首页 > 最新文献

IEEE Open Journal of Nanotechnology最新文献

英文 中文
Recent Advances and Design Strategies Towards Wearable Near-Infrared Spectroscopy 可穿戴近红外光谱技术的最新进展与设计策略
IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-12-05 DOI: 10.1109/OJNANO.2022.3226603
With a growing focus on properties of softness, miniaturization, and intelligence, extensive research has been focusing on constructing wearable electronic devices facilitating comfort, wearable health monitoring and diagnosis. Among recent progress in the development of wearable bioelectronics, wearable near-infrared spectroscopy (NIRS) devices demonstrate wide implementation possibilities in multiple health monitoring scenarios. Throughout the years, multiple design strategies have assisted in developing wearable NIRS devices with high wearing comfortability and miniaturized size. This review summarizes the principle of NIRS technology, recent advances in design strategies towards soft, wearable, miniaturized NIRS devices, and the future potential development directions. Based on the discussion of different design strategies, including modular device design, flexible hybrid electronics, and materials innovation, we also pinpoint some development directions for wearable NIRS. The reviewed and proposed research efforts may enhance the applicability and capability of NIRS as an important technology for digital health.
随着人们对软性、小型化和智能化的日益关注,人们对构建可穿戴电子设备进行了广泛的研究,以实现舒适、可穿戴的健康监测和诊断。在可穿戴生物电子学发展的最新进展中,可穿戴近红外光谱(NIRS)设备在多种健康监测场景中展示了广泛的实施可能性。多年来,多种设计策略有助于开发具有高穿着舒适性和小型化尺寸的可穿戴近红外装置。本文综述了近红外光谱技术的原理、近红外光谱器件软性、可穿戴性、小型化设计策略的最新进展以及未来潜在的发展方向。基于对不同设计策略的讨论,包括模块化器件设计、柔性混合电子和材料创新,我们也指出了可穿戴近红外光谱的一些发展方向。综述和建议的研究工作可以提高近红外光谱作为数字健康重要技术的适用性和能力。
{"title":"Recent Advances and Design Strategies Towards Wearable Near-Infrared Spectroscopy","authors":"Shuoyan Liu;Bing Xue;Wenyuan Yan;Alina Y. Rwei;Changsheng Wu","doi":"10.1109/OJNANO.2022.3226603","DOIUrl":"https://doi.org/10.1109/OJNANO.2022.3226603","url":null,"abstract":"With a growing focus on properties of softness, miniaturization, and intelligence, extensive research has been focusing on constructing wearable electronic devices facilitating comfort, wearable health monitoring and diagnosis. Among recent progress in the development of wearable bioelectronics, wearable near-infrared spectroscopy (NIRS) devices demonstrate wide implementation possibilities in multiple health monitoring scenarios. Throughout the years, multiple design strategies have assisted in developing wearable NIRS devices with high wearing comfortability and miniaturized size. This review summarizes the principle of NIRS technology, recent advances in design strategies towards soft, wearable, miniaturized NIRS devices, and the future potential development directions. Based on the discussion of different design strategies, including modular device design, flexible hybrid electronics, and materials innovation, we also pinpoint some development directions for wearable NIRS. The reviewed and proposed research efforts may enhance the applicability and capability of NIRS as an important technology for digital health.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"25-35"},"PeriodicalIF":1.7,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/10007543/09969912.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3491642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Methodology for Automated Design of Quantum-Dot Cellular Automata Circuits 量子点元胞自动机电路的自动化设计方法
IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-12-02 DOI: 10.1109/OJNANO.2022.3223413
Quantum-dot Cellular Automata (QCA) provide very high scale integration potential, very high switching frequency, and have extremely low power demands, which make the QCA technology quite attractive for the design and implementation of large-scale, high-performance nanoelectronic circuits. However, state-of-the-art QCA circuit designs were not derived by following a set of universal design rules, as is the case of CMOS circuits, and, as a result, it is either impossible or very difficult to combine QCA circuit blocks in effective large-scale circuits. In this paper, we introduce a novel automated design methodology, which builds upon a QCA specific universal design rules set. The proposed methodology assumes the availability of a generic QCA crossbar architecture and provides the means to customize it in order to implement any given logic function. The programming principles and the flow of the proposed automated design tool for crossbar QCA circuits are described analytically and we apply the proposed automated design method for the design of both combinatorial and sequential circuits. The obtained designs demonstrate that the proposed method is functional, easy to use, and provides the desired QCA circuit design unification.
量子点元胞自动机(QCA)提供了非常高的规模集成潜力,非常高的开关频率,并且具有极低的功耗需求,这使得QCA技术对大规模,高性能纳米电子电路的设计和实现非常有吸引力。然而,最先进的QCA电路设计并不是通过遵循一套通用设计规则而衍生的,就像CMOS电路一样,因此,在有效的大规模电路中组合QCA电路块是不可能的或非常困难的。在本文中,我们介绍了一种新的自动化设计方法,它建立在QCA特定的通用设计规则集的基础上。所提出的方法假设通用QCA交叉栏架构的可用性,并提供自定义它的方法,以便实现任何给定的逻辑功能。分析了所提出的横杆QCA电路自动化设计工具的编程原理和流程,并将所提出的自动化设计方法应用于组合电路和顺序电路的设计。设计结果表明,所提出的方法功能齐全,易于使用,并提供了所需的QCA电路设计统一性。
{"title":"Methodology for Automated Design of Quantum-Dot Cellular Automata Circuits","authors":"Orestis Liolis;Vassilios A. Mardiris;Ioannis G. Karafyllidis;Sorin Cotofana;Georgios Ch. Sirakoulis","doi":"10.1109/OJNANO.2022.3223413","DOIUrl":"10.1109/OJNANO.2022.3223413","url":null,"abstract":"Quantum-dot Cellular Automata (QCA) provide very high scale integration potential, very high switching frequency, and have extremely low power demands, which make the QCA technology quite attractive for the design and implementation of large-scale, high-performance nanoelectronic circuits. However, state-of-the-art QCA circuit designs were not derived by following a set of universal design rules, as is the case of CMOS circuits, and, as a result, it is either impossible or very difficult to combine QCA circuit blocks in effective large-scale circuits. In this paper, we introduce a novel automated design methodology, which builds upon a QCA specific universal design rules set. The proposed methodology assumes the availability of a generic QCA crossbar architecture and provides the means to customize it in order to implement any given logic function. The programming principles and the flow of the proposed automated design tool for crossbar QCA circuits are described analytically and we apply the proposed automated design method for the design of both combinatorial and sequential circuits. The obtained designs demonstrate that the proposed method is functional, easy to use, and provides the desired QCA circuit design unification.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"162-171"},"PeriodicalIF":1.7,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9968311","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62888904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Touch Sensors for Flexible Displays 柔性显示器触摸传感器的最新进展
IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-11-25 DOI: 10.1109/OJNANO.2022.3224757
A touch screen that combines a display and a touch sensor array is a critical component enabling human-machine interaction. The progress made in flexible touch screen technologies also vigorously drives the development and application of flexible electronics in various fields. Over the past decade, there have been enormous research and development efforts on new structures and materials for touch sensors in flexible displays, especially for flexible organic light-emitting diode (OLED) displays. Herein, this review discusses the mechanics and structures of flexible touch screens, including their benefits and drawbacks. The recent advances in the structures and electrode materials (e.g., ITO, silver nanowires, metal mesh, graphene, carbon nanotubes, and conductive polymers) are reviewed, and the challenges and prospects of these technologies are also explored.
结合显示器和触摸传感器阵列的触摸屏是实现人机交互的关键部件。柔性触摸屏技术的进步也有力地带动了柔性电子在各个领域的发展和应用。在过去的十年中,人们对柔性显示器,特别是柔性有机发光二极管(OLED)显示器中触摸传感器的新结构和新材料进行了大量的研究和开发。本文将讨论柔性触摸屏的力学和结构,包括它们的优点和缺点。综述了结构和电极材料(如ITO、银纳米线、金属网、石墨烯、碳纳米管和导电聚合物)的最新进展,并探讨了这些技术的挑战和前景。
{"title":"Recent Advances in Touch Sensors for Flexible Displays","authors":"Chenglan Ouyang;Di Liu;Ke He;Jiahao Kang","doi":"10.1109/OJNANO.2022.3224757","DOIUrl":"https://doi.org/10.1109/OJNANO.2022.3224757","url":null,"abstract":"A touch screen that combines a display and a touch sensor array is a critical component enabling human-machine interaction. The progress made in flexible touch screen technologies also vigorously drives the development and application of flexible electronics in various fields. Over the past decade, there have been enormous research and development efforts on new structures and materials for touch sensors in flexible displays, especially for flexible organic light-emitting diode (OLED) displays. Herein, this review discusses the mechanics and structures of flexible touch screens, including their benefits and drawbacks. The recent advances in the structures and electrode materials (e.g., ITO, silver nanowires, metal mesh, graphene, carbon nanotubes, and conductive polymers) are reviewed, and the challenges and prospects of these technologies are also explored.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"36-46"},"PeriodicalIF":1.7,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/10007543/09964079.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3484047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Parametric Analysis of Charge Plasma Junctionless TFET for Biosensor Applications 用于生物传感器的电荷等离子体无结TFET的设计与参数分析
IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-11-24 DOI: 10.1109/OJNANO.2022.3224462
This paper presents a new design of charge plasma junctionless tunnel field effect transistor (CP JLTFET) with improved ON current, surface potentials. For the ease of fabrication, source and drain regions are induced in intrinsic silicon material using proper metal workfunctions. The rate of tunneling of electrons is found more in case of proposed CP JLTFET. The cavity length is varied between 8 nm and 10 nm and different dielectric constants have been used. This increased the ON state performance of device i.e ON drive current, potential and electric field. The increase in tunneling of electrons is mainly due to high recombination of carriers in the channel region. The proposed device simulated their electrical parameters like drain current, surface potentials, electric field, and energy bands with different dielectric constants. These excellent performance parameters of the proposed device with an appropriate material can be used for sensing application of biomolecules by introducing a cavity in the device.
本文提出了一种新型的电荷等离子体无结隧道场效应晶体管(CP JLTFET),该晶体管具有改进的ON电流和表面电位。为了便于制造,本构硅材料采用适当的金属功函数诱导源极和漏极。所提出的CP JLTFET的电子隧穿速率更高。空腔长度在8 ~ 10 nm之间变化,使用了不同的介电常数。这增加了器件的ON状态性能,即ON驱动电流、电位和电场。电子隧穿的增加主要是由于通道区域载流子的高复合。该装置模拟了不同介电常数下的漏极电流、表面电位、电场和能带等电学参数。通过在器件中引入空腔,所提出的具有适当材料的器件的这些优异性能参数可用于生物分子的传感应用。
{"title":"Design and Parametric Analysis of Charge Plasma Junctionless TFET for Biosensor Applications","authors":"D Manaswi;Srinivasa Rao Karumuri;Girish Wadhwa","doi":"10.1109/OJNANO.2022.3224462","DOIUrl":"https://doi.org/10.1109/OJNANO.2022.3224462","url":null,"abstract":"This paper presents a new design of charge plasma junctionless tunnel field effect transistor (CP JLTFET) with improved ON current, surface potentials. For the ease of fabrication, source and drain regions are induced in intrinsic silicon material using proper metal workfunctions. The rate of tunneling of electrons is found more in case of proposed CP JLTFET. The cavity length is varied between 8 nm and 10 nm and different dielectric constants have been used. This increased the ON state performance of device i.e ON drive current, potential and electric field. The increase in tunneling of electrons is mainly due to high recombination of carriers in the channel region. The proposed device simulated their electrical parameters like drain current, surface potentials, electric field, and energy bands with different dielectric constants. These excellent performance parameters of the proposed device with an appropriate material can be used for sensing application of biomolecules by introducing a cavity in the device.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"71-76"},"PeriodicalIF":1.7,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/10007543/09963639.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3518038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Additive Manufacturing for Nano-Feature Applications: Electrohydrodynamic Printing as a Next-Generation Enabling Technology 纳米特征应用的增材制造:电流体动力打印作为下一代使能技术
IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-11-23 DOI: 10.1109/OJNANO.2022.3224229
Regardless of the technology, additive or subtractive, the miniaturization trend is constantly pushing for smaller resolutions. The rise of global challenges in material availability, fabrication in three dimensions (3D), design flexibility and rapid prototyping have pushed additive manufacturing (AM) into the spotlight. Addressing the miniaturization trend, AM has already successfully answered the challenges for microscale 3D fabrication. However, fabricating nano-resolution still presents a challenge. In this review, we will present some of the most reported AM-based technologies capable of nanoscale 3D fabrication addressing resolutions of ≤ 500 nm. The focus is placed on Electrohydrodynamic (EHD) printing (also known as e-jet printing), as EHD printing seems to have the best trade-off when it comes to technique complexity, achievable resolutions, material diversity and potential to scale-up throughput. An overview of the smallest achieved resolutions as well as the most unique use cases and demonstrated applications will be addressed in this work.
无论技术是加法还是减法,小型化趋势都在不断推动更小的分辨率。材料可用性、三维(3D)制造、设计灵活性和快速原型制造等全球挑战的兴起,将增材制造(AM)推向了聚光灯下。为了解决小型化趋势,增材制造已经成功地应对了微型3D制造的挑战。然而,制造纳米分辨率仍然是一个挑战。在这篇综述中,我们将介绍一些报道最多的基于am的技术,这些技术能够解决≤500纳米的纳米级3D制造问题。重点放在电流体动力(EHD)打印(也称为电子喷射打印)上,因为EHD打印在技术复杂性、可实现的分辨率、材料多样性和扩大吞吐量的潜力方面似乎具有最佳的权衡。本文将概述最小实现的分辨率以及最独特的用例和演示的应用程序。
{"title":"Additive Manufacturing for Nano-Feature Applications: Electrohydrodynamic Printing as a Next-Generation Enabling Technology","authors":"Goran Miskovic;Robin Kaufhold","doi":"10.1109/OJNANO.2022.3224229","DOIUrl":"10.1109/OJNANO.2022.3224229","url":null,"abstract":"Regardless of the technology, additive or subtractive, the miniaturization trend is constantly pushing for smaller resolutions. The rise of global challenges in material availability, fabrication in three dimensions (3D), design flexibility and rapid prototyping have pushed additive manufacturing (AM) into the spotlight. Addressing the miniaturization trend, AM has already successfully answered the challenges for microscale 3D fabrication. However, fabricating nano-resolution still presents a challenge. In this review, we will present some of the most reported AM-based technologies capable of nanoscale 3D fabrication addressing resolutions of ≤ 500 nm. The focus is placed on Electrohydrodynamic (EHD) printing (also known as e-jet printing), as EHD printing seems to have the best trade-off when it comes to technique complexity, achievable resolutions, material diversity and potential to scale-up throughput. An overview of the smallest achieved resolutions as well as the most unique use cases and demonstrated applications will be addressed in this work.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"191-198"},"PeriodicalIF":1.7,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9961888","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62889145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Large-Scale Optimization of Decoupling Capacitors Using Adaptive Region Based Encoding Scheme in Particle Swarm Optimization 粒子群优化中基于自适应区域编码的解耦电容大规模优化
IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-11-23 DOI: 10.1109/OJNANO.2022.3224061
Power delivery networks are responsible for supplying clean power to the integrated circuits. Power supply noise plays a critical role in determining the performance of high-speed very large scale integration circuits and systems. In order to maintain power integrity in high-speed systems, decoupling capacitors are used to maintain low impedance of the PDN to eventually minimize power supply noise. However, the discrete optimization problem of selecting decoupling capacitors becomes computationally challenging in the systems having stringent power integrity (PI) requirements. In this work, a novel approach using the Social-Learning Particle Swarm Optimization (SLPSO) technique along with Adaptive Region Search (ARS) is used to tackle the Large-Scale Optimization Problem (LSOP) of decoupling capacitor placement. Region Search (RS) is used to guide particles, followed by ARS to dynamical search for the local best positions and for particles to move faster across the search space while maintaining the diversity of the population. To demonstrate the proposed approach, three practical case studies are presented. The obtained results are compared with current state-of-the-art approaches. The proposed approach drastically reduces computation time and is consistent with better results than other approaches. This consistency of improvement in CPU time in the results of all the examples validates the proposed approach.
电力输送网络负责向集成电路提供清洁电力。电源噪声对高速超大规模集成电路和系统的性能起着至关重要的作用。为了在高速系统中保持电源的完整性,去耦电容器被用于维持PDN的低阻抗,最终使电源噪声最小化。然而,在具有严格功率完整性(PI)要求的系统中,选择去耦电容的离散优化问题在计算上具有挑战性。在这项工作中,使用社会学习粒子群优化(SLPSO)技术和自适应区域搜索(ARS)来解决解耦电容器放置的大规模优化问题(LSOP)。利用区域搜索(Region Search, RS)引导粒子动态搜索局部最优位置,使粒子在保持种群多样性的前提下更快地在搜索空间中移动。为了证明所提出的方法,提出了三个实际案例研究。所得结果与目前最先进的方法进行了比较。该方法大大减少了计算时间,并且与其他方法相比具有更好的一致性。在所有示例的结果中,CPU时间改善的一致性验证了所提出的方法。
{"title":"Large-Scale Optimization of Decoupling Capacitors Using Adaptive Region Based Encoding Scheme in Particle Swarm Optimization","authors":"DINESH JUNJARIYA;JAI NARAYAN TRIPATHI","doi":"10.1109/OJNANO.2022.3224061","DOIUrl":"10.1109/OJNANO.2022.3224061","url":null,"abstract":"Power delivery networks are responsible for supplying clean power to the integrated circuits. Power supply noise plays a critical role in determining the performance of high-speed very large scale integration circuits and systems. In order to maintain power integrity in high-speed systems, decoupling capacitors are used to maintain low impedance of the PDN to eventually minimize power supply noise. However, the discrete optimization problem of selecting decoupling capacitors becomes computationally challenging in the systems having stringent power integrity (PI) requirements. In this work, a novel approach using the Social-Learning Particle Swarm Optimization (SLPSO) technique along with Adaptive Region Search (ARS) is used to tackle the Large-Scale Optimization Problem (LSOP) of decoupling capacitor placement. Region Search (RS) is used to guide particles, followed by ARS to dynamical search for the local best positions and for particles to move faster across the search space while maintaining the diversity of the population. To demonstrate the proposed approach, three practical case studies are presented. The obtained results are compared with current state-of-the-art approaches. The proposed approach drastically reduces computation time and is consistent with better results than other approaches. This consistency of improvement in CPU time in the results of all the examples validates the proposed approach.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"210-219"},"PeriodicalIF":1.7,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9961848","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62889099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of Plasma Technologies for Contribution of Environmental Purification 等离子体技术在环境净化中的贡献
IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-11-23 DOI: 10.1109/OJNANO.2022.3223897
Since the beginning of the 20th century, plasma technology has been used in a variety of fields. In the 1980s, R&D related to arc plasma welding and waste disposal, as well as etching, painting, and gas removal equipment that used plasma technology in the processes associated with semiconductor manufacturing. In the 1990s, research on removing air pollutants using atmospheric pressure plasma technology became active. In the 2000s, research on the application of thermal/non-thermal plasma technology to air pollution, waste and water treatment became active. Electrostatic precipitators (ESP) can remove a wide variety of particles such as soot from thermal power plants, coal, and oil mist, resin powder, glass powder, dust, and iron powder generated from incinerators, boilers, and various manufacturing plants. Waste treatment aims to reduce the volume of garbage, recycle incinerated materials, and utilize waste heat from incineration, and plasma technology is used in each process. Various techniques have been used for making purified water. Water quality requirements vary according to the objective. Plasma technology uses an electrical field to encourage seed germination and growth. Due to the spread of such applied technology, plasma technology has attracted attention again in recent years.
自20世纪初以来,等离子体技术已被应用于各种领域。在20世纪80年代,研发涉及电弧等离子焊接和废物处理,以及在半导体制造相关工艺中使用等离子技术的蚀刻,喷涂和气体清除设备。20世纪90年代,利用大气压等离子体技术去除大气污染物的研究开始活跃起来。进入21世纪以来,热/非热等离子体技术在空气污染、废物和水处理中的应用研究开始活跃起来。静电除尘器(ESP)可以去除各种颗粒,如火电厂产生的煤烟、焚烧炉、锅炉和各种制造厂产生的油雾、树脂粉、玻璃粉、粉尘、铁粉等。垃圾处理的目标是减少垃圾体积,回收焚烧材料,利用焚烧产生的余热,每个过程都使用等离子体技术。人们采用了各种技术来制造纯净水。水质要求因目的而异。等离子体技术利用电场促进种子发芽和生长。由于这种应用技术的普及,近年来等离子体技术再次引起人们的关注。
{"title":"Review of Plasma Technologies for Contribution of Environmental Purification","authors":"Kuniko Urashima","doi":"10.1109/OJNANO.2022.3223897","DOIUrl":"10.1109/OJNANO.2022.3223897","url":null,"abstract":"Since the beginning of the 20th century, plasma technology has been used in a variety of fields. In the 1980s, R&D related to arc plasma welding and waste disposal, as well as etching, painting, and gas removal equipment that used plasma technology in the processes associated with semiconductor manufacturing. In the 1990s, research on removing air pollutants using atmospheric pressure plasma technology became active. In the 2000s, research on the application of thermal/non-thermal plasma technology to air pollution, waste and water treatment became active. Electrostatic precipitators (ESP) can remove a wide variety of particles such as soot from thermal power plants, coal, and oil mist, resin powder, glass powder, dust, and iron powder generated from incinerators, boilers, and various manufacturing plants. Waste treatment aims to reduce the volume of garbage, recycle incinerated materials, and utilize waste heat from incineration, and plasma technology is used in each process. Various techniques have been used for making purified water. Water quality requirements vary according to the objective. Plasma technology uses an electrical field to encourage seed germination and growth. Due to the spread of such applied technology, plasma technology has attracted attention again in recent years.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"159-165"},"PeriodicalIF":1.7,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9961850","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62889051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Droplet-Dispensed Graphene Oxide as Capacitive Sensing Elements for Flexible Pressure-Pulse Sensing Array 微滴氧化石墨烯作为柔性压力脉冲传感阵列的电容式传感元件
IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-11-21 DOI: 10.1109/OJNANO.2022.3223712
We report a novel flexible capacitive pressure-pulse sensor array developed by integrating droplet-dispensed graphene oxide (GO) sensing elements and flexible electronics. The utilization of droplet-dispensing technology enables the fabrication multiple capacitive sensing elements rapidly while producing sensitive pressure sensors with excellent repeatability. The dispensed droplet volume (GO aqueous dispersion) ranged from around 33.5 to 65.4 pL with diameter ranging from 40 to 50 μm. The size (i.e., footprint and dielectric material thickness) of a sensing element can be controlled by the total GO dispersed per droplet. The fabrication process and preliminary characterization of these GO capacitive sensors are discussed in this paper. Thus far, we have shown that these sensors have a sensitivity of ∼10−3 kPa−1, with the relative permittivity of the dispensed GO being ∼6 (measured at a frequency of 600 kHz). We have also demonstrated that the printed sensing elements can be used for human wrist pulse sensing. Hence the technology described in this paper could potentially be used in wearable electronics for healthcare applications.
我们报道了一种新型的柔性电容式压力脉冲传感器阵列,该阵列集成了液滴分配氧化石墨烯(GO)传感元件和柔性电子器件。利用液滴点胶技术,可以快速制造多个电容感测元件,同时生产具有优异重复性的灵敏压力传感器。所分配的液滴(氧化石墨烯水分散体)体积在33.5 ~ 65.4 pL之间,直径在40 ~ 50 μm之间。传感元件的尺寸(即占地面积和介电材料厚度)可以通过每个液滴分散的氧化石墨烯总量来控制。本文讨论了氧化石墨烯电容式传感器的制备工艺和初步表征。到目前为止,我们已经证明这些传感器的灵敏度为~ 10−3 kPa−1,所分配的氧化石墨烯的相对介电常数为~ 6(在600 kHz的频率下测量)。我们还证明了打印的传感元件可以用于人体手腕脉冲传感。因此,本文中描述的技术有可能用于医疗保健应用的可穿戴电子产品。
{"title":"Droplet-Dispensed Graphene Oxide as Capacitive Sensing Elements for Flexible Pressure-Pulse Sensing Array","authors":"Ka Wai Kong;Keer Wang;Alice Yeuk Lan Leung;Hongyu Zhang;Jiao Suo;Meng Chen;Guanglie Zhang;Fei Fei;Jiangang Shen;Wen Jung Li","doi":"10.1109/OJNANO.2022.3223712","DOIUrl":"https://doi.org/10.1109/OJNANO.2022.3223712","url":null,"abstract":"We report a novel flexible capacitive pressure-pulse sensor array developed by integrating droplet-dispensed graphene oxide (GO) sensing elements and flexible electronics. The utilization of droplet-dispensing technology enables the fabrication multiple capacitive sensing elements rapidly while producing sensitive pressure sensors with excellent repeatability. The dispensed droplet volume (GO aqueous dispersion) ranged from around 33.5 to 65.4 pL with diameter ranging from 40 to 50 μm. The size (i.e., footprint and dielectric material thickness) of a sensing element can be controlled by the total GO dispersed per droplet. The fabrication process and preliminary characterization of these GO capacitive sensors are discussed in this paper. Thus far, we have shown that these sensors have a sensitivity of ∼10\u0000<sup>−3</sup>\u0000 kPa\u0000<sup>−1</sup>\u0000, with the relative permittivity of the dispensed GO being ∼6 (measured at a frequency of 600 kHz). We have also demonstrated that the printed sensing elements can be used for human wrist pulse sensing. Hence the technology described in this paper could potentially be used in wearable electronics for healthcare applications.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"47-54"},"PeriodicalIF":1.7,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/10007543/09956867.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3491208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene Thermal Interface Materials – State-of-the-Art and Application Prospects 石墨烯热界面材料研究进展及应用前景
IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-11-18 DOI: 10.1109/OJNANO.2022.3223016
We provide a summary of the fundamentals of thermal management, outline the state-of-the-art in the field of thermal interface materials, and describe recent developments in graphene-based non-curing and curing composites used for thermal management. The discovery of unique heat conduction properties of graphene and few-layer graphene motivated research activities worldwide focused on creating efficient graphene-based thermal interface materials. While the initial focus of these studies was on obtaining the maximum possible thermal conductivity of the composites, recently the attention has shifted to practical problems of minimizing the thermal contact resistance at interfaces, optimizing the size distribution of graphene as filler, and addressing the issues of scalability, stability, and production costs at commercial scales. We conclude the review with a general outlook for commercial applications of graphene in the thermal management of electronics.
我们总结了热管理的基本原理,概述了热界面材料领域的最新进展,并描述了用于热管理的石墨烯基非固化和固化复合材料的最新发展。石墨烯独特的导热性能和少层石墨烯的发现激发了世界范围内的研究活动,重点是创造高效的石墨烯基热界面材料。虽然这些研究最初的重点是获得复合材料的最大可能的热导率,但最近的注意力已经转移到实际问题上,如最小化界面的热接触电阻,优化石墨烯作为填料的尺寸分布,以及解决可扩展性,稳定性和商业规模的生产成本问题。最后,我们对石墨烯在电子热管理方面的商业应用进行了展望。
{"title":"Graphene Thermal Interface Materials – State-of-the-Art and Application Prospects","authors":"Sriharsha Sudhindra;Lokesh Ramesh;Alexander A. Balandin","doi":"10.1109/OJNANO.2022.3223016","DOIUrl":"10.1109/OJNANO.2022.3223016","url":null,"abstract":"We provide a summary of the fundamentals of thermal management, outline the state-of-the-art in the field of thermal interface materials, and describe recent developments in graphene-based non-curing and curing composites used for thermal management. The discovery of unique heat conduction properties of graphene and few-layer graphene motivated research activities worldwide focused on creating efficient graphene-based thermal interface materials. While the initial focus of these studies was on obtaining the maximum possible thermal conductivity of the composites, recently the attention has shifted to practical problems of minimizing the thermal contact resistance at interfaces, optimizing the size distribution of graphene as filler, and addressing the issues of scalability, stability, and production costs at commercial scales. We conclude the review with a general outlook for commercial applications of graphene in the thermal management of electronics.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"169-181"},"PeriodicalIF":1.7,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9954624","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62889177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Copper Passivated Zigzag MgO Nanoribbons for Potential Nanointerconnect Applications 潜在纳米互连应用的铜钝化之字形MgO纳米带
IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-11-18 DOI: 10.1109/OJNANO.2022.3223151
The present work explores the theoretical analysis of copper passivated MgONRs (Cu-MgO-Cu) for possible nanointerconnect applications. The first principles calculations based on density functional theory (DFT) and non-equilibrium Green's function are employed for theoretical investigation. Pristine MgONRs (H-MgO-H) and Cu-MgO-Cu are both thermodynamically stable and are metallic with H-MgO-H being relatively more stable. Further, the I-V characteristics evaluated using the two-probe method reveal the ohmic behavior of Cu-MgO-Cu. The Cu-MgO-Cu device is further investigated for the nanointerconnect applications. The computed nanoscale parasitic components such as quantum resistance ($R_{Q}$), quantum capacitance ($C_{Q}$), and kinetic inductance ($L_{K}$) are computed to be 6.46 k$Omega$, 5.57 fF/$mutext{m}$, and 58.17 nF/$mu$m, respectively. Furthermore, the delay and power delay product (PDP) of the nanointerconnect are explored which are important attributes of nanointerconnects. The findings suggest the Cu-MgO-Cu nanoribbons with low parasitic parameters can potentially be employed for nanointerconnect applications.
本工作探讨了铜钝化mgonr (Cu-MgO-Cu)的理论分析,以实现可能的纳米互连应用。基于密度泛函理论和非平衡格林函数的第一性原理计算进行了理论研究。原始mgonr (H-MgO-H)和Cu-MgO-Cu都是热力学稳定的金属,H-MgO-H相对更稳定。此外,使用双探针方法评估的I-V特性揭示了Cu-MgO-Cu的欧姆行为。进一步研究了Cu-MgO-Cu器件在纳米互连中的应用。计算得到的纳米级寄生分量如量子电阻($R_{Q}$)、量子电容($C_{Q}$)和动态电感($L_{K}$)分别为6.46 k $Omega$、5.57 fF/ $mutext{m}$和58.17 nF/ $mu$ m。此外,研究了纳米互连的延迟和功率延迟积(PDP)这两个重要属性。研究结果表明,具有低寄生参数的Cu-MgO-Cu纳米带可用于纳米互连应用。
{"title":"Copper Passivated Zigzag MgO Nanoribbons for Potential Nanointerconnect Applications","authors":"M. Sankush Krishna;Sangeeta Singh;Brajesh Kumar Kaushik","doi":"10.1109/OJNANO.2022.3223151","DOIUrl":"10.1109/OJNANO.2022.3223151","url":null,"abstract":"The present work explores the theoretical analysis of copper passivated MgONRs (Cu-MgO-Cu) for possible nanointerconnect applications. The first principles calculations based on density functional theory (DFT) and non-equilibrium Green's function are employed for theoretical investigation. Pristine MgONRs (H-MgO-H) and Cu-MgO-Cu are both thermodynamically stable and are metallic with H-MgO-H being relatively more stable. Further, the I-V characteristics evaluated using the two-probe method reveal the ohmic behavior of Cu-MgO-Cu. The Cu-MgO-Cu device is further investigated for the nanointerconnect applications. The computed nanoscale parasitic components such as quantum resistance (\u0000<inline-formula><tex-math>$R_{Q}$</tex-math></inline-formula>\u0000), quantum capacitance (\u0000<inline-formula><tex-math>$C_{Q}$</tex-math></inline-formula>\u0000), and kinetic inductance (\u0000<inline-formula><tex-math>$L_{K}$</tex-math></inline-formula>\u0000) are computed to be 6.46 k\u0000<inline-formula><tex-math>$Omega$</tex-math></inline-formula>\u0000, 5.57 fF/\u0000<inline-formula><tex-math>$mutext{m}$</tex-math></inline-formula>\u0000, and 58.17 nF/\u0000<inline-formula><tex-math>$mu$</tex-math></inline-formula>\u0000m, respectively. Furthermore, the delay and power delay product (PDP) of the nanointerconnect are explored which are important attributes of nanointerconnects. The findings suggest the Cu-MgO-Cu nanoribbons with low parasitic parameters can potentially be employed for nanointerconnect applications.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"220-226"},"PeriodicalIF":1.7,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9954618","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62888758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
IEEE Open Journal of Nanotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1