A novel material, i.e. 2.5D three-harness-twill warp-reinforced woven composites (2.5D-THT-WR-WC), is proposed, which has wide engineering applications. In this work, geometrical relationships with different meso features are discussed through X-CT characterization. On this basis, six unit-cell models with different meso geometrical features are established considering different weft yarn arrangement densities MF, and numerical simulations are carried out combined with a developed progressive damage model. Comparison with the experimental results shows that the maximum prediction errors of modulus and strength are 6.3% and 11.7%, respectively. Therefore, the developed numerical simulation model can reasonably predict the mechanical behavior of 2.5D-THT-WR-WC. Additionally, as the MF increases, the mechanical properties in the warp and weft directions decrease and increase, respectively, owing to the inclination angle and the extrusion condition between adjacent layers of the binder yarns. This work provides a design reference for the structural application of 2.5D-THT-WR-WC, which has a significant engineering value.