首页 > 最新文献

International Journal of Biomedical Imaging最新文献

英文 中文
Adaptive Diffeomorphic Multiresolution Demons and Their Application to Same Modality Medical Image Registration with Large Deformation. 自适应差分同构多分辨率算法及其在大变形同模态医学图像配准中的应用。
IF 7.6 Q1 Medicine Pub Date : 2018-05-16 eCollection Date: 2018-01-01 DOI: 10.1155/2018/7314612
Chang Wang, Qiongqiong Ren, Xin Qin, Yi Yu

Diffeomorphic demons can guarantee smooth and reversible deformation and avoid unreasonable deformation. However, the number of iterations needs to be set manually, and this greatly influences the registration result. In order to solve this problem, we proposed adaptive diffeomorphic multiresolution demons in this paper. We used an optimized framework with nonrigid registration and diffeomorphism strategy, designed a similarity energy function based on grey value, and stopped iterations adaptively. This method was tested by synthetic image and same modality medical image. Large deformation was simulated by rotational distortion and extrusion transform, medical image registration with large deformation was performed, and quantitative analyses were conducted using the registration evaluation indexes, and the influence of different driving forces and parameters on the registration result was analyzed. The registration results of same modality medical images were compared with those obtained using active demons, additive demons, and diffeomorphic demons. Quantitative analyses showed that the proposed method's normalized cross-correlation coefficient and structural similarity were the highest and mean square error was the lowest. Medical image registration with large deformation could be performed successfully; evaluation indexes remained stable with an increase in deformation strength. The proposed method is effective and robust, and it can be applied to nonrigid registration of same modality medical images with large deformation.

微分同胚形可保证变形的平滑和可逆,避免不合理的变形。然而,迭代次数需要手动设置,这极大地影响了注册结果。为了解决这一问题,本文提出了自适应差分同态多分辨率图像。采用非刚性配准和差分同构策略的优化框架,设计基于灰度值的相似能量函数,自适应停止迭代。用合成图像和同模态医学图像对该方法进行了验证。通过旋转变形和挤压变换模拟大变形,对大变形医学图像进行配准,并利用配准评价指标进行定量分析,分析不同驱动力和参数对配准结果的影响。将同模态医学图像的配准结果与使用有源配准、加性配准和差分配准的配准结果进行比较。定量分析表明,该方法的归一化相关系数和结构相似度最高,均方误差最低。可以成功实现大变形医学图像配准;随着变形强度的增加,评价指标保持稳定。该方法具有较强的鲁棒性和有效性,可应用于形变较大的同模态医学图像的非刚性配准。
{"title":"Adaptive Diffeomorphic Multiresolution Demons and Their Application to Same Modality Medical Image Registration with Large Deformation.","authors":"Chang Wang,&nbsp;Qiongqiong Ren,&nbsp;Xin Qin,&nbsp;Yi Yu","doi":"10.1155/2018/7314612","DOIUrl":"https://doi.org/10.1155/2018/7314612","url":null,"abstract":"<p><p>Diffeomorphic demons can guarantee smooth and reversible deformation and avoid unreasonable deformation. However, the number of iterations needs to be set manually, and this greatly influences the registration result. In order to solve this problem, we proposed adaptive diffeomorphic multiresolution demons in this paper. We used an optimized framework with nonrigid registration and diffeomorphism strategy, designed a similarity energy function based on grey value, and stopped iterations adaptively. This method was tested by synthetic image and same modality medical image. Large deformation was simulated by rotational distortion and extrusion transform, medical image registration with large deformation was performed, and quantitative analyses were conducted using the registration evaluation indexes, and the influence of different driving forces and parameters on the registration result was analyzed. The registration results of same modality medical images were compared with those obtained using active demons, additive demons, and diffeomorphic demons. Quantitative analyses showed that the proposed method's normalized cross-correlation coefficient and structural similarity were the highest and mean square error was the lowest. Medical image registration with large deformation could be performed successfully; evaluation indexes remained stable with an increase in deformation strength. The proposed method is effective and robust, and it can be applied to nonrigid registration of same modality medical images with large deformation.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2018-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/7314612","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36210374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Computer-Aided Grading of Gliomas Combining Automatic Segmentation and Radiomics. 结合自动分割和放射组学的胶质瘤计算机辅助分级。
IF 7.6 Q1 Medicine Pub Date : 2018-05-08 eCollection Date: 2018-01-01 DOI: 10.1155/2018/2512037
Wei Chen, Boqiang Liu, Suting Peng, Jiawei Sun, Xu Qiao

Gliomas are the most common primary brain tumors, and the objective grading is of great importance for treatment. This paper presents an automatic computer-aided diagnosis of gliomas that combines automatic segmentation and radiomics, which can improve the diagnostic ability. The MRI data containing 220 high-grade gliomas and 54 low-grade gliomas are used to evaluate our system. A multiscale 3D convolutional neural network is trained to segment whole tumor regions. A wide range of radiomic features including first-order features, shape features, and texture features is extracted. By using support vector machines with recursive feature elimination for feature selection, a CAD system that has an extreme gradient boosting classifier with a 5-fold cross-validation is constructed for the grading of gliomas. Our CAD system is highly effective for the grading of gliomas with an accuracy of 91.27%, a weighted macroprecision of 91.27%, a weighted macrorecall of 91.27%, and a weighted macro-F1 score of 90.64%. This demonstrates that the proposed CAD system can assist radiologists for high accurate grading of gliomas and has the potential for clinical applications.

胶质瘤是最常见的原发性脑肿瘤,其客观分级对治疗具有重要意义。本文提出了一种将自动分割与放射组学相结合的神经胶质瘤计算机辅助自动诊断方法,可提高诊断能力。MRI数据包含220个高级别胶质瘤和54个低级别胶质瘤,用于评估我们的系统。训练了一个多尺度三维卷积神经网络来分割整个肿瘤区域。广泛的放射学特征包括一阶特征、形状特征和纹理特征。采用递归特征消去的支持向量机进行特征选择,构建了一个具有5倍交叉验证的极端梯度增强分类器的CAD系统,用于胶质瘤分级。我们的CAD系统对胶质瘤分级非常有效,准确率为91.27%,加权宏观精度为91.27%,加权宏观召回率为91.27%,加权宏观f1评分为90.64%。这表明所提出的CAD系统可以帮助放射科医生对胶质瘤进行高精度分级,具有临床应用的潜力。
{"title":"Computer-Aided Grading of Gliomas Combining Automatic Segmentation and Radiomics.","authors":"Wei Chen,&nbsp;Boqiang Liu,&nbsp;Suting Peng,&nbsp;Jiawei Sun,&nbsp;Xu Qiao","doi":"10.1155/2018/2512037","DOIUrl":"https://doi.org/10.1155/2018/2512037","url":null,"abstract":"<p><p>Gliomas are the most common primary brain tumors, and the objective grading is of great importance for treatment. This paper presents an automatic computer-aided diagnosis of gliomas that combines automatic segmentation and radiomics, which can improve the diagnostic ability. The MRI data containing 220 high-grade gliomas and 54 low-grade gliomas are used to evaluate our system. A multiscale 3D convolutional neural network is trained to segment whole tumor regions. A wide range of radiomic features including first-order features, shape features, and texture features is extracted. By using support vector machines with recursive feature elimination for feature selection, a CAD system that has an extreme gradient boosting classifier with a 5-fold cross-validation is constructed for the grading of gliomas. Our CAD system is highly effective for the grading of gliomas with an accuracy of 91.27%, a weighted macroprecision of 91.27%, a weighted macrorecall of 91.27%, and a weighted macro-<i>F</i>1 score of 90.64%. This demonstrates that the proposed CAD system can assist radiologists for high accurate grading of gliomas and has the potential for clinical applications.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2018-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/2512037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36181830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 60
Corrigendum to "Recent Advances in Microwave Imaging for Breast Cancer Detection". “微波成像检测乳腺癌的最新进展”的勘误表。
IF 7.6 Q1 Medicine Pub Date : 2018-05-02 eCollection Date: 2018-01-01 DOI: 10.1155/2018/1657073
Sollip Kwon, Seungjun Lee

[This corrects the article DOI: 10.1155/2016/5054912.].

[这更正了文章DOI: 10.1155/2016/5054912.]。
{"title":"Corrigendum to \"Recent Advances in Microwave Imaging for Breast Cancer Detection\".","authors":"Sollip Kwon,&nbsp;Seungjun Lee","doi":"10.1155/2018/1657073","DOIUrl":"https://doi.org/10.1155/2018/1657073","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1155/2016/5054912.].</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2018-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/1657073","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36181829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Brain Midline Shift Measurement and Its Automation: A Review of Techniques and Algorithms. 脑中线偏移测量及其自动化:技术和算法综述。
IF 7.6 Q1 Medicine Pub Date : 2018-04-12 eCollection Date: 2018-01-01 DOI: 10.1155/2018/4303161
Chun-Chih Liao, Ya-Fang Chen, Furen Xiao

Midline shift (MLS) of the brain is an important feature that can be measured using various imaging modalities including X-ray, ultrasound, computed tomography, and magnetic resonance imaging. Shift of midline intracranial structures helps diagnosing intracranial lesions, especially traumatic brain injury, stroke, brain tumor, and abscess. Being a sign of increased intracranial pressure, MLS is also an indicator of reduced brain perfusion caused by an intracranial mass or mass effect. We review studies that used the MLS to predict outcomes of patients with intracranial mass. In some studies, the MLS was also correlated to clinical features. Automated MLS measurement algorithms have significant potentials for assisting human experts in evaluating brain images. In symmetry-based algorithms, the deformed midline is detected and its distance from the ideal midline taken as the MLS. In landmark-based ones, MLS was measured following identification of specific anatomical landmarks. To validate these algorithms, measurements using these algorithms were compared to MLS measurements made by human experts. In addition to measuring the MLS on a given imaging study, there were newer applications of MLS that included comparing multiple MLS measurement before and after treatment and developing additional features to indicate mass effect. Suggestions for future research are provided.

脑中线移位(MLS)是一个重要的特征,可以通过各种成像方式测量,包括x射线、超声、计算机断层扫描和磁共振成像。颅内中线结构的移位有助于颅内病变的诊断,尤其是外伤性脑损伤、脑卒中、脑肿瘤和脓肿。作为颅内压升高的标志,MLS也是颅内肿块或肿块效应引起的脑灌注减少的指标。我们回顾了使用MLS预测颅内肿块患者预后的研究。在一些研究中,MLS也与临床特征相关。自动化MLS测量算法在协助人类专家评估脑图像方面具有重要的潜力。在基于对称的算法中,检测变形的中线,并将其与理想中线的距离作为最大线距。在以地标为基础的研究中,MLS是在确定特定解剖地标后测量的。为了验证这些算法,使用这些算法的测量结果与人类专家进行的MLS测量结果进行了比较。除了在给定的影像学研究中测量MLS外,MLS还有一些新的应用,包括比较治疗前后的多个MLS测量,以及开发其他特征来指示质量效应。最后对今后的研究提出了建议。
{"title":"Brain Midline Shift Measurement and Its Automation: A Review of Techniques and Algorithms.","authors":"Chun-Chih Liao, Ya-Fang Chen, Furen Xiao","doi":"10.1155/2018/4303161","DOIUrl":"10.1155/2018/4303161","url":null,"abstract":"<p><p>Midline shift (MLS) of the brain is an important feature that can be measured using various imaging modalities including X-ray, ultrasound, computed tomography, and magnetic resonance imaging. Shift of midline intracranial structures helps diagnosing intracranial lesions, especially traumatic brain injury, stroke, brain tumor, and abscess. Being a sign of increased intracranial pressure, MLS is also an indicator of reduced brain perfusion caused by an intracranial mass or mass effect. We review studies that used the MLS to predict outcomes of patients with intracranial mass. In some studies, the MLS was also correlated to clinical features. Automated MLS measurement algorithms have significant potentials for assisting human experts in evaluating brain images. In symmetry-based algorithms, the deformed midline is detected and its distance from the ideal midline taken as the MLS. In landmark-based ones, MLS was measured following identification of specific anatomical landmarks. To validate these algorithms, measurements using these algorithms were compared to MLS measurements made by human experts. In addition to measuring the MLS on a given imaging study, there were newer applications of MLS that included comparing multiple MLS measurement before and after treatment and developing additional features to indicate mass effect. Suggestions for future research are provided.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2018-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/4303161","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36177714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 58
Cryo-Imaging and Software Platform for Analysis of Molecular MR Imaging of Micrometastases. 冷冻成像及微转移瘤分子磁共振成像分析软件平台。
IF 7.6 Q1 Medicine Pub Date : 2018-04-01 eCollection Date: 2018-01-01 DOI: 10.1155/2018/9780349
Mohammed Q Qutaish, Zhuxian Zhou, David Prabhu, Yiqiao Liu, Mallory R Busso, Donna Izadnegahdar, Madhusudhana Gargesha, Hong Lu, Zheng-Rong Lu, David L Wilson

We created and evaluated a preclinical, multimodality imaging, and software platform to assess molecular imaging of small metastases. This included experimental methods (e.g., GFP-labeled tumor and high resolution multispectral cryo-imaging), nonrigid image registration, and interactive visualization of imaging agent targeting. We describe technological details earlier applied to GFP-labeled metastatic tumor targeting by molecular MR (CREKA-Gd) and red fluorescent (CREKA-Cy5) imaging agents. Optimized nonrigid cryo-MRI registration enabled nonambiguous association of MR signals to GFP tumors. Interactive visualization of out-of-RAM volumetric image data allowed one to zoom to a GFP-labeled micrometastasis, determine its anatomical location from color cryo-images, and establish the presence/absence of targeted CREKA-Gd and CREKA-Cy5. In a mouse with >160 GFP-labeled tumors, we determined that in the MR images every tumor in the lung >0.3 mm2 had visible signal and that some metastases as small as 0.1 mm2 were also visible. More tumors were visible in CREKA-Cy5 than in CREKA-Gd MRI. Tape transfer method and nonrigid registration allowed accurate (<11 μm error) registration of whole mouse histology to corresponding cryo-images. Histology showed inflammation and necrotic regions not labeled by imaging agents. This mouse-to-cells multiscale and multimodality platform should uniquely enable more informative and accurate studies of metastatic cancer imaging and therapy.

我们创建并评估了一个临床前、多模式成像和软件平台,以评估小转移瘤的分子成像。这包括实验方法(例如,gfp标记的肿瘤和高分辨率多光谱冷冻成像),非刚性图像配准以及显像剂靶向的交互式可视化。我们描述了早期应用于分子MR (CREKA-Gd)和红色荧光(CREKA-Cy5)显像剂靶向gfp标记的转移性肿瘤的技术细节。优化的非刚性冷冻mri配准使MR信号与GFP肿瘤的非模糊关联成为可能。ram外体积图像数据的交互式可视化允许人们放大gfp标记的微转移,从彩色冷冻图像确定其解剖位置,并确定靶向CREKA-Gd和CREKA-Cy5的存在/不存在。在具有>160个gfp标记肿瘤的小鼠中,我们确定在MR图像中,肺中>0.3 mm2的每个肿瘤都有可见信号,并且一些小至0.1 mm2的转移也可见。CREKA-Cy5中可见肿瘤多于CREKA-Gd。磁带转移方法和非刚性配准可以将整个小鼠组织精确(误差为μm)配准到相应的冷冻图像。组织学显示炎症和坏死区域未被显像剂标记。这种小鼠到细胞的多尺度和多模态平台应该能够独特地提供更多信息和准确的转移性癌症成像和治疗研究。
{"title":"Cryo-Imaging and Software Platform for Analysis of Molecular MR Imaging of Micrometastases.","authors":"Mohammed Q Qutaish,&nbsp;Zhuxian Zhou,&nbsp;David Prabhu,&nbsp;Yiqiao Liu,&nbsp;Mallory R Busso,&nbsp;Donna Izadnegahdar,&nbsp;Madhusudhana Gargesha,&nbsp;Hong Lu,&nbsp;Zheng-Rong Lu,&nbsp;David L Wilson","doi":"10.1155/2018/9780349","DOIUrl":"https://doi.org/10.1155/2018/9780349","url":null,"abstract":"<p><p>We created and evaluated a preclinical, multimodality imaging, and software platform to assess molecular imaging of small metastases. This included experimental methods (e.g., GFP-labeled tumor and high resolution multispectral cryo-imaging), nonrigid image registration, and interactive visualization of imaging agent targeting. We describe technological details earlier applied to GFP-labeled metastatic tumor targeting by molecular MR (CREKA-Gd) and red fluorescent (CREKA-Cy5) imaging agents. Optimized nonrigid cryo-MRI registration enabled nonambiguous association of MR signals to GFP tumors. Interactive visualization of out-of-RAM volumetric image data allowed one to zoom to a GFP-labeled micrometastasis, determine its anatomical location from color cryo-images, and establish the presence/absence of targeted CREKA-Gd and CREKA-Cy5. In a mouse with >160 GFP-labeled tumors, we determined that in the MR images every tumor in the lung >0.3 mm<sup>2</sup> had visible signal and that some metastases as small as 0.1 mm<sup>2</sup> were also visible. More tumors were visible in CREKA-Cy5 than in CREKA-Gd MRI. Tape transfer method and nonrigid registration allowed accurate (<11 <i>μ</i>m error) registration of whole mouse histology to corresponding cryo-images. Histology showed inflammation and necrotic regions not labeled by imaging agents. This mouse-to-cells multiscale and multimodality platform should uniquely enable more informative and accurate studies of metastatic cancer imaging and therapy.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/9780349","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36134918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Classification of Alzheimer's and MCI Patients from Semantically Parcelled PET Images: A Comparison between AV45 and FDG-PET. 从语义分割的 PET 图像对阿尔茨海默氏症和 MCI 患者进行分类:AV45 和 FDG-PET 的比较。
IF 7.6 Q1 Medicine Pub Date : 2018-03-15 eCollection Date: 2018-01-01 DOI: 10.1155/2018/1247430
Seyed Hossein Nozadi, Samuel Kadoury, The Alzheimer's Disease Neuroimaging Initiative

Early identification of dementia in the early or late stages of mild cognitive impairment (MCI) is crucial for a timely diagnosis and slowing down the progression of Alzheimer's disease (AD). Positron emission tomography (PET) is considered a highly powerful diagnostic biomarker, but few approaches investigated the efficacy of focusing on localized PET-active areas for classification purposes. In this work, we propose a pipeline using learned features from semantically labelled PET images to perform group classification. A deformable multimodal PET-MRI registration method is employed to fuse an annotated MNI template to each patient-specific PET scan, generating a fully labelled volume from which 10 common regions of interest used for AD diagnosis are extracted. The method was evaluated on 660 subjects from the ADNI database, yielding a classification accuracy of 91.2% for AD versus NC when using random forests combining features from cross-sectional and follow-up exams. A considerable improvement in the early versus late MCI classification accuracy was achieved using FDG-PET compared to the AV-45 compound, yielding a 72.5% rate. The pipeline demonstrates the potential of exploiting longitudinal multiregion PET features to improve cognitive assessment.

早期识别轻度认知障碍(MCI)早期或晚期的痴呆症对于及时诊断和延缓阿尔茨海默病(AD)的进展至关重要。正电子发射断层扫描(PET)被认为是一种功能强大的诊断生物标志物,但很少有方法研究过将重点放在局部 PET 活跃区域进行分类的有效性。在这项工作中,我们提出了一种利用从语义标记的 PET 图像中学习到的特征来进行群体分类的方法。我们采用了一种可变形的多模态 PET-MRI 配准方法,将注释过的 MNI 模板融合到每个患者特定的 PET 扫描中,生成一个完全标记的体积,从中提取出 10 个用于诊断 AD 的常见感兴趣区。该方法在 ADNI 数据库的 660 名受试者身上进行了评估,当使用结合横断面和随访检查特征的随机森林时,AD 与 NC 的分类准确率为 91.2%。使用 FDG-PET 与 AV-45 复合物相比,早期 MCI 与晚期 MCI 的分类准确率有了显著提高,达到了 72.5%。该管道展示了利用纵向多区域 PET 特征改进认知评估的潜力。
{"title":"Classification of Alzheimer's and MCI Patients from Semantically Parcelled PET Images: A Comparison between AV45 and FDG-PET.","authors":"Seyed Hossein Nozadi, Samuel Kadoury, The Alzheimer's Disease Neuroimaging Initiative","doi":"10.1155/2018/1247430","DOIUrl":"10.1155/2018/1247430","url":null,"abstract":"<p><p>Early identification of dementia in the early or late stages of mild cognitive impairment (MCI) is crucial for a timely diagnosis and slowing down the progression of Alzheimer's disease (AD). Positron emission tomography (PET) is considered a highly powerful diagnostic biomarker, but few approaches investigated the efficacy of focusing on localized PET-active areas for classification purposes. In this work, we propose a pipeline using learned features from semantically labelled PET images to perform group classification. A deformable multimodal PET-MRI registration method is employed to fuse an annotated MNI template to each patient-specific PET scan, generating a fully labelled volume from which 10 common regions of interest used for AD diagnosis are extracted. The method was evaluated on 660 subjects from the ADNI database, yielding a classification accuracy of 91.2% for AD versus NC when using random forests combining features from cross-sectional and follow-up exams. A considerable improvement in the early versus late MCI classification accuracy was achieved using FDG-PET compared to the AV-45 compound, yielding a 72.5% rate. The pipeline demonstrates the potential of exploiting longitudinal multiregion PET features to improve cognitive assessment.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2018-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36077527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of Visual Information Presentation for Visual Prosthesis. 视觉义肢视觉信息呈现的优化。
IF 7.6 Q1 Medicine Pub Date : 2018-03-14 eCollection Date: 2018-01-01 DOI: 10.1155/2018/3198342
Fei Guo, Yuan Yang, Yong Gao

Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis.

利用电刺激恢复盲人视觉功能的视觉假体具有广阔的应用前景。然而,由于分辨率低,视野有限,视觉感知的动态范围较低,在呈现日常场景时发生了巨大的信息丢失。在现实场景中,假肢使用者的物体识别能力受到严重限制。为了克服这些局限性,优化模拟假肢视觉中的视觉信息一直是研究的重点。本文提出了两种基于显著目标检测技术的图像处理策略。这两种处理策略使假体植入物能够聚焦于感兴趣的目标,并抑制背景杂波。心理物理实验表明,前景放大与背景杂波去除、前景边缘检测与背景还原等技术对模拟假肢视觉的目标识别任务有积极的影响。利用边缘检测和缩放技术,两种处理策略显著提高了目标的识别精度。我们可以得出结论,使用我们提出的策略的视觉假体可以帮助盲人提高他们识别物体的能力。研究结果将为视觉假体的进一步发展提供有效的解决方案。
{"title":"Optimization of Visual Information Presentation for Visual Prosthesis.","authors":"Fei Guo,&nbsp;Yuan Yang,&nbsp;Yong Gao","doi":"10.1155/2018/3198342","DOIUrl":"https://doi.org/10.1155/2018/3198342","url":null,"abstract":"<p><p>Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2018-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/3198342","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36074539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
EBG Based Microstrip Patch Antenna for Brain Tumor Detection via Scattering Parameters in Microwave Imaging System. 微波成像系统中基于EBG的微带贴片天线散射参数检测脑肿瘤。
IF 7.6 Q1 Medicine Pub Date : 2018-02-12 eCollection Date: 2018-01-01 DOI: 10.1155/2018/8241438
Reefat Inum, Md Masud Rana, Kamrun Nahar Shushama, Md Anwarul Quader

A microwave brain imaging system model is envisaged to detect and visualize tumor inside the human brain. A compact and efficient microstrip patch antenna is used in the imaging technique to transmit equivalent signal and receive backscattering signal from the stratified human head model. Electromagnetic band gap (EBG) structure is incorporated on the antenna ground plane to enhance the performance. Rectangular and circular EBG structures are proposed to investigate the antenna performance. Incorporation of circular EBG on the antenna ground plane provides an improvement of 22.77% in return loss, 5.84% in impedance bandwidth, and 16.53% in antenna gain with respect to the patch antenna with rectangular EBG. The simulation results obtained from CST are compared to those obtained from HFSS to validate the design. Specific absorption rate (SAR) of the modeled head tissue for the proposed antenna is determined. Different SAR values are compared with the established standard SAR limit to provide a safety regulation of the imaging system. A monostatic radar-based confocal microwave imaging algorithm is applied to generate the image of tumor inside a six-layer human head phantom model. S-parameter signals obtained from circular EBG loaded patch antenna in different scanning modes are utilized in the imaging algorithm to effectively produce a high-resolution image which reliably indicates the presence of tumor inside human brain.

设想了一种微波脑成像系统模型,用于人脑内肿瘤的检测和可视化。成像技术采用紧凑高效的微带贴片天线,发射等效信号并接收分层人头模型的后向散射信号。为了提高天线的性能,在天线地平面上加入了电磁带隙结构。提出了矩形和圆形电子束结构来研究天线的性能。在天线地平面上加入圆形EBG,相对于采用矩形EBG的贴片天线,回波损耗提高22.77%,阻抗带宽提高5.84%,天线增益提高16.53%。将CST的仿真结果与HFSS的仿真结果进行了比较,验证了设计的正确性。确定了天线模型头部组织的比吸收率(SAR)。将不同的SAR值与建立的标准SAR限值进行比较,以提供成像系统的安全规范。采用基于单站雷达的共聚焦微波成像算法生成六层人体头部幻象模型内的肿瘤图像。成像算法利用圆形EBG加载贴片天线在不同扫描模式下获得的s参数信号,有效生成高分辨率图像,可靠地显示人脑内肿瘤的存在。
{"title":"EBG Based Microstrip Patch Antenna for Brain Tumor Detection via Scattering Parameters in Microwave Imaging System.","authors":"Reefat Inum,&nbsp;Md Masud Rana,&nbsp;Kamrun Nahar Shushama,&nbsp;Md Anwarul Quader","doi":"10.1155/2018/8241438","DOIUrl":"https://doi.org/10.1155/2018/8241438","url":null,"abstract":"<p><p>A microwave brain imaging system model is envisaged to detect and visualize tumor inside the human brain. A compact and efficient microstrip patch antenna is used in the imaging technique to transmit equivalent signal and receive backscattering signal from the stratified human head model. Electromagnetic band gap (EBG) structure is incorporated on the antenna ground plane to enhance the performance. Rectangular and circular EBG structures are proposed to investigate the antenna performance. Incorporation of circular EBG on the antenna ground plane provides an improvement of 22.77% in return loss, 5.84% in impedance bandwidth, and 16.53% in antenna gain with respect to the patch antenna with rectangular EBG. The simulation results obtained from CST are compared to those obtained from HFSS to validate the design. Specific absorption rate (SAR) of the modeled head tissue for the proposed antenna is determined. Different SAR values are compared with the established standard SAR limit to provide a safety regulation of the imaging system. A monostatic radar-based confocal microwave imaging algorithm is applied to generate the image of tumor inside a six-layer human head phantom model. <i>S</i>-parameter signals obtained from circular EBG loaded patch antenna in different scanning modes are utilized in the imaging algorithm to effectively produce a high-resolution image which reliably indicates the presence of tumor inside human brain.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2018-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/8241438","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35981701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 44
Localizing Optic Disc in Retinal Image Automatically with Entropy Based Algorithm. 基于熵的视网膜图像视盘自动定位算法。
IF 7.6 Q1 Medicine Pub Date : 2018-02-06 eCollection Date: 2018-01-01 DOI: 10.1155/2018/2815163
Lamia AbedNoor Muhammed

Examining retinal image continuously plays an important role in determining human eye health; with any variation present in this image, it may be resulting from some disease. Therefore, there is a need for computer-aided scanning for retinal image to perform this task automatically and accurately. The fundamental step in this task is identification of the retina elements; optical disk localization is the most important one in this identification. Different optical disc localization algorithms have been suggested, such as an algorithm that would be proposed in this paper. The assumption is based on the fact that optical disc area has rich information, so its entropy value is more significant in this area. The suggested algorithm has recursive steps for testing the entropy of different patches in image; sliding window technique is used to get these patches in a specific way. The results of practical work were obtained using different common data set, which achieved good accuracy in trivial computation time. Finally, this paper consists of four sections: a section for introduction containing the related works, a section for methodology and material, a section for practical work with results, and a section for conclusion.

连续检查视网膜图像在判断人眼健康状况中起着重要作用;如果图像中出现任何变化,则可能是由某种疾病引起的。因此,需要计算机辅助视网膜图像扫描来自动准确地完成这一任务。这项任务的基本步骤是识别视网膜元素;光盘定位是其中最重要的一项。不同的光盘定位算法已经被提出,例如本文将提出的一种算法。该假设是基于光盘区域具有丰富的信息,因此其熵值在该区域更为显著。该算法采用递归步骤测试图像中不同斑块的熵;使用滑动窗口技术以特定的方式获得这些补丁。利用不同的常用数据集,得到了实际工作的结果,在较小的计算时间内取得了较好的精度。最后,本文由四个部分组成:绪论部分包含相关著作,方法论和材料部分,实际工作和结果部分,结论部分。
{"title":"Localizing Optic Disc in Retinal Image Automatically with Entropy Based Algorithm.","authors":"Lamia AbedNoor Muhammed","doi":"10.1155/2018/2815163","DOIUrl":"https://doi.org/10.1155/2018/2815163","url":null,"abstract":"<p><p>Examining retinal image continuously plays an important role in determining human eye health; with any variation present in this image, it may be resulting from some disease. Therefore, there is a need for computer-aided scanning for retinal image to perform this task automatically and accurately. The fundamental step in this task is identification of the retina elements; optical disk localization is the most important one in this identification. Different optical disc localization algorithms have been suggested, such as an algorithm that would be proposed in this paper. The assumption is based on the fact that optical disc area has rich information, so its entropy value is more significant in this area. The suggested algorithm has recursive steps for testing the entropy of different patches in image; sliding window technique is used to get these patches in a specific way. The results of practical work were obtained using different common data set, which achieved good accuracy in trivial computation time. Finally, this paper consists of four sections: a section for introduction containing the related works, a section for methodology and material, a section for practical work with results, and a section for conclusion.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2018-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/2815163","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35924882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Respiratory Motion Correction for Compressively Sampled Free Breathing Cardiac MRI Using Smooth l1-Norm Approximation. 使用平滑 l1-正则近似对压缩采样的自由呼吸心脏磁共振成像进行呼吸运动校正
IF 7.6 Q1 Medicine Pub Date : 2018-01-23 eCollection Date: 2018-01-01 DOI: 10.1155/2018/7803067
Muhammad Bilal, Jawad Ali Shah, Ijaz M Qureshi, Kushsairy Kadir

Transformed domain sparsity of Magnetic Resonance Imaging (MRI) has recently been used to reduce the acquisition time in conjunction with compressed sensing (CS) theory. Respiratory motion during MR scan results in strong blurring and ghosting artifacts in recovered MR images. To improve the quality of the recovered images, motion needs to be estimated and corrected. In this article, a two-step approach is proposed for the recovery of cardiac MR images in the presence of free breathing motion. In the first step, compressively sampled MR images are recovered by solving an optimization problem using gradient descent algorithm. The L1-norm based regularizer, used in optimization problem, is approximated by a hyperbolic tangent function. In the second step, a block matching algorithm, known as Adaptive Rood Pattern Search (ARPS), is exploited to estimate and correct respiratory motion among the recovered images. The framework is tested for free breathing simulated and in vivo 2D cardiac cine MRI data. Simulation results show improved structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and mean square error (MSE) with different acceleration factors for the proposed method. Experimental results also provide a comparison between k-t FOCUSS with MEMC and the proposed method.

最近,磁共振成像(MRI)的变换域稀疏性与压缩传感(CS)理论相结合,被用于缩短采集时间。磁共振扫描过程中的呼吸运动会导致恢复的磁共振图像出现强烈的模糊和重影伪影。为了提高恢复图像的质量,需要对运动进行估计和校正。本文提出了一种分两步恢复存在自由呼吸运动的心脏磁共振图像的方法。第一步,使用梯度下降算法解决优化问题,恢复压缩采样的磁共振图像。优化问题中使用的基于 L1 准则的正则化器由双曲正切函数近似。第二步,利用称为自适应鲁德模式搜索(ARPS)的块匹配算法来估计和纠正恢复图像中的呼吸运动。该框架针对自由呼吸模拟和活体二维心脏椎体磁共振成像数据进行了测试。仿真结果表明,所提方法在不同加速因子下的结构相似性指数(SSIM)、峰值信噪比(PSNR)和均方误差(MSE)都有所改善。实验结果还提供了 k-t FOCUSS 与 MEMC 和建议方法之间的比较。
{"title":"Respiratory Motion Correction for Compressively Sampled Free Breathing Cardiac MRI Using Smooth <i>l</i><sub>1</sub>-Norm Approximation.","authors":"Muhammad Bilal, Jawad Ali Shah, Ijaz M Qureshi, Kushsairy Kadir","doi":"10.1155/2018/7803067","DOIUrl":"10.1155/2018/7803067","url":null,"abstract":"<p><p>Transformed domain sparsity of Magnetic Resonance Imaging (MRI) has recently been used to reduce the acquisition time in conjunction with compressed sensing (CS) theory. Respiratory motion during MR scan results in strong blurring and ghosting artifacts in recovered MR images. To improve the quality of the recovered images, motion needs to be estimated and corrected. In this article, a two-step approach is proposed for the recovery of cardiac MR images in the presence of free breathing motion. In the first step, compressively sampled MR images are recovered by solving an optimization problem using gradient descent algorithm. The <i>L</i><sub>1</sub>-norm based regularizer, used in optimization problem, is approximated by a hyperbolic tangent function. In the second step, a block matching algorithm, known as Adaptive Rood Pattern Search (ARPS), is exploited to estimate and correct respiratory motion among the recovered images. The framework is tested for free breathing simulated and <i>in vivo</i> 2D cardiac cine MRI data. Simulation results show improved structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and mean square error (MSE) with different acceleration factors for the proposed method. Experimental results also provide a comparison between <i>k-t</i> FOCUSS with MEMC and the proposed method.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2018-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35971299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Biomedical Imaging
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1