The healthcare industry is constantly changing because of technological breakthroughs that spur new methods of diagnosing and treating illnesses. This study investigates the development of Ion Sensitive Field Effect Transistor (ISFET) sensors for DNA-based blood cancer diagnosis. This work presents the design of a two-dimensional ion-sensitive field-effect transistor. Concentration fluctuations and transfer characteristics with different oxides are studied using blood from two electrolyte solutions. It is possible to evaluate how the modeled device can be utilized as a pH sensor or a biosensor in healthcare applications by looking at how the pH changes for different oxides. Additionally, several oxides were examined in the simulated ISFET devices' output characteristics. Blood is the electrolyte to study the device's sensitivity for different oxides. When pH 7.4 is considered, SiO 2