Freshwater scarcity remains one of the most pressing global challenges, and solar stills (SS) have emerged as a sustainable solution for decentralized water purification. However, their limited productivity restricts large-scale deployment. Among the various enhancement techniques, the integration of heat pipes has demonstrated strong potential due to their highly efficient passive heat transfer capability. This review presents a comprehensive assessment of solar stills integrated with diverse heat pipe configurations including thermosyphons, pulsating heat pipes (PHP), loop heat pipes, and oscillating heat pipes and examines their performance when combined with phase change materials (PCM), nanofluids, photovoltaic/thermal collectors, condensation enhancement strategies, and finned basin designs. Notably, the integration of evacuated tube collectors (ETC), corrugated fins, and sensible heat storage materials has enabled freshwater yields up to 19 L/m2/day, while a nano-configured oil coupled with ETC achieved a 250 % increase in productivity, along with 242 % energy and 83 % exergy enhancement, reducing the cost per liter to 0.0101 USD/L and mitigating 131.97 tons of CO2. Similarly, the incorporation of PHPs into solar stills resulted in yields of 8.7 L/m2/day, energy and exergy efficiencies of 64 % and 4.1 %, and CO2 mitigation of 18.79 tons. A 4E framework Energy, Exergy, Economic, and Environmental is employed to systematically analyze these systems, offering comparative insights into yield, thermal efficiency, cost-effectiveness, and payback periods. Finally, the review highlights key research gaps related to material optimization, operational orientation, long-term reliability, and scalability, and proposes a future roadmap for developing cost-effective, high-performance, and environmentally sustainable solar still technologies.
扫码关注我们
求助内容:
应助结果提醒方式:
