method that combines three factors such as trend change, time correlation and numerical mutation is proposed. The proposed method is applied to a PV station in Jilin, China. The results show that compared with other methods, the RMSE of the proposed method is reduced by 5.3 % on average, and the CWC is reduced by at least 2.1 %, which verifies the effectiveness of the proposed method.
{"title":"Short-term interval prediction strategy of photovoltaic power based on meteorological reconstruction with spatiotemporal correlation and multi-factor interval constraints","authors":"Mao Yang, Yue Jiang, Wei Zhang, Yi Li, Xin Su","doi":"10.1016/j.renene.2024.121834","DOIUrl":"10.1016/j.renene.2024.121834","url":null,"abstract":"<div><div>Short-term photovoltaic (PV) power interval prediction provides a basis for day-ahead power dispatching and generation planning. However, the current gridded numerical weather prediction (NWP) has poor matching in specific PV stations, and the lack of consideration of PV power mutation characteristics and historical correlation in interval prediction, which further limit the improvement of PV power prediction accuracy. In this regard, this paper proposes a novel short-term interval prediction strategy for PV power. Based on the second-order extended hidden Markov model (HMM), the key meteorological elements of the PV station with poor matching are reconstructed. In the interval prediction, the trend mutation and historical correlation characteristics of the PV sequence are fully considered, and a PV power interval prediction method that combines three factors such as trend change, time correlation and numerical mutation is proposed. The proposed method is applied to a PV station in Jilin, China. The results show that compared with other methods, the RMSE of the proposed method is reduced by 5.3 % on average, and the CWC is reduced by at least 2.1 %, which verifies the effectiveness of the proposed method.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121834"},"PeriodicalIF":9.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.renene.2024.121831
Gabriel Lopez, Rasul Satymov, Arman Aghahosseini, Dmitrii Bogdanov, Ayobami Solomon Oyewo, Christian Breyer
Global transitions to highly sustainable energy-industry systems imply shifts to high shares of variable renewable energy sources. While onshore solar photovoltaics and wind power can be expected to be the lowest cost electricity sources around the world, land-constrained regions and islands may have limited onshore renewable potential. Thus, offshore energy technologies, including floating solar photovoltaics, offshore wind turbines, and wave power, may become essential. Furthermore, for Hawaiʻi, offshore energy may provide increased supply diversity and avoid land conflicts as electricity generation is expected to increase. The LUT Energy System Transition Model was employed to investigate the techno-economic implications of high technological diversity through integration of offshore energy technologies compared to full cost-optimisation under both self-supply and electricity-based fuel import scenarios. Limiting solar electricity leads to 0–2.3 GW of offshore electricity and 0–4.1 GW of wave power by 2050, but at 3.5–28.0% increased system costs. Under self-supply conditions and an 80% solar photovoltaics limit, a novel interaction between the key offshore technologies was identified with 0.6–1.1 GW of offshore floating photovoltaics, which contribute 12.3% of all electricity generation by 2050. Due to the limited land availability in Hawaiʻi and island regions, ocean energy technologies may significantly contribute to energy-industry system defossilisation.
{"title":"Ocean energy enabling a sustainable energy-industry transition for Hawaiʻi","authors":"Gabriel Lopez, Rasul Satymov, Arman Aghahosseini, Dmitrii Bogdanov, Ayobami Solomon Oyewo, Christian Breyer","doi":"10.1016/j.renene.2024.121831","DOIUrl":"10.1016/j.renene.2024.121831","url":null,"abstract":"<div><div>Global transitions to highly sustainable energy-industry systems imply shifts to high shares of variable renewable energy sources. While onshore solar photovoltaics and wind power can be expected to be the lowest cost electricity sources around the world, land-constrained regions and islands may have limited onshore renewable potential. Thus, offshore energy technologies, including floating solar photovoltaics, offshore wind turbines, and wave power, may become essential. Furthermore, for Hawaiʻi, offshore energy may provide increased supply diversity and avoid land conflicts as electricity generation is expected to increase. The LUT Energy System Transition Model was employed to investigate the techno-economic implications of high technological diversity through integration of offshore energy technologies compared to full cost-optimisation under both self-supply and electricity-based fuel import scenarios. Limiting solar electricity leads to 0–2.3 GW of offshore electricity and 0–4.1 GW of wave power by 2050, but at 3.5–28.0% increased system costs. Under self-supply conditions and an 80% solar photovoltaics limit, a novel interaction between the key offshore technologies was identified with 0.6–1.1 GW of offshore floating photovoltaics, which contribute 12.3% of all electricity generation by 2050. Due to the limited land availability in Hawaiʻi and island regions, ocean energy technologies may significantly contribute to energy-industry system defossilisation.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121831"},"PeriodicalIF":9.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.renene.2024.121720
Khizar Abid, Andres Felipe Baena Velasquez, Aditya Sharma, Alex Neil McSheridan, Saket Srivastava, Catalin Teodoriu
Many countries have set the goal of net zero carbon emission and are diverting their energy source towards renewables. In that respect, geothermal energy is a continuous renewable energy source that is not affected by any metrological conditions. However, geothermal energy is not used to its full potential, and at present, less than 1 % of renewable energy is produced by geothermal sources. One of the biggest reasons that hinder its adoption is the cost of drilling and completion associated with the geothermal well, which almost takes 50 % of the project budget. Therefore, it is important that, where possible (with conducive geothermal conditions), conventional oil and gas wells that are old or temporarily suspended should be retrofitted into geothermal wells. In this way, the initial cost of the geothermal project can be reduced, which is mainly due to the drilling operations. However, before repurposing old retired wells, conducting a proper risk assessment is important to avoid any well integrity issues in the long run. Therefore, this paper presents a concept of accessing the risk using Feature, Event, and Process (FEP) that have been integrated with the interaction matrix, incident potential matrix (IPM), and cause-effect plot diagram. This risk assessment technique identifies the well components that might be susceptible to failure, and remedial work should be conducted on such elements. However, geothermal wells have no specific FEPs; hence, the FEPs from CCS wells have been used, which have their limitation when used for geothermal systems. Nonetheless, to show the feasibility of this approach in assessing the risk, two case studies of the fictitious tubingless geothermal well are presented in this paper.
{"title":"Risk assessment through feature, event, and process for repurposing suspended oil and gas wells for geothermal purposes","authors":"Khizar Abid, Andres Felipe Baena Velasquez, Aditya Sharma, Alex Neil McSheridan, Saket Srivastava, Catalin Teodoriu","doi":"10.1016/j.renene.2024.121720","DOIUrl":"10.1016/j.renene.2024.121720","url":null,"abstract":"<div><div>Many countries have set the goal of net zero carbon emission and are diverting their energy source towards renewables. In that respect, geothermal energy is a continuous renewable energy source that is not affected by any metrological conditions. However, geothermal energy is not used to its full potential, and at present, less than 1 % of renewable energy is produced by geothermal sources. One of the biggest reasons that hinder its adoption is the cost of drilling and completion associated with the geothermal well, which almost takes 50 % of the project budget. Therefore, it is important that, where possible (with conducive geothermal conditions), conventional oil and gas wells that are old or temporarily suspended should be retrofitted into geothermal wells. In this way, the initial cost of the geothermal project can be reduced, which is mainly due to the drilling operations. However, before repurposing old retired wells, conducting a proper risk assessment is important to avoid any well integrity issues in the long run. Therefore, this paper presents a concept of accessing the risk using Feature, Event, and Process (FEP) that have been integrated with the interaction matrix, incident potential matrix (IPM), and cause-effect plot diagram. This risk assessment technique identifies the well components that might be susceptible to failure, and remedial work should be conducted on such elements. However, geothermal wells have no specific FEPs; hence, the FEPs from CCS wells have been used, which have their limitation when used for geothermal systems. Nonetheless, to show the feasibility of this approach in assessing the risk, two case studies of the fictitious tubingless geothermal well are presented in this paper.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121720"},"PeriodicalIF":9.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.renene.2024.121784
H. Tebibel
Achieving cost competitiveness of renewable hydrogen could accelerate the transition to the deeply decarbonized energy system. In this article, we develop and apply a dual-objective optimization model to explore the photovoltaic (PV) hydrogen production pathway and costs development from the present through 2050. The model is applied for optimal capacity allocation of the megawatt-scale off-grid PV-Hydrogen system to achieve maximum production at the minimal levelized cost of hydrogen (LCOH). Methodology includes a smoothing control strategy. Simulation is performed utilizing measured meteorological data for one year with hourly resolution and considering electrolyzer's load flexibility constraint. It has been found that the smoothing control strategy is indispensable for maximizing PV energy utilization, enhancing the electrolyzer's capacity factor and reducing the power curtailments. The analysis shows that the off-grid solar hydrogen in Algeria lacks economic competitiveness currently. Components CAPEX reduction turns out to be the fundamental condition towards the future LCOH decrease. LCOH could decline from 4.2 $/kg in 2025 to 2.24 $/kg in 2050 under central assumptions and to roughly 1.4 $/kg under optimistic assumptions. Alkaline electrolysis step cost could reduce by 0.28 $/kg every decade. Hydrogen storage autonomy could rise the LCOH by 7.1 c$ per day of autonomy in 2050.
{"title":"Dual-objective optimization of solar driven alkaline electrolyzer system for on-site hydrogen production and storage: Current and future scenarios","authors":"H. Tebibel","doi":"10.1016/j.renene.2024.121784","DOIUrl":"10.1016/j.renene.2024.121784","url":null,"abstract":"<div><div>Achieving cost competitiveness of renewable hydrogen could accelerate the transition to the deeply decarbonized energy system. In this article, we develop and apply a dual-objective optimization model to explore the photovoltaic (PV) hydrogen production pathway and costs development from the present through 2050. The model is applied for optimal capacity allocation of the megawatt-scale off-grid PV-Hydrogen system to achieve maximum production at the minimal levelized cost of hydrogen (LCOH). Methodology includes a smoothing control strategy. Simulation is performed utilizing measured meteorological data for one year with hourly resolution and considering electrolyzer's load flexibility constraint. It has been found that the smoothing control strategy is indispensable for maximizing PV energy utilization, enhancing the electrolyzer's capacity factor and reducing the power curtailments. The analysis shows that the off-grid solar hydrogen in Algeria lacks economic competitiveness currently. Components CAPEX reduction turns out to be the fundamental condition towards the future LCOH decrease. LCOH could decline from 4.2 $/kg in 2025 to 2.24 $/kg in 2050 under central assumptions and to roughly 1.4 $/kg under optimistic assumptions. Alkaline electrolysis step cost could reduce by 0.28 $/kg every decade. Hydrogen storage autonomy could rise the LCOH by 7.1 c$ per day of autonomy in 2050.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121784"},"PeriodicalIF":9.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.renene.2024.121733
Vibhuti Prajapati , Ayushi Shah , Rahul Patel , Nandini A. Trivedi , Narayan N. Som , Divesh N. Srivastava , Pratik M. Pataniya , C.K. Sumesh
Textile effluent wastewater poses a serious environmental risk because of its high concentration of pollutants, which include organic compounds, heavy metals, and dyes. The present study investigates the technical and economic feasibility of hybrid water electrolysis performances. Specifically, real textile effluent wastewater was utilised to examine simultaneous abatement and electrochemical hydrogen production. The treated water can be recycled in the textile mill, offering the benefits of trash-to-treasure and cost savings through the circular economy. In addition to reducing the environmental impact of textile wastewater, the synergistic approach seeks to maximise its potential for producing hydrogen as clean energy. Here, the commercially available stainless sheet was used as the anode in the electrochemical setup system and the two-dimensional Ti3C2TX MXene was used as the catalyst embedded cathode. The optimal electrode-electrolyte parameter settings resulted in an 83 % decrease in COD level and a degradation efficiency of about 88 %. The potential for widespread adoption in the textile industry is highlighted by the discussion of the economic viability and environmental advantages of using wastewater from textile effluents for pollutant degradation and hydrogen production. Hence, the energy estimation was looked at and estimated in order to evaluate the process viability. For instance, the hybrid electrolysis process uses a very small amount of electricity (0.825 kWh m−3 order−1) and has an apparent operating current (30 mA/cm2). This work could serve as a guide for the methodical assessment and choice of hybrid water electrolysis using actual wastewater. The electrode's recyclability and reuse were proven for possible commercial applications. The stability of the Ti3C2TX electrode over a wide pH range was investigated in order to produce hydrogen on a big scale at a reasonable cost.
{"title":"Utilizing electrooxidation for textile effluent wastewater treatment and simultaneous electrocatalytic hydrogen production: Transforming waste into energy and promoting water reuse in a circular economy context","authors":"Vibhuti Prajapati , Ayushi Shah , Rahul Patel , Nandini A. Trivedi , Narayan N. Som , Divesh N. Srivastava , Pratik M. Pataniya , C.K. Sumesh","doi":"10.1016/j.renene.2024.121733","DOIUrl":"10.1016/j.renene.2024.121733","url":null,"abstract":"<div><div>Textile effluent wastewater poses a serious environmental risk because of its high concentration of pollutants, which include organic compounds, heavy metals, and dyes. The present study investigates the technical and economic feasibility of hybrid water electrolysis performances. Specifically, real textile effluent wastewater was utilised to examine simultaneous abatement and electrochemical hydrogen production. The treated water can be recycled in the textile mill, offering the benefits of trash-to-treasure and cost savings through the circular economy. In addition to reducing the environmental impact of textile wastewater, the synergistic approach seeks to maximise its potential for producing hydrogen as clean energy. Here, the commercially available stainless sheet was used as the anode in the electrochemical setup system and the two-dimensional Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> MXene was used as the catalyst embedded cathode. The optimal electrode-electrolyte parameter settings resulted in an 83 % decrease in COD level and a degradation efficiency of about 88 %. The potential for widespread adoption in the textile industry is highlighted by the discussion of the economic viability and environmental advantages of using wastewater from textile effluents for pollutant degradation and hydrogen production. Hence, the energy estimation was looked at and estimated in order to evaluate the process viability. For instance, the hybrid electrolysis process uses a very small amount of electricity (0.825 kWh m<sup>−3</sup> order<sup>−1</sup>) and has an apparent operating current (30 mA/cm<sup>2</sup>). This work could serve as a guide for the methodical assessment and choice of hybrid water electrolysis using actual wastewater. The electrode's recyclability and reuse were proven for possible commercial applications. The stability of the Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> electrode over a wide pH range was investigated in order to produce hydrogen on a big scale at a reasonable cost.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121733"},"PeriodicalIF":9.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.renene.2024.121822
Caroline Varella Rodrigues , Leonardo Matias de Oliveira Filho , Franciele Pereira Camargo , Henrique de Souza Dornelles , Isabel Kimiko Sakamoto , Sandra Imaculada Maintinguer , Edson Luiz Silva , Maria Bernadete Amâncio Varesche
This study investigated the removal of agro-industrial wastes (5 g COD L⁻1 from coffee and 0.5 g COD L⁻1 from brewery wastewater, plus 1 g L⁻1 of coffee pulp and husk) in a continuous Expanded Granular Sludge Bed (EGSB) reactor at 35 °C. The effect of Hydraulic Retention Times (HRTs) of 72h, 48h, and 24h on CH₄ yield was examined using a mixed culture of cattle manure and granular sludge. Methane yields were 201, 124.5, and 113.8 mL CH₄ g⁻1 COD for the 1st, 2nd, and 3rd phases, respectively. Volatile fatty acids, particularly acetic acid, increased at lower HRTs. Sequencing of the 16S rRNA gene on the Illumina HiSeq platform revealed a syntrophic relationship between Syntrophorhabdus, Syntrophobacter, and Pseudomonas with methanogens Methanomassiliicoccus, Methanospirillum, and Methanobacterium, aiding in the removal of phenolic compounds. The study suggests that an HRT of 72h is optimal for maximizing CH₄ production in the EGSB reactor.
{"title":"New approach to agro-industrial solid and liquid waste management: Performance of an EGSB reactor at different hydraulic retention times for methane production","authors":"Caroline Varella Rodrigues , Leonardo Matias de Oliveira Filho , Franciele Pereira Camargo , Henrique de Souza Dornelles , Isabel Kimiko Sakamoto , Sandra Imaculada Maintinguer , Edson Luiz Silva , Maria Bernadete Amâncio Varesche","doi":"10.1016/j.renene.2024.121822","DOIUrl":"10.1016/j.renene.2024.121822","url":null,"abstract":"<div><div>This study investigated the removal of agro-industrial wastes (5 g COD L⁻<sup>1</sup> from coffee and 0.5 g COD L⁻<sup>1</sup> from brewery wastewater, plus 1 g L⁻<sup>1</sup> of coffee pulp and husk) in a continuous Expanded Granular Sludge Bed (EGSB) reactor at 35 °C. The effect of Hydraulic Retention Times (HRTs) of 72h, 48h, and 24h on CH₄ yield was examined using a mixed culture of cattle manure and granular sludge. Methane yields were 201, 124.5, and 113.8 mL CH₄ g⁻<sup>1</sup> COD for the 1st, 2nd, and 3rd phases, respectively. Volatile fatty acids, particularly acetic acid, increased at lower HRTs. Sequencing of the 16S rRNA gene on the Illumina HiSeq platform revealed a syntrophic relationship between <em>Syntrophorhabdus</em>, <em>Syntrophobacter</em>, and <em>Pseudomonas</em> with methanogens <em>Methanomassiliicoccus</em>, <em>Methanospirillum</em>, and <em>Methanobacterium</em>, aiding in the removal of phenolic compounds. The study suggests that an HRT of 72h is optimal for maximizing CH₄ production in the EGSB reactor.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121822"},"PeriodicalIF":9.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.renene.2024.121814
Huajing Zhou , Tiancheng Li , Fawen Zhang , Faze Chen , Zilian Liu , Rongrong Miao , Qingqing Guan , Lingxiang Zhao , Liang He
Intrinsic point defects in metal core-shell materials can regulate electron redistribution, thereby reducing catalytic energy barriers and enhancing their ORR activity. However, their specific contributions to electron transfer and mass transport pathways remain unclear. In this study, defect-rich hollow OCo@Co3O4 nanoparticles were successfully synthesized using ZIF-67(Co) as a sacrificial template through controlled annealing and internal electric field substitution reactions. High-resolution electron microscopy analysis and density functional theory (DFT) calculations co-revealed the growth mechanism of Co and O vacancies, as well as antisite defects. The formation of oxygen vacancies significantly lowered the energy barrier for Co vacancy formation, playing a crucial bridging role in the development of antisite defects. The electric field polarization induced by Co-O atomic displacement resulted in asymmetric charge distribution, optimizing the adsorption of active hydrogen (H*) and oxygen atoms and facilitating the generation and release of reactive oxygen species (ROS). Electrocatalytic experiments demonstrated that under the combined action of singlet oxygen (1O2) and H*, bisphenol A (BPA) can be efficiently degraded. This study successfully bridges the knowledge gap between atomic defects and advanced electrocatalysis, providing a new perspective and insight for the in-depth analysis of the structure-performance relationship of electrocatalyst materials in the future.
金属核壳材料中的固有点缺陷可以调节电子的再分布,从而降低催化能垒并提高其 ORR 活性。然而,它们对电子转移和质量传输途径的具体贡献仍不清楚。本研究以 ZIF-67(Co)为牺牲模板,通过受控退火和内电场置换反应,成功合成了富含缺陷的中空 OCo@Co3O4 纳米颗粒。高分辨率电子显微镜分析和密度泛函理论(DFT)计算共同揭示了 Co 和 O 空位以及反位缺陷的生长机制。氧空位的形成大大降低了 Co 空位形成的能垒,在反斜方体缺陷的形成过程中起到了关键的桥接作用。Co-O 原子位移引起的电场极化导致了电荷的不对称分布,优化了活性氢(H*)和氧原子的吸附,促进了活性氧(ROS)的生成和释放。电催化实验表明,在单线态氧(1O2)和氢*的共同作用下,双酚 A(BPA)可以被有效降解。这项研究成功地填补了原子缺陷与先进电催化之间的知识空白,为今后深入分析电催化剂材料的结构-性能关系提供了新的视角和见解。
{"title":"Point-defect-induced electronic polarization to enhance H* generation for removal of bisphenol A","authors":"Huajing Zhou , Tiancheng Li , Fawen Zhang , Faze Chen , Zilian Liu , Rongrong Miao , Qingqing Guan , Lingxiang Zhao , Liang He","doi":"10.1016/j.renene.2024.121814","DOIUrl":"10.1016/j.renene.2024.121814","url":null,"abstract":"<div><div>Intrinsic point defects in metal core-shell materials can regulate electron redistribution, thereby reducing catalytic energy barriers and enhancing their ORR activity. However, their specific contributions to electron transfer and mass transport pathways remain unclear. In this study, defect-rich hollow O<sub>Co</sub>@Co<sub>3</sub>O<sub>4</sub> nanoparticles were successfully synthesized using ZIF-67(Co) as a sacrificial template through controlled annealing and internal electric field substitution reactions. High-resolution electron microscopy analysis and density functional theory (DFT) calculations co-revealed the growth mechanism of Co and O vacancies, as well as antisite defects. The formation of oxygen vacancies significantly lowered the energy barrier for Co vacancy formation, playing a crucial bridging role in the development of antisite defects. The electric field polarization induced by Co-O atomic displacement resulted in asymmetric charge distribution, optimizing the adsorption of active hydrogen (H*) and oxygen atoms and facilitating the generation and release of reactive oxygen species (ROS). Electrocatalytic experiments demonstrated that under the combined action of singlet oxygen (<sup>1</sup>O<sub>2</sub>) and H*, bisphenol A (BPA) can be efficiently degraded. This study successfully bridges the knowledge gap between atomic defects and advanced electrocatalysis, providing a new perspective and insight for the in-depth analysis of the structure-performance relationship of electrocatalyst materials in the future.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121814"},"PeriodicalIF":9.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.renene.2024.121691
Manuel I. Peña-Cruz , Arturo Díaz-Ponce , César D. Sánchez-Segura , Luis Valentín-Coronado , Daniela Moctezuma
Solar energy technologies require precise solar forecasting to reduce power generation losses and protect equipment from irradiance fluctuations. This study introduces an alternative methodology for short-term forecasting of direct normal irradiance (DNI) and global horizontal irradiance (GHI) utilizing ground-based sky images captured by a single device. A low-cost all-sky imager (ASI) was developed, which implements an angular transformation and an optical flow technique to extract cloud features such as shape and velocity. A mathematical model calculates cloud transmittance based on pixel intensity, eliminating complex training steps. Results from a 30-day experimental campaign, incorporating diverse meteorological conditions, were compared against a secondary standard solarimetric station, a smart persistence model, and state-of-the-art approaches. The DNI forecast achieved an RMSE (relative error) of 46.79 W/m (11.99%) for 1-min intervals and 90.21 W/m (17.54%) for 10-min intervals, while GHI ranged from 31.73 W/m (4.68%) to 75.02 W/m (13.63%). Pearson correlation coefficients exceeded 0.9 overall, reaching 0.98 and 0.99 for the 1-min DNI and GHI forecasts, and 0.91 and 0.96 for the 10-min DNI and GHI forecasts, respectively, underscoring the system’s accuracy and robustness in complex meteorological scenarios.
{"title":"Short-term forecast of solar irradiance components using an alternative mathematical approach for the identification of cloud features","authors":"Manuel I. Peña-Cruz , Arturo Díaz-Ponce , César D. Sánchez-Segura , Luis Valentín-Coronado , Daniela Moctezuma","doi":"10.1016/j.renene.2024.121691","DOIUrl":"10.1016/j.renene.2024.121691","url":null,"abstract":"<div><div>Solar energy technologies require precise solar forecasting to reduce power generation losses and protect equipment from irradiance fluctuations. This study introduces an alternative methodology for short-term forecasting of direct normal irradiance (DNI) and global horizontal irradiance (GHI) utilizing ground-based sky images captured by a single device. A low-cost all-sky imager (ASI) was developed, which implements an angular transformation and an optical flow technique to extract cloud features such as shape and velocity. A mathematical model calculates cloud transmittance based on pixel intensity, eliminating complex training steps. Results from a 30-day experimental campaign, incorporating diverse meteorological conditions, were compared against a secondary standard solarimetric station, a smart persistence model, and state-of-the-art approaches. The DNI forecast achieved an RMSE (relative error) of 46.79 W/m<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> (11.99%) for 1-min intervals and 90.21 W/m<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> (17.54%) for 10-min intervals, while GHI ranged from 31.73 W/m<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> (4.68%) to 75.02 W/m<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> (13.63%). Pearson correlation coefficients exceeded 0.9 overall, reaching 0.98 and 0.99 for the 1-min DNI and GHI forecasts, and 0.91 and 0.96 for the 10-min DNI and GHI forecasts, respectively, underscoring the system’s accuracy and robustness in complex meteorological scenarios.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121691"},"PeriodicalIF":9.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}