This paper employs the inclusion-based boundary element method (iBEM) to delve into heat transfer phenomena in composites. Initially, we integrate the heat flow function and ellipsoidal integral into a bounded domain containing multiple ellipsoidal inhomogeneities. The eigen-temperature gradient is utilized to simulate the thermal mismatch between inhomogeneities and the matrix. Subsequently, the temperature field is computed considering boundary heat flux and temperature conditions, eigen-temperature gradient, and virtual heat source acting on inhomogeneities. The eigen-temperature gradient and virtual heat source are then solved using the equivalent heat flow conditions to obtain the steady-state heat conduction results within the bounded domain. Through comprehensive numerical examples, we analyze the temperature distribution within composite and scrutinize the impact of particle shapes, orientations, volume fractions, and thermal conductivity ratios on the effective thermal conductivity of composite. Furthermore, we explore the distinctive properties of functional gradient material. Additionally, a comparison between iBEM and the finite element method is conducted. The findings reveal a progressive enhancement in the thermal conductivity of composite as the particle shape transitions from spherical to fibrous.