This paper investigates the effects of brazing temperatures on the microstructure and compressive strength for brazing porous nickel to copper and stainless steel using VZ2250 as the brazing filler metal. A high vacuum furnace is used to braze the samples. Three different brazing process parameters were set with a heating and cooling rate of 10°C/min, respectively. The characteristics of the joint interface have been investigated to evaluate the performance of the brazed samples by use of scanning electron microscope, energy-dispersive X-Ray spectroscope, X-Ray diffractometer, and Instron Universal Testing machine. The data obtained has been quantitively analyzed to confirm the diffusion of the BFM during the brazing process. It has been found that the diffusion process resulted in an increase in the rigidity of the porous Ni. The compressive strength tests for the brazed joint showed that the maximum compressive strength can be achieved for brazing at 680°C. The highest compressive strength value has been justified by quantitative analysis of the microstructural data. It has been proved that the VZ2250 BFM effectively diffused into the porous Ni at the brazing temperature of 680°C; Cu3P and Cu6Sn5 were detected at the brazed Interface 1, whereas MnNi3 phase at the brazed Interface 2.
{"title":"Investigation on Microstructure and Compressive Strength of Brazing Porous Nickel to Copper and Stainless Steel","authors":"Ramizah Rozaimay, Tuan Zaharinie Tuan Zahari, Yose Fachmi Buys, Poo Balan Ganesan, Zainul Huda, Tadashi Ariga","doi":"10.36547/ams.29.3.1863","DOIUrl":"https://doi.org/10.36547/ams.29.3.1863","url":null,"abstract":"This paper investigates the effects of brazing temperatures on the microstructure and compressive strength for brazing porous nickel to copper and stainless steel using VZ2250 as the brazing filler metal. A high vacuum furnace is used to braze the samples. Three different brazing process parameters were set with a heating and cooling rate of 10°C/min, respectively. The characteristics of the joint interface have been investigated to evaluate the performance of the brazed samples by use of scanning electron microscope, energy-dispersive X-Ray spectroscope, X-Ray diffractometer, and Instron Universal Testing machine. The data obtained has been quantitively analyzed to confirm the diffusion of the BFM during the brazing process. It has been found that the diffusion process resulted in an increase in the rigidity of the porous Ni. The compressive strength tests for the brazed joint showed that the maximum compressive strength can be achieved for brazing at 680°C. The highest compressive strength value has been justified by quantitative analysis of the microstructural data. It has been proved that the VZ2250 BFM effectively diffused into the porous Ni at the brazing temperature of 680°C; Cu3P and Cu6Sn5 were detected at the brazed Interface 1, whereas MnNi3 phase at the brazed Interface 2.","PeriodicalId":44511,"journal":{"name":"Acta Metallurgica Slovaca","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135814397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heat treatments of AISI 316L samples were conducted at 900°C with slow cooling in air to induce varied precipitation of chromium-rich carbide particles at grain boundaries, resulting in a microstructure susceptible to intergranular corrosion. The corrosion behavior of the material in this state was investigated in a salt spray chamber containing 5% NaCl. The temperature inside the chamber was set at 35°C, while the saturated air temperature was recorded at 47°C. Samples were periodically extracted for observation and analysis using a stereoscopic magnifying glass, optical microscope, and scanning electron microscope. The results revealed the detrimental effect of chloride ions on the corrosion behavior of these stainless steels. Metallographic examination of corroded specimens after the salt spray test confirmed that the passive layer's breakdown was responsible for the intergranular corrosion occurring along preferential paths of chromium carbides.
{"title":"INCIDENCE OF HEAT TREATMENT ON THE CORROSIVE BEHAVIOR OF AISI 316L AUSTENITIC STAINLESS STEEL","authors":"Mariano Nicolás Inés, Graciela Analía Mansilla","doi":"10.36547/ams.29.3.1803","DOIUrl":"https://doi.org/10.36547/ams.29.3.1803","url":null,"abstract":"Heat treatments of AISI 316L samples were conducted at 900°C with slow cooling in air to induce varied precipitation of chromium-rich carbide particles at grain boundaries, resulting in a microstructure susceptible to intergranular corrosion. The corrosion behavior of the material in this state was investigated in a salt spray chamber containing 5% NaCl. The temperature inside the chamber was set at 35°C, while the saturated air temperature was recorded at 47°C. Samples were periodically extracted for observation and analysis using a stereoscopic magnifying glass, optical microscope, and scanning electron microscope. The results revealed the detrimental effect of chloride ions on the corrosion behavior of these stainless steels. Metallographic examination of corroded specimens after the salt spray test confirmed that the passive layer's breakdown was responsible for the intergranular corrosion occurring along preferential paths of chromium carbides.","PeriodicalId":44511,"journal":{"name":"Acta Metallurgica Slovaca","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135814920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taher El-Bitar, Maha ElMeligy, Wojciech Borek, Saad Ebied
The steel alloy of the current study contains 0.3% carbon with different amounts of Cr, and Mo, in addition to W. Single simulation hits were designed as isothermal passes for compressive hot deformation up to 0.5 true strain. Each simulation compressive pass was carried out at temperatures, 1050, 950, 850 and 750 oC, with strain rates 0.1 and 1.0 sec-1. A numerical computational model is used for formulation of the alloy hot flow behavior at the specified conditions. The model considers inseparable strain hardening mechanism and dynamic softening phenomenon. It is noticed that high deformation temperature lowers the flow stress value (σf), while the increase of the strain rate raises it. The flow curves reveal initial high strain hardening phenomena in combination with low dynamic softening features. With the increase of strain, the dynamic softening, becomes dominant, and the flow stress gradually drops until a relatively stable stress level. Predicted flow curves were then constructed and compared with their counterpart experimental flow curves. The predicted flow curves are typically matching the counterpart experimental ones.
{"title":"Characterization of Hot Deformation behavior for Ultra-High Strength (UHS) Steel containing Tungsten","authors":"Taher El-Bitar, Maha ElMeligy, Wojciech Borek, Saad Ebied","doi":"10.36547/ams.29.3.1835","DOIUrl":"https://doi.org/10.36547/ams.29.3.1835","url":null,"abstract":"The steel alloy of the current study contains 0.3% carbon with different amounts of Cr, and Mo, in addition to W. Single simulation hits were designed as isothermal passes for compressive hot deformation up to 0.5 true strain. Each simulation compressive pass was carried out at temperatures, 1050, 950, 850 and 750 oC, with strain rates 0.1 and 1.0 sec-1. A numerical computational model is used for formulation of the alloy hot flow behavior at the specified conditions. The model considers inseparable strain hardening mechanism and dynamic softening phenomenon. It is noticed that high deformation temperature lowers the flow stress value (σf), while the increase of the strain rate raises it. The flow curves reveal initial high strain hardening phenomena in combination with low dynamic softening features. With the increase of strain, the dynamic softening, becomes dominant, and the flow stress gradually drops until a relatively stable stress level. Predicted flow curves were then constructed and compared with their counterpart experimental flow curves. The predicted flow curves are typically matching the counterpart experimental ones.","PeriodicalId":44511,"journal":{"name":"Acta Metallurgica Slovaca","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135814712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tomasz Trzepieciński, Valmir Dias Luiz, Marcin Szpunar
In sheet metal forming, draw beads are used to limit the flow of sheet metal in specific areas of the stamping die. The value of the coefficient of friction at the draw bead determines achievement of the desired resistance to sheet displacement. This article presents the results of experimental tests for determining the coefficient of friction on a draw bead using a specially developed tribotester. The test material consisted of CuZn37, CuZn30 and CuZn10 brass sheets in various states of hardening. Investigations were carried out with different roughness of the countersamples and sliding speeds. In addition, the tests were carried out under conditions of dry friction and lubrication of the sheet surface with LAN-46 machine oil. The relationships between the process parameters and the value of the coefficient of friction were analysed using the analysis of variance. It was found that the coefficient of friction decreases with increasing mean roughness of the countersamples. Lubrication reduced friction by about 6.2-29.8% depending on the grade of the tested sheet and the sliding speed.
{"title":"EXPERIMENTAL DETERMINATION OF THE DRAW BEAD COEFFICIENT OF FRICTION OF CuZn SHEETS IN SHEET METAL FORMING PROCESSES","authors":"Tomasz Trzepieciński, Valmir Dias Luiz, Marcin Szpunar","doi":"10.36547/ams.29.3.1780","DOIUrl":"https://doi.org/10.36547/ams.29.3.1780","url":null,"abstract":"In sheet metal forming, draw beads are used to limit the flow of sheet metal in specific areas of the stamping die. The value of the coefficient of friction at the draw bead determines achievement of the desired resistance to sheet displacement. This article presents the results of experimental tests for determining the coefficient of friction on a draw bead using a specially developed tribotester. The test material consisted of CuZn37, CuZn30 and CuZn10 brass sheets in various states of hardening. Investigations were carried out with different roughness of the countersamples and sliding speeds. In addition, the tests were carried out under conditions of dry friction and lubrication of the sheet surface with LAN-46 machine oil. The relationships between the process parameters and the value of the coefficient of friction were analysed using the analysis of variance. It was found that the coefficient of friction decreases with increasing mean roughness of the countersamples. Lubrication reduced friction by about 6.2-29.8% depending on the grade of the tested sheet and the sliding speed.","PeriodicalId":44511,"journal":{"name":"Acta Metallurgica Slovaca","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135814396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agung Setyo Darmawan, Agus Dwi Anggono, Agus Yulianto, Bambang Waluyo Febriantoko, None Masyrukan
The addition of magnesium alloy elements followed by a flame-hardening process will change the phase configuration in gray cast iron. This study aims to investigate changes in microstructure and hardness due to these two processes. The addition of magnesium is conducted by adding FeSiMg as a carrier for magnesium. Metallographic examination to observe changes in microstructure was carried out using a Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). The formed phase is examined by X-Ray Diffraction testing. The hardness test was carried out using the Vickers technique on the surface of the gray cast iron, the nodular cast iron, and the flame-hardened nodular cast iron. Whilst for flame-hardened nodular cast iron, the Vickers technique was also conducted on a cross-section. The addition of the FeSiMg compound changed flake graphite into spherical graphite with increased hardness from 130 VHN to 313.22 VHN. The flame-hardening process in nodular cast iron results in the formation of a martensite phase and the disappearance of graphite on the surface of the material. The hardness on the surface of the material due to the flame-hardening process increased by 82.4% compared to the substrate.
{"title":"MICROSTRUCTURE EVOLUTION AND HARDNESS IMPROVEMENT OF GRAY CAST IRON BY ADDITION OF FeSiMg FOLLOWED BY FLAME HARDENING PROCESS","authors":"Agung Setyo Darmawan, Agus Dwi Anggono, Agus Yulianto, Bambang Waluyo Febriantoko, None Masyrukan","doi":"10.36547/ams.29.3.1794","DOIUrl":"https://doi.org/10.36547/ams.29.3.1794","url":null,"abstract":"The addition of magnesium alloy elements followed by a flame-hardening process will change the phase configuration in gray cast iron. This study aims to investigate changes in microstructure and hardness due to these two processes. The addition of magnesium is conducted by adding FeSiMg as a carrier for magnesium. Metallographic examination to observe changes in microstructure was carried out using a Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). The formed phase is examined by X-Ray Diffraction testing. The hardness test was carried out using the Vickers technique on the surface of the gray cast iron, the nodular cast iron, and the flame-hardened nodular cast iron. Whilst for flame-hardened nodular cast iron, the Vickers technique was also conducted on a cross-section. The addition of the FeSiMg compound changed flake graphite into spherical graphite with increased hardness from 130 VHN to 313.22 VHN. The flame-hardening process in nodular cast iron results in the formation of a martensite phase and the disappearance of graphite on the surface of the material. The hardness on the surface of the material due to the flame-hardening process increased by 82.4% compared to the substrate.","PeriodicalId":44511,"journal":{"name":"Acta Metallurgica Slovaca","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135814403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Kulyk, I. Izonin, V. Vavrukh, R. Tkachenko, Z. Duriagina, B. Vasyliv, M. Kováčová
Flexural strength, hardness, and fracture toughness are the basic mechanical properties of ceramic materials. Manufacturers widely use this set of properties to ensure the durability of ceramic products. However, many factors, such as chemical and phase compositions, sintering temperature, average grain size, density, and others, affect these properties, making it challenging to estimate corresponding reliability parameters correctly. Experimental examination of the impact of these factors on the mechanical properties of ceramics is a rather time-consuming and resource-consuming procedure. This work aims to predict the mechanical properties of zirconia ceramics using machine learning tools. The authors have created an experimental database for predicting the hardness, flexural strength, and fracture toughness of ZrO2-based ceramics based on chemical composition, phase composition, microstructural features, and sintering temperature on the mechanical properties of zirconia ceramics. The authors compare compared the effectiveness of using different machine learning algorithms and have found a high accuracy of the predicted values of each of the three mechanical properties using boosting ensemble methods. Also they developed a stacked ensemble of machine learning methods to improve the accuracy of determining the hardness property prediction task. We obtained the increase in accuracy of more than 10% (R2) using our approach.
{"title":"PREDICTION OF HARDNESS, FLEXURAL STRENGTH, AND FRACTURE TOUGHNESS OF ZRO2 BASED CERAMICS USING ENSEMBLE LEARNING ALGORITHMS","authors":"V. Kulyk, I. Izonin, V. Vavrukh, R. Tkachenko, Z. Duriagina, B. Vasyliv, M. Kováčová","doi":"10.36547/ams.29.2.1819","DOIUrl":"https://doi.org/10.36547/ams.29.2.1819","url":null,"abstract":"Flexural strength, hardness, and fracture toughness are the basic mechanical properties of ceramic materials. Manufacturers widely use this set of properties to ensure the durability of ceramic products. However, many factors, such as chemical and phase compositions, sintering temperature, average grain size, density, and others, affect these properties, making it challenging to estimate corresponding reliability parameters correctly. Experimental examination of the impact of these factors on the mechanical properties of ceramics is a rather time-consuming and resource-consuming procedure. This work aims to predict the mechanical properties of zirconia ceramics using machine learning tools. The authors have created an experimental database for predicting the hardness, flexural strength, and fracture toughness of ZrO2-based ceramics based on chemical composition, phase composition, microstructural features, and sintering temperature on the mechanical properties of zirconia ceramics. The authors compare compared the effectiveness of using different machine learning algorithms and have found a high accuracy of the predicted values of each of the three mechanical properties using boosting ensemble methods. Also they developed a stacked ensemble of machine learning methods to improve the accuracy of determining the hardness property prediction task. We obtained the increase in accuracy of more than 10% (R2) using our approach.","PeriodicalId":44511,"journal":{"name":"Acta Metallurgica Slovaca","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49167099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Imene Saoula, Chahinez Siad, Khedidja Djedidi, N. Allag, A. Chala
Tin dioxide thin films deposited onto a glass substrate were prepared by spray pyrolysis technique, and then doped with different elements which are: Al, Zn, Cu, and Sr by electroplating method, these elements were chosen for their different atomic radii. XRD illustrate that all the films were polycrystalline with a tetragonal rutile structure and a strong preferred orientation of (200) plane. Uv-vis spectrophotometer specters showed that the highest average transmittance of Al/SnO2 film was about 86.77% in the visible region and the Sr/SnO2 film had the highest band gap of 3.95 eV. From the MEB images, the morphological characteristics improved when the SnO2 thin films doped with Al and Zn but the opposite happened when it doped with Cu and Sr. The four-point probe showed that the best sample was for Al/SnO2 because it had the highest electrical conductivity around 692.306 (Ω.cm) -1.
{"title":"Effect of (Al, Zn, Cu, and Sr) doping on structural, optical and electrical properties of sprayed SnO2 thin films","authors":"Imene Saoula, Chahinez Siad, Khedidja Djedidi, N. Allag, A. Chala","doi":"10.36547/ams.29.2.1730","DOIUrl":"https://doi.org/10.36547/ams.29.2.1730","url":null,"abstract":"Tin dioxide thin films deposited onto a glass substrate were prepared by spray pyrolysis technique, and then doped with different elements which are: Al, Zn, Cu, and Sr by electroplating method, these elements were chosen for their different atomic radii. XRD illustrate that all the films were polycrystalline with a tetragonal rutile structure and a strong preferred orientation of (200) plane. Uv-vis spectrophotometer specters showed that the highest average transmittance of Al/SnO2 film was about 86.77% in the visible region and the Sr/SnO2 film had the highest band gap of 3.95 eV. From the MEB images, the morphological characteristics improved when the SnO2 thin films doped with Al and Zn but the opposite happened when it doped with Cu and Sr. The four-point probe showed that the best sample was for Al/SnO2 because it had the highest electrical conductivity around 692.306 (Ω.cm) -1.","PeriodicalId":44511,"journal":{"name":"Acta Metallurgica Slovaca","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48154386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The main task of the oxygen-converter process is to produce a liquid metal semi-product with specified properties. It is directly related to the optimization of the blowing mode and devices responsible for the process and technical and economic parameters of melting. The effectiveness of the organization of the process of introducing oxygen into the melt, and, accordingly, assimilation by the metal bath basically depends on the design of the lance nozzles. In electrometallurgy, coherent nozzles are used to improve bath mixing performance and activate processes (a central nozzle for supplying oxygen and a peripheral one surrounding it for supplying gas as a fuel that forms an enveloping flame). Therefore, the authors conducted a study of the influence of coherent top nozzles on the oxidation of impurities in the metal bath under the conditions of the use for the oxygen-converter process (with oxygen supplied to both parts of the nozzle). A high-temperature simulation of the oxidation process of Si from hot metal was carried out by using a Cu-Zn melt (1%) when comparing blowing through a nozzle of a coherent type with a peripheral part of 75% and a conventional nozzle of the equivalent diameter.
{"title":"MODELLING THE PROCESS OF OXIDISING IMPURITIES IN A METAL BATH USING COHERENT NOZZLES","authors":"T. Golub, L. Molchanov, S. Semykin, A. Koveria","doi":"10.36547/ams.29.2.1733","DOIUrl":"https://doi.org/10.36547/ams.29.2.1733","url":null,"abstract":"The main task of the oxygen-converter process is to produce a liquid metal semi-product with specified properties. It is directly related to the optimization of the blowing mode and devices responsible for the process and technical and economic parameters of melting. The effectiveness of the organization of the process of introducing oxygen into the melt, and, accordingly, assimilation by the metal bath basically depends on the design of the lance nozzles. In electrometallurgy, coherent nozzles are used to improve bath mixing performance and activate processes (a central nozzle for supplying oxygen and a peripheral one surrounding it for supplying gas as a fuel that forms an enveloping flame). Therefore, the authors conducted a study of the influence of coherent top nozzles on the oxidation of impurities in the metal bath under the conditions of the use for the oxygen-converter process (with oxygen supplied to both parts of the nozzle). A high-temperature simulation of the oxidation process of Si from hot metal was carried out by using a Cu-Zn melt (1%) when comparing blowing through a nozzle of a coherent type with a peripheral part of 75% and a conventional nozzle of the equivalent diameter.","PeriodicalId":44511,"journal":{"name":"Acta Metallurgica Slovaca","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42403875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. R. Rodriguez vargas, L. Albini, Giulia Tiracorrendo, Riccardo Massi, G. Stornelli, A. Di schino
This study explores the effects of ultrafast heating on AISI 304 austenitic stainless steel. The research shows that ultrafast heating can lead to fine-grained mixed microstructures in steel, making it a potential alternative for modifying microstructure in stainless steel. The study demonstrates that a minimum temperature of 980 °C is required to achieve a fully recrystallized microstructure. The results also suggest that a lower temperature can result in a finer recrystallized grain size compared to higher temperature results. The study provides valuable insights into the impact of ultrafast heating on the microstructural constituents, recrystallization temperatures, and mechanical properties of investigated steel.
{"title":"EFFECT OF ULTRAFAST HEATING ON AISI 304 AUSTENITIC STAINLESS STEEL","authors":"B. R. Rodriguez vargas, L. Albini, Giulia Tiracorrendo, Riccardo Massi, G. Stornelli, A. Di schino","doi":"10.36547/ams.29.2.1833","DOIUrl":"https://doi.org/10.36547/ams.29.2.1833","url":null,"abstract":"This study explores the effects of ultrafast heating on AISI 304 austenitic stainless steel. The research shows that ultrafast heating can lead to fine-grained mixed microstructures in steel, making it a potential alternative for modifying microstructure in stainless steel. The study demonstrates that a minimum temperature of 980 °C is required to achieve a fully recrystallized microstructure. The results also suggest that a lower temperature can result in a finer recrystallized grain size compared to higher temperature results. The study provides valuable insights into the impact of ultrafast heating on the microstructural constituents, recrystallization temperatures, and mechanical properties of investigated steel.","PeriodicalId":44511,"journal":{"name":"Acta Metallurgica Slovaca","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42101978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Obituary of Ing. Juraj Lapin, DrSc.","authors":"M. Nosko","doi":"10.36547/ams.29.2.1849","DOIUrl":"https://doi.org/10.36547/ams.29.2.1849","url":null,"abstract":"","PeriodicalId":44511,"journal":{"name":"Acta Metallurgica Slovaca","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45999860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}