首页 > 最新文献

IEEE Open Journal of Nanotechnology最新文献

英文 中文
Additive Manufacturing for Nano-Feature Applications: Electrohydrodynamic Printing as a Next-Generation Enabling Technology 纳米特征应用的增材制造:电流体动力打印作为下一代使能技术
IF 1.7 Q3 Engineering Pub Date : 2022-11-23 DOI: 10.1109/OJNANO.2022.3224229
Goran Miskovic;Robin Kaufhold
Regardless of the technology, additive or subtractive, the miniaturization trend is constantly pushing for smaller resolutions. The rise of global challenges in material availability, fabrication in three dimensions (3D), design flexibility and rapid prototyping have pushed additive manufacturing (AM) into the spotlight. Addressing the miniaturization trend, AM has already successfully answered the challenges for microscale 3D fabrication. However, fabricating nano-resolution still presents a challenge. In this review, we will present some of the most reported AM-based technologies capable of nanoscale 3D fabrication addressing resolutions of ≤ 500 nm. The focus is placed on Electrohydrodynamic (EHD) printing (also known as e-jet printing), as EHD printing seems to have the best trade-off when it comes to technique complexity, achievable resolutions, material diversity and potential to scale-up throughput. An overview of the smallest achieved resolutions as well as the most unique use cases and demonstrated applications will be addressed in this work.
无论技术是加法还是减法,小型化趋势都在不断推动更小的分辨率。材料可用性、三维(3D)制造、设计灵活性和快速原型制造等全球挑战的兴起,将增材制造(AM)推向了聚光灯下。为了解决小型化趋势,增材制造已经成功地应对了微型3D制造的挑战。然而,制造纳米分辨率仍然是一个挑战。在这篇综述中,我们将介绍一些报道最多的基于am的技术,这些技术能够解决≤500纳米的纳米级3D制造问题。重点放在电流体动力(EHD)打印(也称为电子喷射打印)上,因为EHD打印在技术复杂性、可实现的分辨率、材料多样性和扩大吞吐量的潜力方面似乎具有最佳的权衡。本文将概述最小实现的分辨率以及最独特的用例和演示的应用程序。
{"title":"Additive Manufacturing for Nano-Feature Applications: Electrohydrodynamic Printing as a Next-Generation Enabling Technology","authors":"Goran Miskovic;Robin Kaufhold","doi":"10.1109/OJNANO.2022.3224229","DOIUrl":"10.1109/OJNANO.2022.3224229","url":null,"abstract":"Regardless of the technology, additive or subtractive, the miniaturization trend is constantly pushing for smaller resolutions. The rise of global challenges in material availability, fabrication in three dimensions (3D), design flexibility and rapid prototyping have pushed additive manufacturing (AM) into the spotlight. Addressing the miniaturization trend, AM has already successfully answered the challenges for microscale 3D fabrication. However, fabricating nano-resolution still presents a challenge. In this review, we will present some of the most reported AM-based technologies capable of nanoscale 3D fabrication addressing resolutions of ≤ 500 nm. The focus is placed on Electrohydrodynamic (EHD) printing (also known as e-jet printing), as EHD printing seems to have the best trade-off when it comes to technique complexity, achievable resolutions, material diversity and potential to scale-up throughput. An overview of the smallest achieved resolutions as well as the most unique use cases and demonstrated applications will be addressed in this work.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9961888","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62889145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Large-Scale Optimization of Decoupling Capacitors Using Adaptive Region Based Encoding Scheme in Particle Swarm Optimization 粒子群优化中基于自适应区域编码的解耦电容大规模优化
IF 1.7 Q3 Engineering Pub Date : 2022-11-23 DOI: 10.1109/OJNANO.2022.3224061
DINESH JUNJARIYA;JAI NARAYAN TRIPATHI
Power delivery networks are responsible for supplying clean power to the integrated circuits. Power supply noise plays a critical role in determining the performance of high-speed very large scale integration circuits and systems. In order to maintain power integrity in high-speed systems, decoupling capacitors are used to maintain low impedance of the PDN to eventually minimize power supply noise. However, the discrete optimization problem of selecting decoupling capacitors becomes computationally challenging in the systems having stringent power integrity (PI) requirements. In this work, a novel approach using the Social-Learning Particle Swarm Optimization (SLPSO) technique along with Adaptive Region Search (ARS) is used to tackle the Large-Scale Optimization Problem (LSOP) of decoupling capacitor placement. Region Search (RS) is used to guide particles, followed by ARS to dynamical search for the local best positions and for particles to move faster across the search space while maintaining the diversity of the population. To demonstrate the proposed approach, three practical case studies are presented. The obtained results are compared with current state-of-the-art approaches. The proposed approach drastically reduces computation time and is consistent with better results than other approaches. This consistency of improvement in CPU time in the results of all the examples validates the proposed approach.
电力输送网络负责向集成电路提供清洁电力。电源噪声对高速超大规模集成电路和系统的性能起着至关重要的作用。为了在高速系统中保持电源的完整性,去耦电容器被用于维持PDN的低阻抗,最终使电源噪声最小化。然而,在具有严格功率完整性(PI)要求的系统中,选择去耦电容的离散优化问题在计算上具有挑战性。在这项工作中,使用社会学习粒子群优化(SLPSO)技术和自适应区域搜索(ARS)来解决解耦电容器放置的大规模优化问题(LSOP)。利用区域搜索(Region Search, RS)引导粒子动态搜索局部最优位置,使粒子在保持种群多样性的前提下更快地在搜索空间中移动。为了证明所提出的方法,提出了三个实际案例研究。所得结果与目前最先进的方法进行了比较。该方法大大减少了计算时间,并且与其他方法相比具有更好的一致性。在所有示例的结果中,CPU时间改善的一致性验证了所提出的方法。
{"title":"Large-Scale Optimization of Decoupling Capacitors Using Adaptive Region Based Encoding Scheme in Particle Swarm Optimization","authors":"DINESH JUNJARIYA;JAI NARAYAN TRIPATHI","doi":"10.1109/OJNANO.2022.3224061","DOIUrl":"10.1109/OJNANO.2022.3224061","url":null,"abstract":"Power delivery networks are responsible for supplying clean power to the integrated circuits. Power supply noise plays a critical role in determining the performance of high-speed very large scale integration circuits and systems. In order to maintain power integrity in high-speed systems, decoupling capacitors are used to maintain low impedance of the PDN to eventually minimize power supply noise. However, the discrete optimization problem of selecting decoupling capacitors becomes computationally challenging in the systems having stringent power integrity (PI) requirements. In this work, a novel approach using the Social-Learning Particle Swarm Optimization (SLPSO) technique along with Adaptive Region Search (ARS) is used to tackle the Large-Scale Optimization Problem (LSOP) of decoupling capacitor placement. Region Search (RS) is used to guide particles, followed by ARS to dynamical search for the local best positions and for particles to move faster across the search space while maintaining the diversity of the population. To demonstrate the proposed approach, three practical case studies are presented. The obtained results are compared with current state-of-the-art approaches. The proposed approach drastically reduces computation time and is consistent with better results than other approaches. This consistency of improvement in CPU time in the results of all the examples validates the proposed approach.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9961848","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62889099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of Plasma Technologies for Contribution of Environmental Purification 等离子体技术在环境净化中的贡献
IF 1.7 Q3 Engineering Pub Date : 2022-11-23 DOI: 10.1109/OJNANO.2022.3223897
Kuniko Urashima
Since the beginning of the 20th century, plasma technology has been used in a variety of fields. In the 1980s, R&D related to arc plasma welding and waste disposal, as well as etching, painting, and gas removal equipment that used plasma technology in the processes associated with semiconductor manufacturing. In the 1990s, research on removing air pollutants using atmospheric pressure plasma technology became active. In the 2000s, research on the application of thermal/non-thermal plasma technology to air pollution, waste and water treatment became active. Electrostatic precipitators (ESP) can remove a wide variety of particles such as soot from thermal power plants, coal, and oil mist, resin powder, glass powder, dust, and iron powder generated from incinerators, boilers, and various manufacturing plants. Waste treatment aims to reduce the volume of garbage, recycle incinerated materials, and utilize waste heat from incineration, and plasma technology is used in each process. Various techniques have been used for making purified water. Water quality requirements vary according to the objective. Plasma technology uses an electrical field to encourage seed germination and growth. Due to the spread of such applied technology, plasma technology has attracted attention again in recent years.
自20世纪初以来,等离子体技术已被应用于各种领域。在20世纪80年代,研发涉及电弧等离子焊接和废物处理,以及在半导体制造相关工艺中使用等离子技术的蚀刻,喷涂和气体清除设备。20世纪90年代,利用大气压等离子体技术去除大气污染物的研究开始活跃起来。进入21世纪以来,热/非热等离子体技术在空气污染、废物和水处理中的应用研究开始活跃起来。静电除尘器(ESP)可以去除各种颗粒,如火电厂产生的煤烟、焚烧炉、锅炉和各种制造厂产生的油雾、树脂粉、玻璃粉、粉尘、铁粉等。垃圾处理的目标是减少垃圾体积,回收焚烧材料,利用焚烧产生的余热,每个过程都使用等离子体技术。人们采用了各种技术来制造纯净水。水质要求因目的而异。等离子体技术利用电场促进种子发芽和生长。由于这种应用技术的普及,近年来等离子体技术再次引起人们的关注。
{"title":"Review of Plasma Technologies for Contribution of Environmental Purification","authors":"Kuniko Urashima","doi":"10.1109/OJNANO.2022.3223897","DOIUrl":"10.1109/OJNANO.2022.3223897","url":null,"abstract":"Since the beginning of the 20th century, plasma technology has been used in a variety of fields. In the 1980s, R&D related to arc plasma welding and waste disposal, as well as etching, painting, and gas removal equipment that used plasma technology in the processes associated with semiconductor manufacturing. In the 1990s, research on removing air pollutants using atmospheric pressure plasma technology became active. In the 2000s, research on the application of thermal/non-thermal plasma technology to air pollution, waste and water treatment became active. Electrostatic precipitators (ESP) can remove a wide variety of particles such as soot from thermal power plants, coal, and oil mist, resin powder, glass powder, dust, and iron powder generated from incinerators, boilers, and various manufacturing plants. Waste treatment aims to reduce the volume of garbage, recycle incinerated materials, and utilize waste heat from incineration, and plasma technology is used in each process. Various techniques have been used for making purified water. Water quality requirements vary according to the objective. Plasma technology uses an electrical field to encourage seed germination and growth. Due to the spread of such applied technology, plasma technology has attracted attention again in recent years.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9961850","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62889051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Droplet-Dispensed Graphene Oxide as Capacitive Sensing Elements for Flexible Pressure-Pulse Sensing Array 微滴氧化石墨烯作为柔性压力脉冲传感阵列的电容式传感元件
IF 1.7 Q3 Engineering Pub Date : 2022-11-21 DOI: 10.1109/OJNANO.2022.3223712
Ka Wai Kong;Keer Wang;Alice Yeuk Lan Leung;Hongyu Zhang;Jiao Suo;Meng Chen;Guanglie Zhang;Fei Fei;Jiangang Shen;Wen Jung Li
We report a novel flexible capacitive pressure-pulse sensor array developed by integrating droplet-dispensed graphene oxide (GO) sensing elements and flexible electronics. The utilization of droplet-dispensing technology enables the fabrication multiple capacitive sensing elements rapidly while producing sensitive pressure sensors with excellent repeatability. The dispensed droplet volume (GO aqueous dispersion) ranged from around 33.5 to 65.4 pL with diameter ranging from 40 to 50 μm. The size (i.e., footprint and dielectric material thickness) of a sensing element can be controlled by the total GO dispersed per droplet. The fabrication process and preliminary characterization of these GO capacitive sensors are discussed in this paper. Thus far, we have shown that these sensors have a sensitivity of ∼10−3 kPa−1, with the relative permittivity of the dispensed GO being ∼6 (measured at a frequency of 600 kHz). We have also demonstrated that the printed sensing elements can be used for human wrist pulse sensing. Hence the technology described in this paper could potentially be used in wearable electronics for healthcare applications.
我们报道了一种新型的柔性电容式压力脉冲传感器阵列,该阵列集成了液滴分配氧化石墨烯(GO)传感元件和柔性电子器件。利用液滴点胶技术,可以快速制造多个电容感测元件,同时生产具有优异重复性的灵敏压力传感器。所分配的液滴(氧化石墨烯水分散体)体积在33.5 ~ 65.4 pL之间,直径在40 ~ 50 μm之间。传感元件的尺寸(即占地面积和介电材料厚度)可以通过每个液滴分散的氧化石墨烯总量来控制。本文讨论了氧化石墨烯电容式传感器的制备工艺和初步表征。到目前为止,我们已经证明这些传感器的灵敏度为~ 10−3 kPa−1,所分配的氧化石墨烯的相对介电常数为~ 6(在600 kHz的频率下测量)。我们还证明了打印的传感元件可以用于人体手腕脉冲传感。因此,本文中描述的技术有可能用于医疗保健应用的可穿戴电子产品。
{"title":"Droplet-Dispensed Graphene Oxide as Capacitive Sensing Elements for Flexible Pressure-Pulse Sensing Array","authors":"Ka Wai Kong;Keer Wang;Alice Yeuk Lan Leung;Hongyu Zhang;Jiao Suo;Meng Chen;Guanglie Zhang;Fei Fei;Jiangang Shen;Wen Jung Li","doi":"10.1109/OJNANO.2022.3223712","DOIUrl":"https://doi.org/10.1109/OJNANO.2022.3223712","url":null,"abstract":"We report a novel flexible capacitive pressure-pulse sensor array developed by integrating droplet-dispensed graphene oxide (GO) sensing elements and flexible electronics. The utilization of droplet-dispensing technology enables the fabrication multiple capacitive sensing elements rapidly while producing sensitive pressure sensors with excellent repeatability. The dispensed droplet volume (GO aqueous dispersion) ranged from around 33.5 to 65.4 pL with diameter ranging from 40 to 50 μm. The size (i.e., footprint and dielectric material thickness) of a sensing element can be controlled by the total GO dispersed per droplet. The fabrication process and preliminary characterization of these GO capacitive sensors are discussed in this paper. Thus far, we have shown that these sensors have a sensitivity of ∼10\u0000<sup>−3</sup>\u0000 kPa\u0000<sup>−1</sup>\u0000, with the relative permittivity of the dispensed GO being ∼6 (measured at a frequency of 600 kHz). We have also demonstrated that the printed sensing elements can be used for human wrist pulse sensing. Hence the technology described in this paper could potentially be used in wearable electronics for healthcare applications.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/10007543/09956867.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3491208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene Thermal Interface Materials – State-of-the-Art and Application Prospects 石墨烯热界面材料研究进展及应用前景
IF 1.7 Q3 Engineering Pub Date : 2022-11-18 DOI: 10.1109/OJNANO.2022.3223016
Sriharsha Sudhindra;Lokesh Ramesh;Alexander A. Balandin
We provide a summary of the fundamentals of thermal management, outline the state-of-the-art in the field of thermal interface materials, and describe recent developments in graphene-based non-curing and curing composites used for thermal management. The discovery of unique heat conduction properties of graphene and few-layer graphene motivated research activities worldwide focused on creating efficient graphene-based thermal interface materials. While the initial focus of these studies was on obtaining the maximum possible thermal conductivity of the composites, recently the attention has shifted to practical problems of minimizing the thermal contact resistance at interfaces, optimizing the size distribution of graphene as filler, and addressing the issues of scalability, stability, and production costs at commercial scales. We conclude the review with a general outlook for commercial applications of graphene in the thermal management of electronics.
我们总结了热管理的基本原理,概述了热界面材料领域的最新进展,并描述了用于热管理的石墨烯基非固化和固化复合材料的最新发展。石墨烯独特的导热性能和少层石墨烯的发现激发了世界范围内的研究活动,重点是创造高效的石墨烯基热界面材料。虽然这些研究最初的重点是获得复合材料的最大可能的热导率,但最近的注意力已经转移到实际问题上,如最小化界面的热接触电阻,优化石墨烯作为填料的尺寸分布,以及解决可扩展性,稳定性和商业规模的生产成本问题。最后,我们对石墨烯在电子热管理方面的商业应用进行了展望。
{"title":"Graphene Thermal Interface Materials – State-of-the-Art and Application Prospects","authors":"Sriharsha Sudhindra;Lokesh Ramesh;Alexander A. Balandin","doi":"10.1109/OJNANO.2022.3223016","DOIUrl":"10.1109/OJNANO.2022.3223016","url":null,"abstract":"We provide a summary of the fundamentals of thermal management, outline the state-of-the-art in the field of thermal interface materials, and describe recent developments in graphene-based non-curing and curing composites used for thermal management. The discovery of unique heat conduction properties of graphene and few-layer graphene motivated research activities worldwide focused on creating efficient graphene-based thermal interface materials. While the initial focus of these studies was on obtaining the maximum possible thermal conductivity of the composites, recently the attention has shifted to practical problems of minimizing the thermal contact resistance at interfaces, optimizing the size distribution of graphene as filler, and addressing the issues of scalability, stability, and production costs at commercial scales. We conclude the review with a general outlook for commercial applications of graphene in the thermal management of electronics.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9954624","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62889177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Copper Passivated Zigzag MgO Nanoribbons for Potential Nanointerconnect Applications 潜在纳米互连应用的铜钝化之字形MgO纳米带
IF 1.7 Q3 Engineering Pub Date : 2022-11-18 DOI: 10.1109/OJNANO.2022.3223151
M. Sankush Krishna;Sangeeta Singh;Brajesh Kumar Kaushik
The present work explores the theoretical analysis of copper passivated MgONRs (Cu-MgO-Cu) for possible nanointerconnect applications. The first principles calculations based on density functional theory (DFT) and non-equilibrium Green's function are employed for theoretical investigation. Pristine MgONRs (H-MgO-H) and Cu-MgO-Cu are both thermodynamically stable and are metallic with H-MgO-H being relatively more stable. Further, the I-V characteristics evaluated using the two-probe method reveal the ohmic behavior of Cu-MgO-Cu. The Cu-MgO-Cu device is further investigated for the nanointerconnect applications. The computed nanoscale parasitic components such as quantum resistance ($R_{Q}$), quantum capacitance ($C_{Q}$), and kinetic inductance ($L_{K}$) are computed to be 6.46 k$Omega$, 5.57 fF/$mutext{m}$, and 58.17 nF/$mu$m, respectively. Furthermore, the delay and power delay product (PDP) of the nanointerconnect are explored which are important attributes of nanointerconnects. The findings suggest the Cu-MgO-Cu nanoribbons with low parasitic parameters can potentially be employed for nanointerconnect applications.
本工作探讨了铜钝化mgonr (Cu-MgO-Cu)的理论分析,以实现可能的纳米互连应用。基于密度泛函理论和非平衡格林函数的第一性原理计算进行了理论研究。原始mgonr (H-MgO-H)和Cu-MgO-Cu都是热力学稳定的金属,H-MgO-H相对更稳定。此外,使用双探针方法评估的I-V特性揭示了Cu-MgO-Cu的欧姆行为。进一步研究了Cu-MgO-Cu器件在纳米互连中的应用。计算得到的纳米级寄生分量如量子电阻($R_{Q}$)、量子电容($C_{Q}$)和动态电感($L_{K}$)分别为6.46 k $Omega$、5.57 fF/ $mutext{m}$和58.17 nF/ $mu$ m。此外,研究了纳米互连的延迟和功率延迟积(PDP)这两个重要属性。研究结果表明,具有低寄生参数的Cu-MgO-Cu纳米带可用于纳米互连应用。
{"title":"Copper Passivated Zigzag MgO Nanoribbons for Potential Nanointerconnect Applications","authors":"M. Sankush Krishna;Sangeeta Singh;Brajesh Kumar Kaushik","doi":"10.1109/OJNANO.2022.3223151","DOIUrl":"10.1109/OJNANO.2022.3223151","url":null,"abstract":"The present work explores the theoretical analysis of copper passivated MgONRs (Cu-MgO-Cu) for possible nanointerconnect applications. The first principles calculations based on density functional theory (DFT) and non-equilibrium Green's function are employed for theoretical investigation. Pristine MgONRs (H-MgO-H) and Cu-MgO-Cu are both thermodynamically stable and are metallic with H-MgO-H being relatively more stable. Further, the I-V characteristics evaluated using the two-probe method reveal the ohmic behavior of Cu-MgO-Cu. The Cu-MgO-Cu device is further investigated for the nanointerconnect applications. The computed nanoscale parasitic components such as quantum resistance (\u0000<inline-formula><tex-math>$R_{Q}$</tex-math></inline-formula>\u0000), quantum capacitance (\u0000<inline-formula><tex-math>$C_{Q}$</tex-math></inline-formula>\u0000), and kinetic inductance (\u0000<inline-formula><tex-math>$L_{K}$</tex-math></inline-formula>\u0000) are computed to be 6.46 k\u0000<inline-formula><tex-math>$Omega$</tex-math></inline-formula>\u0000, 5.57 fF/\u0000<inline-formula><tex-math>$mutext{m}$</tex-math></inline-formula>\u0000, and 58.17 nF/\u0000<inline-formula><tex-math>$mu$</tex-math></inline-formula>\u0000m, respectively. Furthermore, the delay and power delay product (PDP) of the nanointerconnect are explored which are important attributes of nanointerconnects. The findings suggest the Cu-MgO-Cu nanoribbons with low parasitic parameters can potentially be employed for nanointerconnect applications.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9954618","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62888758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Amorphous In-Ga-Mg-O Thin Films Formed by RF Magnetron Sputtering: Optical, Electrical Properties and Thin-Film-Transistor Characteristics 射频磁控溅射形成的In-Ga-Mg-O非晶薄膜:光学、电学特性和薄膜晶体管特性
IF 1.7 Q3 Engineering Pub Date : 2022-11-17 DOI: 10.1109/OJNANO.2022.3222850
Hisato Yabuta;Naho Itagaki;Toshikazu Ekino;Yuzo Shigesato
We report on optical and electrical properties of amorphous In-Ga-Mg-O (a-IGMO) films and characteristics of a-IGMO channel thin-film transistors which went through the reductive post-annealing process. Optical band-gap energies of a-IGMO films were larger than that of amorphous In-Ga-Zn-O (a-IGZO) films. Carrier density and Hall mobility of a-IGMO films with the reductive post-annealing were almost the same degree as those of a-IGZO films. Although the reductive annealing with the SiNx underlayer makes an a-IGZO film degenerate semiconductor and its TFT inoperative, a-IGMO TFTs successfully operated after this reductive process. Break-junction tunnelling spectroscopy which was applicable not to a-IGMO but to a-IGZO with the reductive process showed a noticeable density of state character in the vicinity of the Fermi level for a-IGZO, which is consistent with its property.
本文报道了非晶In-Ga-Mg-O (a-IGMO)薄膜的光学和电学性质,以及经过还原后退火处理的a-IGMO沟道薄膜晶体管的特性。a-IGMO薄膜的光学带隙能量大于非晶In-Ga-Zn-O (a-IGZO)薄膜。还原性退火后的a-IGMO薄膜载流子密度和霍尔迁移率与a-IGZO薄膜几乎相同。虽然使用SiNx衬底的还原退火使a-IGZO薄膜退化半导体,其TFT失效,但经过此还原过程后,a-IGMO TFT成功运行。断结隧穿光谱不适用于a- igmo,而适用于还原过程的a- igzo,在a- igzo的费米能级附近有明显的态密度特征,这与其性质一致。
{"title":"Amorphous In-Ga-Mg-O Thin Films Formed by RF Magnetron Sputtering: Optical, Electrical Properties and Thin-Film-Transistor Characteristics","authors":"Hisato Yabuta;Naho Itagaki;Toshikazu Ekino;Yuzo Shigesato","doi":"10.1109/OJNANO.2022.3222850","DOIUrl":"10.1109/OJNANO.2022.3222850","url":null,"abstract":"We report on optical and electrical properties of amorphous In-Ga-Mg-O (a-IGMO) films and characteristics of a-IGMO channel thin-film transistors which went through the reductive post-annealing process. Optical band-gap energies of a-IGMO films were larger than that of amorphous In-Ga-Zn-O (a-IGZO) films. Carrier density and Hall mobility of a-IGMO films with the reductive post-annealing were almost the same degree as those of a-IGZO films. Although the reductive annealing with the SiN\u0000<sub>x</sub>\u0000 underlayer makes an a-IGZO film degenerate semiconductor and its TFT inoperative, a-IGMO TFTs successfully operated after this reductive process. Break-junction tunnelling spectroscopy which was applicable not to a-IGMO but to a-IGZO with the reductive process showed a noticeable density of state character in the vicinity of the Fermi level for a-IGZO, which is consistent with its property.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9954130","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62889075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indefinite Admittance Matrix Based Modelling of PSIJ in Nano-Scale CMOS I/O Drivers 基于不定导纳矩阵的纳米级CMOS I/O驱动器PSIJ建模
IF 1.7 Q3 Engineering Pub Date : 2022-11-14 DOI: 10.1109/OJNANO.2022.3221838
Vijender Kumar Sharma;Jai Narayan Tripathi;Hitesh Shrimali
The past decade has witnessed a tremendous reduction in the feature size from the deep-submicron to the advanced nano-scale CMOS devices. In nanoscale devices based high-speed systems, the budgeting of jitter due to supply fluctuations is one of the major performance bottlenecks while designing integrated circuits (ICs). In this paper, an accurate and efficient method to analyse power supply induced jitter (PSIJ) in CMOS N-stage inverters is developed using the estimation-by-inspection method. Based on the Indefinite Admittance Matrix, a reduced two-port network is developed for a multiple-input circuit, considering the presence of the supply/bulk/ground sources. The closed-form expressions of the PSIJ have been evaluated for a single and N-stages CMOS inverter chain. The expression is also valid for the PSIJ analysis at any intermediate stage of the N-stage chain. For validation purpose, the circuits are designed in a standard 28 nm CMOS technology with V$_text{DD}$ of 1 V. The analytical results are compared with the simulation and the experiments. The maximum mean percentage error for EDA simulation and experimentally measured results are 2.4% and 13%, respectively. The proposed analysis is compared with some of the existing PSIJ modelling techniques and shows a significant improvement in speed-up factor and error percentage.
过去的十年见证了特征尺寸从深亚微米到先进的纳米级CMOS器件的巨大缩小。在基于纳米级器件的高速系统中,由于电源波动引起的抖动预算是集成电路设计中的主要性能瓶颈之一。本文提出了一种利用检测估计法准确、有效地分析CMOS n级逆变器电源诱发抖动(PSIJ)的方法。基于不定导纳矩阵,考虑到电源源/大容量源/地源的存在,建立了多输入电路的简化双端口网络。对单级和n级CMOS逆变链的PSIJ闭合表达式进行了计算。该表达式也适用于n级链的任何中间阶段的PSIJ分析。为了验证目的,电路采用标准的28纳米CMOS技术设计,V$_text{DD}$为1 V。分析结果与仿真和实验结果进行了比较。EDA仿真和实验测量结果的最大平均百分比误差分别为2.4%和13%。与现有的一些PSIJ建模技术进行了比较,结果表明该方法在加速因子和错误率方面有了显著提高。
{"title":"Indefinite Admittance Matrix Based Modelling of PSIJ in Nano-Scale CMOS I/O Drivers","authors":"Vijender Kumar Sharma;Jai Narayan Tripathi;Hitesh Shrimali","doi":"10.1109/OJNANO.2022.3221838","DOIUrl":"10.1109/OJNANO.2022.3221838","url":null,"abstract":"The past decade has witnessed a tremendous reduction in the feature size from the deep-submicron to the advanced nano-scale CMOS devices. In nanoscale devices based high-speed systems, the budgeting of jitter due to supply fluctuations is one of the major performance bottlenecks while designing integrated circuits (ICs). In this paper, an accurate and efficient method to analyse power supply induced jitter (PSIJ) in CMOS N-stage inverters is developed using the estimation-by-inspection method. Based on the Indefinite Admittance Matrix, a reduced two-port network is developed for a multiple-input circuit, considering the presence of the supply/bulk/ground sources. The closed-form expressions of the PSIJ have been evaluated for a single and N-stages CMOS inverter chain. The expression is also valid for the PSIJ analysis at any intermediate stage of the N-stage chain. For validation purpose, the circuits are designed in a standard 28 nm CMOS technology with V\u0000<inline-formula><tex-math>$_text{DD}$</tex-math></inline-formula>\u0000 of 1 V. The analytical results are compared with the simulation and the experiments. The maximum mean percentage error for EDA simulation and experimentally measured results are 2.4% and 13%, respectively. The proposed analysis is compared with some of the existing PSIJ modelling techniques and shows a significant improvement in speed-up factor and error percentage.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9947063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62889006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Analysis of Bump in Tapered TSV: Impact on Crosstalk and Power Loss 锥形TSV中碰撞的性能分析:对串扰和功耗的影响
IF 1.7 Q3 Engineering Pub Date : 2022-11-14 DOI: 10.1109/OJNANO.2022.3221815
Shivangi Chandrakar;Deepika Gupta;Manoj Kumar Majumder;Brajesh Kumar Kaushik
This study addresses the first feasible, and comprehensive approach to demonstrate a compact resistance-inductance-capacitance-conductance (RLCG) model for a multi-walled carbon nanotube bundle (MWB) and multilayered graphene nanoribbon (MLGNR) based tapered through silicon via (T-TSV) along with the different shaped bumps. The physical structures of bumps accurately considered the effect of the high frequency resistive impact and the inter-metal dielectric (IMD) layer. A mathematical framework has been designed for the parasitics of the cylindrical, barrel, hourglass and the tapered bump structures. The bump and via parasitics have been computed by utilizing the current continuity expression, partial inductance method, splitting infinitesimally thin slices of bump and triangular arrangement of tube assemblage. In order to validate the proposed model, the EM simulation is performed and compared against the analytical results. A remarkable consistency of the analytical and EM simulation-based results supports the proposed model accuracy. Furthermore, when compared to the MWB based structures, the MLGNR -based tapered TSV shows a substantial improvement in power loss and crosstalk. Furthermore, regardless of via height, the TSV with tapered bump structure reduces the overall crosstalk induced delay by 33.22%, 28.90%, and 21.61%, respectively, when compared to the barrel, cylindrical and the hourglass structure.
本研究提出了第一个可行的、全面的方法来证明一个紧凑的电阻-电感-电容-电导(RLCG)模型,该模型适用于基于多壁碳纳米管束(MWB)和多层石墨烯纳米带(MLGNR)的锥形硅孔(T-TSV)以及不同形状的凸起。凸起的物理结构准确地考虑了高频电阻冲击和金属间介电层的影响。设计了圆柱结构、桶形结构、沙漏结构和锥凸结构的寄生数学框架。利用电流连续性表达式、部分电感法、无限小的凹凸薄片分割和管组合的三角形排列,计算了凹凸和通孔寄生。为了验证所提出的模型,进行了电磁仿真,并与分析结果进行了比较。分析结果和基于电磁仿真的结果的显著一致性支持了所提出的模型的准确性。此外,与基于MWB的结构相比,基于MLGNR的锥形TSV在功率损耗和串扰方面有了实质性的改善。此外,无论通孔高度如何,与桶形结构、圆柱形结构和沙漏形结构相比,锥形凹凸结构的TSV总体串扰延迟分别降低了33.22%、28.90%和21.61%。
{"title":"Performance Analysis of Bump in Tapered TSV: Impact on Crosstalk and Power Loss","authors":"Shivangi Chandrakar;Deepika Gupta;Manoj Kumar Majumder;Brajesh Kumar Kaushik","doi":"10.1109/OJNANO.2022.3221815","DOIUrl":"10.1109/OJNANO.2022.3221815","url":null,"abstract":"This study addresses the first feasible, and comprehensive approach to demonstrate a compact resistance-inductance-capacitance-conductance (\u0000<italic>RLCG</i>\u0000) model for a multi-walled carbon nanotube bundle (MWB) and multilayered graphene nanoribbon (MLGNR) based tapered through silicon via (\u0000<italic>T</i>\u0000-TSV) along with the different shaped bumps. The physical structures of bumps accurately considered the effect of the high frequency resistive impact and the inter-metal dielectric (IMD) layer. A mathematical framework has been designed for the parasitics of the cylindrical, barrel, hourglass and the tapered bump structures. The bump and via parasitics have been computed by utilizing the current continuity expression, partial inductance method, splitting infinitesimally thin slices of bump and triangular arrangement of tube assemblage. In order to validate the proposed model, the EM simulation is performed and compared against the analytical results. A remarkable consistency of the analytical and EM simulation-based results supports the proposed model accuracy. Furthermore, when compared to the MWB based structures, the MLGNR -based tapered TSV shows a substantial improvement in power loss and crosstalk. Furthermore, regardless of via height, the TSV with tapered bump structure reduces the overall crosstalk induced delay by 33.22%, 28.90%, and 21.61%, respectively, when compared to the barrel, cylindrical and the hourglass structure.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9947291","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62888734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Low-Temperature and High-Speed Fabrication of Nanocrystalline Ge Films on Cu Substrates Using Sub-Torr-Pressure Plasma Sputtering 亚托压等离子溅射在Cu衬底上低温高速制备纳米晶锗薄膜
IF 1.7 Q3 Engineering Pub Date : 2022-11-11 DOI: 10.1109/OJNANO.2022.3221462
Giichiro Uchida;Kenta Nagai;Ayaka Wakana;Yumiko Ikebe
We fabricated nanocrystalline Ge films using radio-frequency (RF) magnetron plasma sputtering deposition under a high Ar-gas pressure. The Ge nanograins changed from amorphous to crystalline when the distance between the Ge sputtering target and the substrate was decreased to 5 mm and the RF input power was 11.8 W/cm2 (60 W), where the deposition rate was as high as 660 nm/min. In addition, the size of the nanocrystalline grains increased from 100 to 307 nm when the RF input power for plasma production was increased from 11.8 W/cm2 (60 W) to 17.7 W/cm2 (90 W). In the developed narrow-gap plasma process at sub-Torr pressures, nanocrystalline Ge films were successfully fabricated on Cu substrates at low temperatures, without the substrate being heated. However, when annealing was conducted under an N2 atmosphere, which is the conventional method to induce solid-phase crystallization, the amorphous Ge layer on a Cu substrate changed to a Cu3Ge crystal layer through interdiffusion of Ge and Cu atoms at 400–500 °C.
在高氩气压力下,采用射频磁控等离子溅射沉积法制备了纳米晶锗薄膜。当溅射靶与衬底之间的距离减小到5 mm,射频输入功率为11.8 W/cm2 (60 W),沉积速率高达660 nm/min时,Ge纳米颗粒由无定形变为结晶。此外,当用于等离子体生产的射频输入功率从11.8 W/cm2 (60 W)增加到17.7 W/cm2 (90 W)时,纳米晶颗粒的尺寸从100 nm增加到307 nm。在亚托尔压力下开发的窄间隙等离子体工艺中,在低温下成功地在Cu衬底上制备了纳米晶锗薄膜,而无需加热衬底。然而,当采用诱导固相结晶的常规方法在N2气氛下进行退火时,在400-500℃时,Cu衬底上的非晶态Ge层通过Ge和Cu原子的相互扩散转变为Cu3Ge晶体层。
{"title":"Low-Temperature and High-Speed Fabrication of Nanocrystalline Ge Films on Cu Substrates Using Sub-Torr-Pressure Plasma Sputtering","authors":"Giichiro Uchida;Kenta Nagai;Ayaka Wakana;Yumiko Ikebe","doi":"10.1109/OJNANO.2022.3221462","DOIUrl":"10.1109/OJNANO.2022.3221462","url":null,"abstract":"We fabricated nanocrystalline Ge films using radio-frequency (RF) magnetron plasma sputtering deposition under a high Ar-gas pressure. The Ge nanograins changed from amorphous to crystalline when the distance between the Ge sputtering target and the substrate was decreased to 5 mm and the RF input power was 11.8 W/cm\u0000<sup>2</sup>\u0000 (60 W), where the deposition rate was as high as 660 nm/min. In addition, the size of the nanocrystalline grains increased from 100 to 307 nm when the RF input power for plasma production was increased from 11.8 W/cm\u0000<sup>2</sup>\u0000 (60 W) to 17.7 W/cm\u0000<sup>2</sup>\u0000 (90 W). In the developed narrow-gap plasma process at sub-Torr pressures, nanocrystalline Ge films were successfully fabricated on Cu substrates at low temperatures, without the substrate being heated. However, when annealing was conducted under an N\u0000<sub>2</sub>\u0000 atmosphere, which is the conventional method to induce solid-phase crystallization, the amorphous Ge layer on a Cu substrate changed to a Cu\u0000<sub>3</sub>\u0000Ge crystal layer through interdiffusion of Ge and Cu atoms at 400–500 °C.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9946384","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62888336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Open Journal of Nanotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1