Pub Date : 2024-11-18DOI: 10.1109/OJNANO.2024.3501293
Sateesh;Kaustubh Chakarwar;Shubham Sahay
The recent advancements in data mining, machine learning algorithms and cognitive systems have necessitated the development of neuromorphic processing engines which may enable resource and computationally intensive applications on the internet-of-Things (IoT) edge devices with unprecedented energy efficiency. Spintronics based magnetic memory devices can emulate synaptic behavior efficiently and are hailed as one of the most promising candidates for realizing compact and ultra-energy efficient neural network accelerators. Although ultra-dense magnetic memories with multi-bit capability (MLC) were proposed recently, their application in hybrid CMOS-non-volatile memory accelerators is limited due to their low dynamic range (memory window) and high cell currents (ON/OFF-state resistance in ∼kΩ). In this work, we propose a novel supercell to enable the use of MLC MRAMs for neuromorphic multiply-accumulate (MAC) accelerators. For proof-of-concept demonstration, we exploit an MLC MRAM based on c-MTJ for realizing a highly scalable 2-FinFET-1-MRAM supercell with large dynamic range, low supercell currents and high endurance. Furthermore, we perform a comprehensive design exploration of a time-domain MAC accelerator utilizing the proposed supercell. Our detailed analysis using the ASAP7 PDK from ARM for FinFETs and an experimentally calibrated compact model for c-MTJ-based MRAM indicates the possibility of realizing a significantly high energy-efficiency of 87.4 TOPS/W and a throughput of 2.5 TOPS for a 200×200 MAC operation with 4-bit precision.
{"title":"Utilizing MRAMs With Low Resistance and Limited Dynamic Range for Efficient MAC Accelerator","authors":"Sateesh;Kaustubh Chakarwar;Shubham Sahay","doi":"10.1109/OJNANO.2024.3501293","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3501293","url":null,"abstract":"The recent advancements in data mining, machine learning algorithms and cognitive systems have necessitated the development of neuromorphic processing engines which may enable resource and computationally intensive applications on the internet-of-Things (IoT) edge devices with unprecedented energy efficiency. Spintronics based magnetic memory devices can emulate synaptic behavior efficiently and are hailed as one of the most promising candidates for realizing compact and ultra-energy efficient neural network accelerators. Although ultra-dense magnetic memories with multi-bit capability (MLC) were proposed recently, their application in hybrid CMOS-non-volatile memory accelerators is limited due to their low dynamic range (memory window) and high cell currents (ON/OFF-state resistance in ∼kΩ). In this work, we propose a novel supercell to enable the use of MLC MRAMs for neuromorphic multiply-accumulate (MAC) accelerators. For proof-of-concept demonstration, we exploit an MLC MRAM based on c-MTJ for realizing a highly scalable 2-FinFET-1-MRAM supercell with large dynamic range, low supercell currents and high endurance. Furthermore, we perform a comprehensive design exploration of a time-domain MAC accelerator utilizing the proposed supercell. Our detailed analysis using the ASAP7 PDK from ARM for FinFETs and an experimentally calibrated compact model for c-MTJ-based MRAM indicates the possibility of realizing a significantly high energy-efficiency of 87.4 TOPS/W and a throughput of 2.5 TOPS for a 200×200 MAC operation with 4-bit precision.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"141-148"},"PeriodicalIF":1.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10756528","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1109/OJNANO.2024.3499974
Vasileios P. Karkanis;Nikolaos I. Dourvas;Andrew Adamatzky;Panagiotis Dimitrakis;Georgios Ch. Sirakoulis
An engineered system that exhibits a variety of interesting properties, such as collective dynamics that are not inherited in their building blocks, is the artificial spin ice (ASI) meta-materials. The building block of such a system is a dipolar nanomagnet with sub-micrometer dimensions. These nanomagnets are arranged in specific designs usually in square or kagome shape and are coupled together by their magnetic interactions. With external magnetic fields, it is possible to create magnetic moments or monopoles that cause a frustration to the system. Because of the local interactions, those moments travel through the topology. The observation of such structures is a very challenging procedure, because of the extremely fast flipping process of the spins. This is why the researchers use mesoscopic systems with materials such as colloids or spheres of nanomagnets which are placed inside of islands in periodic lattices that generate frustration by design. The interactions between those nanomagnets are based on Coulomb forces and are usually modeled by Brownian equations. In this paper, we propose a simple yet effective Cellular Automata (CA) model that can describe effectively the dynamics between nanomagnets in a square lattice structure. The manipulation of the initial positions of nanomagnets via an external magnetic field and the movement of magnetic moments from one site to another are capable to create Boolean logic. Using the CA model we propose the design of logic gates, computing structures such as half adders and rewritable memory elements.
{"title":"Colloidal Spin Ice Cellular Automata for Logic Design","authors":"Vasileios P. Karkanis;Nikolaos I. Dourvas;Andrew Adamatzky;Panagiotis Dimitrakis;Georgios Ch. Sirakoulis","doi":"10.1109/OJNANO.2024.3499974","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3499974","url":null,"abstract":"An engineered system that exhibits a variety of interesting properties, such as collective dynamics that are not inherited in their building blocks, is the artificial spin ice (ASI) meta-materials. The building block of such a system is a dipolar nanomagnet with sub-micrometer dimensions. These nanomagnets are arranged in specific designs usually in square or kagome shape and are coupled together by their magnetic interactions. With external magnetic fields, it is possible to create magnetic moments or monopoles that cause a frustration to the system. Because of the local interactions, those moments travel through the topology. The observation of such structures is a very challenging procedure, because of the extremely fast flipping process of the spins. This is why the researchers use mesoscopic systems with materials such as colloids or spheres of nanomagnets which are placed inside of islands in periodic lattices that generate frustration by design. The interactions between those nanomagnets are based on Coulomb forces and are usually modeled by Brownian equations. In this paper, we propose a simple yet effective Cellular Automata (CA) model that can describe effectively the dynamics between nanomagnets in a square lattice structure. The manipulation of the initial positions of nanomagnets via an external magnetic field and the movement of magnetic moments from one site to another are capable to create Boolean logic. Using the CA model we propose the design of logic gates, computing structures such as half adders and rewritable memory elements.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"163-172"},"PeriodicalIF":1.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10755125","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1109/OJNANO.2024.3494714
Kunal Aggarwal;Avinash Lahgere
In this paper, using calibrated simulation we have reported a dielectric modulated epitaxial tunnel layer TFET (DM ETL-TFET) for the label-free detection of biomolecules. We have shown that due to vertical tunneling direction, the ETL-TFET exhibits $sim$3 orders of improvement in the ON-state current in comparison to its counterpart conventional TFET. In addition, the proposed DM ETL-TFET biosensor shows $sim$4 orders, and $sim$1 order higher ON-state current sensitivity than the past reported core-shell junctionless NT-TFET, and DM NT-TFET biosensors, respectively. Moreover, in comparison to the lateral DM TFET, the proposed DM ETL-TFET shows $sim$310 mV higher threshold voltage sensitivity. Also, the subthreshold swing sensitivity of the proposed biosensor is found to be $sim$0.63 for the keratin biomolecule. Although the proposed biosensor shows almost the same selectivity, the proposed DM ETL-TFET biosensor does not need a complex fabrication process flow, hence, reducing the fabrication cost. Our findings that the proposed biosensor is a lucrative alternative to the FET-based biosensors.
{"title":"High-Performance Dielectric Modulated Epitaxial Tunnel Layer Tunnel FET for Label-Free Detection of Biomolecules","authors":"Kunal Aggarwal;Avinash Lahgere","doi":"10.1109/OJNANO.2024.3494714","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3494714","url":null,"abstract":"In this paper, using calibrated simulation we have reported a dielectric modulated epitaxial tunnel layer TFET (DM ETL-TFET) for the label-free detection of biomolecules. We have shown that due to vertical tunneling direction, the ETL-TFET exhibits \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u00003 orders of improvement in the ON-state current in comparison to its counterpart conventional TFET. In addition, the proposed DM ETL-TFET biosensor shows \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u00004 orders, and \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u00001 order higher ON-state current sensitivity than the past reported core-shell junctionless NT-TFET, and DM NT-TFET biosensors, respectively. Moreover, in comparison to the lateral DM TFET, the proposed DM ETL-TFET shows \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u0000310 mV higher threshold voltage sensitivity. Also, the subthreshold swing sensitivity of the proposed biosensor is found to be \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u00000.63 for the keratin biomolecule. Although the proposed biosensor shows almost the same selectivity, the proposed DM ETL-TFET biosensor does not need a complex fabrication process flow, hence, reducing the fabrication cost. Our findings that the proposed biosensor is a lucrative alternative to the FET-based biosensors.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"116-123"},"PeriodicalIF":1.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747756","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Machine learning (ML) approaches present an effective technique for accurately and efficiently predicting device parameters. Using these techniques, we introduce a multi-task convolutional neural network (CNN) model and support vector regression (SVR) model that is intended to precisely estimate two important parameters of magnetic systems such as the Dzyaloshinskii-Moriya interaction (DMI) constant and the exchange constant (Aex). The magnetic Hamiltonian encapsulates various energy components, including exchange energy, DMI, Zeeman energy, and anisotropy energy, wherein factors such as saturation magnetization, DMI strength, exchange stiffness, and anisotropy constants influence their magnitudes. Conventionally, the estimation of these parameters has been computationally intensive and time-consuming. The CNN and SVR models can simultaneously estimate both the DMI constant and the exchange constant, making it a versatile tool for magnetic system characterization. The custom CNN model performs best for the DMI constant and Aex with R2 scores of 0.991 and 0.998 respectively. The SVR model achieves R2 scores of 0.927 and 0.989 for DMI constant and Aex respectively. The estimated values are in good agreement with true values, thus emphasizing the potential of ML methods for pattern recognition.
{"title":"Multitask Learning for Estimation of Magnetic Parameters Using Pattern Recognition","authors":"Anubha Sehgal;Shipra Saini;Hemkant Nehete;Kunal Kranti Das;Sourajeet Roy;Brajesh Kumar Kaushik","doi":"10.1109/OJNANO.2024.3494836","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3494836","url":null,"abstract":"Machine learning (ML) approaches present an effective technique for accurately and efficiently predicting device parameters. Using these techniques, we introduce a multi-task convolutional neural network (CNN) model and support vector regression (SVR) model that is intended to precisely estimate two important parameters of magnetic systems such as the Dzyaloshinskii-Moriya interaction (DMI) constant and the exchange constant (A\u0000<sub>ex</sub>\u0000). The magnetic Hamiltonian encapsulates various energy components, including exchange energy, DMI, Zeeman energy, and anisotropy energy, wherein factors such as saturation magnetization, DMI strength, exchange stiffness, and anisotropy constants influence their magnitudes. Conventionally, the estimation of these parameters has been computationally intensive and time-consuming. The CNN and SVR models can simultaneously estimate both the DMI constant and the exchange constant, making it a versatile tool for magnetic system characterization. The custom CNN model performs best for the DMI constant and A\u0000<sub>ex</sub>\u0000 with R\u0000<sup>2</sup>\u0000 scores of 0.991 and 0.998 respectively. The SVR model achieves R\u0000<sup>2</sup>\u0000 scores of 0.927 and 0.989 for DMI constant and A\u0000<sub>ex</sub>\u0000 respectively. The estimated values are in good agreement with true values, thus emphasizing the potential of ML methods for pattern recognition.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"149-155"},"PeriodicalIF":1.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10748362","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142777687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1109/OJNANO.2024.3494544
Wenping Wang;Ziliang Feng
The handheld ultrasound has been widely applied in various clinical applications due to its high portability and cost-effectiveness advantages. The smaller hardware architecture can expand its range of application scenarios. However, miniaturized ultrasound devices face the challenges in terms of image quality, frame rate, and power consumption. The achievement of high-quality and high-frame-rate imaging depends on numerous channels and higher pulse repetition frequency (PRF) at the cost of power consumption. The proposed work aims to design a field-programmable gate array (FPGA)-based prototype with synthetic aperture method for portable and cost-effective handheld ultrasound system. The prototype supports 8 transmit and receive channels and forms up to 8 synthetic apertures. In addition, to optimize the FPGA resources, the auto delay calculation and segmented apodizations are employed for 4 parallel beamforming lines. To evaluate the performance of our proposed prototype, scan sequences of B-mode, C-mode, and D-mode are implemented for image construction. The results show that the proposed prototype can provide a lateral resolution of 0.30 mm, a contrast-to-noise ratio (CNR) of 7.58 dB, and a frame rate of 22 frames per second (FPS) in dual-mode imaging. Moreover, it is remarkable that the memory and logic resources in the FPGA (EP4CE55) account for 73.7% and 66.2%, respectively, which makes the FPGA's power consumption only about 530 mW. The proposed prototype is suitable for handheld and other miniaturized ultrasound imaging systems.
{"title":"Portable and Cost-Effective Handheld Ultrasound System Utilizing FPGA-Based Synthetic Aperture Imaging","authors":"Wenping Wang;Ziliang Feng","doi":"10.1109/OJNANO.2024.3494544","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3494544","url":null,"abstract":"The handheld ultrasound has been widely applied in various clinical applications due to its high portability and cost-effectiveness advantages. The smaller hardware architecture can expand its range of application scenarios. However, miniaturized ultrasound devices face the challenges in terms of image quality, frame rate, and power consumption. The achievement of high-quality and high-frame-rate imaging depends on numerous channels and higher pulse repetition frequency (PRF) at the cost of power consumption. The proposed work aims to design a field-programmable gate array (FPGA)-based prototype with synthetic aperture method for portable and cost-effective handheld ultrasound system. The prototype supports 8 transmit and receive channels and forms up to 8 synthetic apertures. In addition, to optimize the FPGA resources, the auto delay calculation and segmented apodizations are employed for 4 parallel beamforming lines. To evaluate the performance of our proposed prototype, scan sequences of B-mode, C-mode, and D-mode are implemented for image construction. The results show that the proposed prototype can provide a lateral resolution of 0.30 mm, a contrast-to-noise ratio (CNR) of 7.58 dB, and a frame rate of 22 frames per second (FPS) in dual-mode imaging. Moreover, it is remarkable that the memory and logic resources in the FPGA (EP4CE55) account for 73.7% and 66.2%, respectively, which makes the FPGA's power consumption only about 530 mW. The proposed prototype is suitable for handheld and other miniaturized ultrasound imaging systems.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"107-115"},"PeriodicalIF":1.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747270","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thermal synthesis is an essential process in most chemical formulations. While several well-established methods exist for synthesizing materials in large quantities, synthesizing materials on a small scale is challenging and costly. This work delves into the design and functionality of microfluidic-based thermal synthesis microreactors, which are highly customizable and cost-effective. Instead of conventional electrothermal heaters, Laser-Induced Graphene (LIG) heaters are leveraged over traditional electrothermal heaters due to their cost-effectiveness, simplified fabrication process, and high level of customization. The parameters for developing these LIG heaters were optimized by tuning the speed and power of the CO2 laser to obtain both the desired electrical conductivity and mechanical strength. The developed heaters were integrated with microfluidic devices fabricated using the soft-lithography technique. The functionality of these devices was demonstrated by performing gold nanoparticles (inorganic) and alkene (organic) synthesis. The synthesized gold nanoparticles (AuNPs) and alkene solution were analyzed using UV-visible spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and Nuclear Magnetic Resonance (NMR) techniques to evaluate the quality of the end products. The functionality of synthesized solutions can be utilized as catalyst in electrochemical applications and as precursors in downstream chemical syntheses.
热合成是大多数化学配方中必不可少的过程。虽然有几种成熟的方法可用于大量合成材料,但小规模合成材料却具有挑战性且成本高昂。这项研究深入探讨了基于微流体的热合成微反应器的设计和功能,这种微反应器具有高度可定制性和成本效益。与传统的电热加热器相比,激光诱导石墨烯(LIG)加热器具有成本效益高、制造工艺简化和高度定制化等优点。通过调整 CO2 激光的速度和功率,对开发 LIG 加热器的参数进行了优化,以获得所需的导电性和机械强度。所开发的加热器与使用软光刻技术制造的微流体设备集成在一起。通过金纳米粒子(无机)和烯(有机)的合成,证明了这些装置的功能。使用紫外-可见光谱、傅立叶变换红外光谱和核磁共振技术分析了合成的金纳米粒子(AuNPs)和烯溶液,以评估最终产品的质量。合成溶液的功能可用作电化学应用中的催化剂和下游化学合成中的前体。
{"title":"Microfluidic Microreactor Device With Integrated Heaters for Temperature Assisted Synthesis of Gold Nanoparticles and Alkene","authors":"Tinku Naik Banavathi;Mukesh Kumar Sivakumar;Aniket Balapure;Sohan Dudala;Satish Kumar Dubey;Sanket Goel","doi":"10.1109/OJNANO.2024.3492116","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3492116","url":null,"abstract":"Thermal synthesis is an essential process in most chemical formulations. While several well-established methods exist for synthesizing materials in large quantities, synthesizing materials on a small scale is challenging and costly. This work delves into the design and functionality of microfluidic-based thermal synthesis microreactors, which are highly customizable and cost-effective. Instead of conventional electrothermal heaters, Laser-Induced Graphene (LIG) heaters are leveraged over traditional electrothermal heaters due to their cost-effectiveness, simplified fabrication process, and high level of customization. The parameters for developing these LIG heaters were optimized by tuning the speed and power of the CO\u0000<sub>2</sub>\u0000 laser to obtain both the desired electrical conductivity and mechanical strength. The developed heaters were integrated with microfluidic devices fabricated using the soft-lithography technique. The functionality of these devices was demonstrated by performing gold nanoparticles (inorganic) and alkene (organic) synthesis. The synthesized gold nanoparticles (AuNPs) and alkene solution were analyzed using UV-visible spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and Nuclear Magnetic Resonance (NMR) techniques to evaluate the quality of the end products. The functionality of synthesized solutions can be utilized as catalyst in electrochemical applications and as precursors in downstream chemical syntheses.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"134-140"},"PeriodicalIF":1.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742960","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142736590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Epidermal sensing electrodes, a key type of advanced wearable device, play a crucial role in biosignal sensing. Recent advancements in functional nanomaterials have propelled the development of these electrodes; however, their fabrication often involves complex processes and expensive raw materials. While significant progress has been made in enhancing the biocompatibility of electrodes through the use of human-friendly materials, improvements in flexibility and conductivity are still needed to ensure optimal skin conformability and compliance. In this study, we present an innovative epidermal sensing electrode constructed from electronic slime (E-slime), which is synthesized through a simple one-step, one-pot method utilizing widely available and cost-effective carbon nanocomposites. The E-slime electrode exhibits exceptional deformability, flexibility, and self-healing properties, ensuring mechanical compliance and effective skin adherence for epidermal applications. Our results demonstrate the electrode's capability in biosignal sensing, including electrocardiogram (ECG) monitoring with a high signal-to-noise ratio (SNR) of 46dB and electromyogram (EMG) monitoring for real-time human-robot interaction. This work introduces a novel strategy for the design and fabrication of epidermal electrodes, offering high conformability, low impedance, and superior signal quality, which holds significant promise for applications in intelligent healthcare monitoring and human-machine interfaces.
{"title":"An Electronic Slime-Based Epidermal Electrode Using Carbon Nanocomposites for Biosignal Sensing","authors":"Yu Feng;Hui Sun;Meng Chen;Cong Wu;Jiankun Li;Zhi Li;Kremena Makasheva;Na Liu;Guanglie Zhang;Wen Jung Li","doi":"10.1109/OJNANO.2024.3488720","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3488720","url":null,"abstract":"Epidermal sensing electrodes, a key type of advanced wearable device, play a crucial role in biosignal sensing. Recent advancements in functional nanomaterials have propelled the development of these electrodes; however, their fabrication often involves complex processes and expensive raw materials. While significant progress has been made in enhancing the biocompatibility of electrodes through the use of human-friendly materials, improvements in flexibility and conductivity are still needed to ensure optimal skin conformability and compliance. In this study, we present an innovative epidermal sensing electrode constructed from electronic slime (E-slime), which is synthesized through a simple one-step, one-pot method utilizing widely available and cost-effective carbon nanocomposites. The E-slime electrode exhibits exceptional deformability, flexibility, and self-healing properties, ensuring mechanical compliance and effective skin adherence for epidermal applications. Our results demonstrate the electrode's capability in biosignal sensing, including electrocardiogram (ECG) monitoring with a high signal-to-noise ratio (SNR) of 46dB and electromyogram (EMG) monitoring for real-time human-robot interaction. This work introduces a novel strategy for the design and fabrication of epidermal electrodes, offering high conformability, low impedance, and superior signal quality, which holds significant promise for applications in intelligent healthcare monitoring and human-machine interfaces.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"156-162"},"PeriodicalIF":1.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10739952","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1109/OJNANO.2024.3488787
Anmol Garg;Sajal Agarwal;Deepak Punetha
This paper reports the comparative analysis of different piezoelectric materials through a MEMS-based piezoelectric actuator model, emphasizing their potential for sensing applications. The polarization and electrostrictive strain tensor capabilities have been extensively studied for different piezoelectric materials such as PZT, LiNbO3, PVDF, etc. The simulation results obtained at varying voltages and mechanical stress demonstrate that LiNbO3 exhibits superior performance among the tested materials, with a polarization value of 0.5163 C/m2 at 800 volts and an electrostrictive strain tensor of 0.01 at an applied mechanical stress of 25 MPa. These findings will assist scientists in selecting the most suitable piezoelectric materials for sensing applications in biomedical fields.
{"title":"Polarization and Strain in Piezoelectric Nanomaterials: Advancing Sensing Applications in Biomedical Technology","authors":"Anmol Garg;Sajal Agarwal;Deepak Punetha","doi":"10.1109/OJNANO.2024.3488787","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3488787","url":null,"abstract":"This paper reports the comparative analysis of different piezoelectric materials through a MEMS-based piezoelectric actuator model, emphasizing their potential for sensing applications. The polarization and electrostrictive strain tensor capabilities have been extensively studied for different piezoelectric materials such as PZT, LiNbO\u0000<sub>3</sub>\u0000, PVDF, etc. The simulation results obtained at varying voltages and mechanical stress demonstrate that LiNbO\u0000<sub>3</sub>\u0000 exhibits superior performance among the tested materials, with a polarization value of 0.5163 C/m\u0000<sup>2</sup>\u0000 at 800 volts and an electrostrictive strain tensor of 0.01 at an applied mechanical stress of 25 MPa. These findings will assist scientists in selecting the most suitable piezoelectric materials for sensing applications in biomedical fields.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"89-97"},"PeriodicalIF":1.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10739969","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magnetic solitons hold great promise for token-based computing applications due to their intrinsic properties, including small size, topological stability, ultra-low power manipulation, and potentially ultra-fast operation. In particular, they have been proposed as reliable memory units that enable the execution of various logic tasks with in-situ memory. A critical challenge remains the identification of optimal soliton and efficient manipulation techniques. Previous research has primarily focused on the manipulation of two-dimensional solitons, such as skyrmions, domain walls, and vortices, by applied currents. The discovery of novel methods to control magnetic parameters, such as the interfacial Dzyaloshinskii-Moriya interaction, through strain, temperature gradients, and applied voltages offers new avenues for energetically efficient manipulation of magnetic structures. In this work, we present a comprehensive study using numerical and analytical methods to investigate the stability and motion of various magnetic textures under the influence of DMI gradients. Our results show that Néel and Bloch-type skyrmions, as well as radial vortices, exhibit motion characterized by finite skyrmion Hall angles, while circular vortices undergo expulsion dynamics. This study provides a deeper and crucial understanding of the stability and gradient-driven dynamics of magnetic solitons, paving the way for the design of scalable spintronics token-based computing devices.
{"title":"Manipulation of 2D and 3D Magnetic Solitons Under the Influence of DMI Gradients","authors":"Rayan Moukhader;Davi Rodrigues;Eleonora Raimondo;Vito Puliafito;Bruno Azzerboni;Mario Carpentieri;Abbass Hamadeh;Giovanni Finocchio;Riccardo Tomasello","doi":"10.1109/OJNANO.2024.3484568","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3484568","url":null,"abstract":"Magnetic solitons hold great promise for token-based computing applications due to their intrinsic properties, including small size, topological stability, ultra-low power manipulation, and potentially ultra-fast operation. In particular, they have been proposed as reliable memory units that enable the execution of various logic tasks with in-situ memory. A critical challenge remains the identification of optimal soliton and efficient manipulation techniques. Previous research has primarily focused on the manipulation of two-dimensional solitons, such as skyrmions, domain walls, and vortices, by applied currents. The discovery of novel methods to control magnetic parameters, such as the interfacial Dzyaloshinskii-Moriya interaction, through strain, temperature gradients, and applied voltages offers new avenues for energetically efficient manipulation of magnetic structures. In this work, we present a comprehensive study using numerical and analytical methods to investigate the stability and motion of various magnetic textures under the influence of DMI gradients. Our results show that Néel and Bloch-type skyrmions, as well as radial vortices, exhibit motion characterized by finite skyrmion Hall angles, while circular vortices undergo expulsion dynamics. This study provides a deeper and crucial understanding of the stability and gradient-driven dynamics of magnetic solitons, paving the way for the design of scalable spintronics token-based computing devices.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"68-79"},"PeriodicalIF":1.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726665","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1109/OJNANO.2024.3484408
Nasih Hma Salah;Baljinder Kaur;Hogr M. Rasul;Yesudasu Vasimalla;Chella Santhosh;Ramachandran Balaji;S. R. Srither;Santosh Kumar
Food safety assurance is crucial, particularly in identifying prohibited colors like brilliant blue (BB) that may pose significant health risks when used in food products. Surface plasmon resonance (SPR) biosensors provide a reliable, label-free method for highly sensitive detection of food adulterants. In this study, we present a novel gallium sulfide (GaS)-immobilized optical fiber SPR sensor designed for the rapid, real-time detection of BB synthetic dye. The proposed sensor is comprised of a high birefringence layer (HBL) core with non-added formaldehyde (NaF) cladding, silver (Ag) as the plasmonic metal, and GaS for enhanced detection sensitivity. To determine the sensor performance, the wavelength-dependent response was measured at different refractive indices (RIs), together with sensitivity and figure of merit (FOM) over the wavelength range of 400 nm to 1000 nm. The parameters were evaluated in a sensing medium consisting of water and BB under concentrations ranging from 10 mM to 600 mM. Moreover, the distribution of electromagnetic fields across the multilayer structures of the sensor, particularly at the interfaces between Ag-GaS and GaS-analytes, was investigated. At a 10 mM concentration, the optimized Ag-GaS-based sensor, consisting of 70 nm Ag and 3 nm GaS layers at an incidence angle of 85°, achieves a maximum sensitivity of 5119.6 nm/RIU and FOM of 255.98 RIU-1. The obtained results illustrate the sensor has the potential to detect non-approved colors like BB in food items with great sensitivity and accuracy.
食品安全保障至关重要,尤其是在识别像亮蓝(BB)这样的违禁色素方面。表面等离子体共振(SPR)生物传感器为高灵敏度检测食品掺假物质提供了一种可靠的无标记方法。在这项研究中,我们提出了一种新型硫化镓(GaS)固定光纤 SPR 传感器,用于快速、实时检测 BB 合成染料。该传感器由带有无添加甲醛(NaF)包层的高双折射层(HBL)核心、作为质子金属的银(Ag)以及用于提高检测灵敏度的 GaS 组成。为了确定传感器的性能,在 400 纳米到 1000 纳米的波长范围内,测量了不同折射率(RI)下随波长变化的响应,以及灵敏度和优点系数(FOM)。这些参数是在由水和 BB 组成的传感介质(浓度范围为 10 mM 至 600 mM)中进行评估的。此外,还研究了电磁场在传感器多层结构上的分布,特别是在 Ag-GaS 和 GaS-analytes 之间的界面上。在 10 mM 的浓度下,基于 Ag-GaS 的优化传感器由 70 nm 的 Ag 层和 3 nm 的 GaS 层组成,入射角为 85°,最大灵敏度为 5119.6 nm/RIU,FOM 为 255.98 RIU-1。这些结果表明,该传感器可以非常灵敏、准确地检测食品中的非认可色素(如 BB)。
{"title":"Gallium Sulfide-Immobilized Optical Fiber-Based SPR Sensor for Detection of Brilliant Blue Food Adulteration","authors":"Nasih Hma Salah;Baljinder Kaur;Hogr M. Rasul;Yesudasu Vasimalla;Chella Santhosh;Ramachandran Balaji;S. R. Srither;Santosh Kumar","doi":"10.1109/OJNANO.2024.3484408","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3484408","url":null,"abstract":"Food safety assurance is crucial, particularly in identifying prohibited colors like brilliant blue (BB) that may pose significant health risks when used in food products. Surface plasmon resonance (SPR) biosensors provide a reliable, label-free method for highly sensitive detection of food adulterants. In this study, we present a novel gallium sulfide (GaS)-immobilized optical fiber SPR sensor designed for the rapid, real-time detection of BB synthetic dye. The proposed sensor is comprised of a high birefringence layer (HBL) core with non-added formaldehyde (NaF) cladding, silver (Ag) as the plasmonic metal, and GaS for enhanced detection sensitivity. To determine the sensor performance, the wavelength-dependent response was measured at different refractive indices (RIs), together with sensitivity and figure of merit (FOM) over the wavelength range of 400 nm to 1000 nm. The parameters were evaluated in a sensing medium consisting of water and BB under concentrations ranging from 10 mM to 600 mM. Moreover, the distribution of electromagnetic fields across the multilayer structures of the sensor, particularly at the interfaces between Ag-GaS and GaS-analytes, was investigated. At a 10 mM concentration, the optimized Ag-GaS-based sensor, consisting of 70 nm Ag and 3 nm GaS layers at an incidence angle of 85°, achieves a maximum sensitivity of 5119.6 nm/RIU and FOM of 255.98 RIU\u0000<sup>-1</sup>\u0000. The obtained results illustrate the sensor has the potential to detect non-approved colors like BB in food items with great sensitivity and accuracy.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"98-106"},"PeriodicalIF":1.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726679","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}