首页 > 最新文献

International Journal of Biomedical Imaging最新文献

英文 中文
Future of the Renal Biopsy: Time to Change the Conventional Modality Using Nanotechnology. 肾活检的未来:利用纳米技术改变传统检查方式的时候到了。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2017-01-01 Epub Date: 2017-02-19 DOI: 10.1155/2017/6141734
Hamid Tayebi Khosroshahi, Behzad Abedi, Sabalan Daneshvar, Yashar Sarbaz, Abolhassan Shakeri Bavil

At the present time, imaging guided renal biopsy is used to provide diagnoses in most types of primary and secondary renal diseases. It has been claimed that renal biopsy can provide a link between diagnosis of renal disease and its pathological conditions. However, sometimes there is a considerable mismatch between patient renal outcome and pathological findings in renal biopsy. This is the time to address some new diagnostic methods to resolve the insufficiency of conventional percutaneous guided renal biopsy. Nanotechnology is still in its infancy in renal imaging; however, it seems that it is the next step in renal biopsy, providing solutions to the limitations of conventional modalities.

目前,成像引导下的肾活检可用于诊断大多数类型的原发性和继发性肾脏疾病。有人声称,肾活检可以将肾脏疾病的诊断与病理情况联系起来。然而,有时患者的肾病结果与肾活检的病理结果之间存在相当大的不匹配。此时,我们需要一些新的诊断方法来解决传统经皮引导肾活检的不足。纳米技术在肾脏成像方面仍处于起步阶段,但它似乎是肾脏活检的下一步,为解决传统模式的局限性提供了解决方案。
{"title":"Future of the Renal Biopsy: Time to Change the Conventional Modality Using Nanotechnology.","authors":"Hamid Tayebi Khosroshahi, Behzad Abedi, Sabalan Daneshvar, Yashar Sarbaz, Abolhassan Shakeri Bavil","doi":"10.1155/2017/6141734","DOIUrl":"10.1155/2017/6141734","url":null,"abstract":"<p><p>At the present time, imaging guided renal biopsy is used to provide diagnoses in most types of primary and secondary renal diseases. It has been claimed that renal biopsy can provide a link between diagnosis of renal disease and its pathological conditions. However, sometimes there is a considerable mismatch between patient renal outcome and pathological findings in renal biopsy. This is the time to address some new diagnostic methods to resolve the insufficiency of conventional percutaneous guided renal biopsy. Nanotechnology is still in its infancy in renal imaging; however, it seems that it is the next step in renal biopsy, providing solutions to the limitations of conventional modalities.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2017 ","pages":"6141734"},"PeriodicalIF":7.6,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5337808/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34832916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Deformable Image Registration for Three-Dimensional Temporal Subtraction of Chest Computed Tomography Images. 可变形图像配准对胸部ct图像三维时间相减的评价。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2017-01-01 Epub Date: 2017-10-12 DOI: 10.1155/2017/3457189
Ping Yan, Yoshie Kodera, Kazuhiro Shimamoto

Purpose: To perform lung image registration for reducing misregistration artifacts on three-dimensional (3D) temporal subtraction of chest computed tomography (CT) images, in order to enhance temporal changes in lung lesions and evaluate these changes after deformable image registration (DIR).

Methods: In 10 cases, mutual information (MI) lung mask affine mapping combined with cross-correlation (CC) lung diffeomorphic mapping was used to implement lung volume registration. With advanced normalization tools (ANTs), we used greedy symmetric normalization (greedy SyN) as a transformation model, which involved MI-CC-SyN implementation. The resulting displacement fields were applied to warp the previous (moving) image, which was subsequently subtracted from the current (fixed) image to obtain the lung subtraction image.

Results: The average minimum and maximum log-Jacobians were 0.31 and 3.74, respectively. When considering 3D landmark distance, the root-mean-square error changed from an average of 20.82 mm for Pfixed to Pmoving to 0.5 mm for Pwarped to Pfixed. Clear shadows were observed as enhanced lung nodules and lesions in subtraction images. The lesion shadows showed lesion shrinkage changes over time. Lesion tissue morphology was maintained after DIR.

Conclusions: DIR (greedy SyN) effectively and accurately enhanced temporal changes in chest CT images and decreased misregistration artifacts in temporal subtraction images.

目的:对肺部图像进行配准,以减少胸部计算机断层扫描(CT)图像三维(3D)时间减影上的错配伪影,从而增强肺部病变的时间变化,并评估形变图像配准(DIR)后的这些变化。方法:对10例患者采用互信息(MI)肺掩膜仿射成像结合互相关(CC)肺差胚成像进行肺容积配准。使用高级规范化工具(ant),我们使用贪婪对称规范化(贪心SyN)作为转换模型,其中涉及MI-CC-SyN实现。由此产生的位移场被应用于扭曲前一个(移动)图像,随后从当前(固定)图像中减去该图像,得到肺减法图像。结果:平均最小和最大对数雅可比矩阵分别为0.31和3.74。当考虑三维地标距离时,均方根误差从Pfixed到Pmoving的平均20.82 mm变为Pwarped到Pfixed的平均0.5 mm。减影图像中可见肺结节和病变增强的清晰阴影。病灶阴影显示病灶缩小随时间变化。术后保持病变组织形态。结论:DIR(贪心SyN)有效、准确地增强了胸部CT图像的时间变化,减少了时间减影图像的错配伪影。
{"title":"Evaluation of Deformable Image Registration for Three-Dimensional Temporal Subtraction of Chest Computed Tomography Images.","authors":"Ping Yan,&nbsp;Yoshie Kodera,&nbsp;Kazuhiro Shimamoto","doi":"10.1155/2017/3457189","DOIUrl":"https://doi.org/10.1155/2017/3457189","url":null,"abstract":"<p><strong>Purpose: </strong>To perform lung image registration for reducing misregistration artifacts on three-dimensional (3D) temporal subtraction of chest computed tomography (CT) images, in order to enhance temporal changes in lung lesions and evaluate these changes after deformable image registration (DIR).</p><p><strong>Methods: </strong>In 10 cases, mutual information (MI) lung mask affine mapping combined with cross-correlation (CC) lung diffeomorphic mapping was used to implement lung volume registration. With advanced normalization tools (ANTs), we used greedy symmetric normalization (greedy SyN) as a transformation model, which involved MI-CC-SyN implementation. The resulting displacement fields were applied to warp the previous (moving) image, which was subsequently subtracted from the current (fixed) image to obtain the lung subtraction image.</p><p><strong>Results: </strong>The average minimum and maximum log-Jacobians were 0.31 and 3.74, respectively. When considering 3D landmark distance, the root-mean-square error changed from an average of 20.82 mm for <i>P</i><sub>fixed</sub> to <i>P</i><sub>moving</sub> to 0.5 mm for <i>P</i><sub>warped</sub> to <i>P</i><sub>fixed</sub>. Clear shadows were observed as enhanced lung nodules and lesions in subtraction images. The lesion shadows showed lesion shrinkage changes over time. Lesion tissue morphology was maintained after DIR.</p><p><strong>Conclusions: </strong>DIR (greedy SyN) effectively and accurately enhanced temporal changes in chest CT images and decreased misregistration artifacts in temporal subtraction images.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2017 ","pages":"3457189"},"PeriodicalIF":7.6,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/3457189","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35628394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Multitasking Electrical Impedance Tomography System Using Titanium Alloy Electrode. 钛合金电极多任务电阻抗层析成像系统。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2017-01-01 Epub Date: 2017-10-31 DOI: 10.1155/2017/3589324
Abdalla Salama, Amin Malekmohammadi, Shahram Mohanna, Rajprasad Rajkumar

This paper presents a multitasking electrical impedance tomography (EIT) system designed to improve the flexibility and durability of an existing EIT system. The ability of the present EIT system to detect, locate, and reshape objects was evaluated by four different experiments. The results of the study show that the system can detect and locate an object with a diameter as small as 1.5 mm in a testing tank with a diameter of 134 mm. Moreover, the results demonstrate the ability of the current system to reconstruct an image of several dielectric object shapes. Based on the results of the experiments, the programmable EIT system can adapt the EIT system for different applications without the need to implement a new EIT system, which may help to save time and cost. The setup for all the experiments consisted of a testing tank with an attached 16-electrode array made of titanium alloy grade 2. The titanium alloy electrode was used to enhance EIT system's durability and lifespan.

本文提出了一种多任务电阻抗断层成像(EIT)系统,旨在提高现有EIT系统的灵活性和耐用性。通过四种不同的实验来评估当前EIT系统检测、定位和重塑目标的能力。研究结果表明,该系统可以在直径为134 mm的测试槽中检测和定位直径小至1.5 mm的物体。此外,实验结果还证明了当前系统重建多种介质物体形状图像的能力。实验结果表明,该可编程EIT系统可以适应不同的应用,而不需要重新设计EIT系统,这有助于节省时间和成本。所有实验的设置都由一个测试槽组成,该测试槽附有由2级钛合金制成的16个电极阵列。采用钛合金电极,提高了EIT系统的耐用性和寿命。
{"title":"A Multitasking Electrical Impedance Tomography System Using Titanium Alloy Electrode.","authors":"Abdalla Salama,&nbsp;Amin Malekmohammadi,&nbsp;Shahram Mohanna,&nbsp;Rajprasad Rajkumar","doi":"10.1155/2017/3589324","DOIUrl":"https://doi.org/10.1155/2017/3589324","url":null,"abstract":"<p><p>This paper presents a multitasking electrical impedance tomography (EIT) system designed to improve the flexibility and durability of an existing EIT system. The ability of the present EIT system to detect, locate, and reshape objects was evaluated by four different experiments. The results of the study show that the system can detect and locate an object with a diameter as small as 1.5 mm in a testing tank with a diameter of 134 mm. Moreover, the results demonstrate the ability of the current system to reconstruct an image of several dielectric object shapes. Based on the results of the experiments, the programmable EIT system can adapt the EIT system for different applications without the need to implement a new EIT system, which may help to save time and cost. The setup for all the experiments consisted of a testing tank with an attached 16-electrode array made of titanium alloy grade 2. The titanium alloy electrode was used to enhance EIT system's durability and lifespan.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2017 ","pages":"3589324"},"PeriodicalIF":7.6,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/3589324","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35327527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Image Analysis for MRI Based Brain Tumor Detection and Feature Extraction Using Biologically Inspired BWT and SVM. 基于MRI的脑肿瘤检测图像分析及生物启发BWT和SVM特征提取。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2017-01-01 Epub Date: 2017-03-06 DOI: 10.1155/2017/9749108
Nilesh Bhaskarrao Bahadure, Arun Kumar Ray, Har Pal Thethi

The segmentation, detection, and extraction of infected tumor area from magnetic resonance (MR) images are a primary concern but a tedious and time taking task performed by radiologists or clinical experts, and their accuracy depends on their experience only. So, the use of computer aided technology becomes very necessary to overcome these limitations. In this study, to improve the performance and reduce the complexity involves in the medical image segmentation process, we have investigated Berkeley wavelet transformation (BWT) based brain tumor segmentation. Furthermore, to improve the accuracy and quality rate of the support vector machine (SVM) based classifier, relevant features are extracted from each segmented tissue. The experimental results of proposed technique have been evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on accuracy, sensitivity, specificity, and dice similarity index coefficient. The experimental results achieved 96.51% accuracy, 94.2% specificity, and 97.72% sensitivity, demonstrating the effectiveness of the proposed technique for identifying normal and abnormal tissues from brain MR images. The experimental results also obtained an average of 0.82 dice similarity index coefficient, which indicates better overlap between the automated (machines) extracted tumor region with manually extracted tumor region by radiologists. The simulation results prove the significance in terms of quality parameters and accuracy in comparison to state-of-the-art techniques.

从磁共振(MR)图像中分割、检测和提取感染肿瘤区域是一个主要关注的问题,但这是一项由放射科医生或临床专家执行的繁琐且耗时的任务,其准确性仅取决于他们的经验。因此,利用计算机辅助技术来克服这些限制变得非常必要。在本研究中,为了提高医学图像分割的性能和降低分割过程的复杂性,我们研究了基于Berkeley小波变换(BWT)的脑肿瘤分割。此外,为了提高基于支持向量机(SVM)的分类器的准确率和质量,从每个被分割的组织中提取相关特征。基于准确性、灵敏度、特异性和骰子相似指数系数,对该技术的实验结果进行了评估和验证,用于磁共振脑图像的性能和质量分析。实验结果表明,该方法的准确率为96.51%,特异性为94.2%,灵敏度为97.72%,证明了该方法在脑MR图像中识别正常和异常组织的有效性。实验结果也得到了平均0.82的骰子相似指数系数,这表明自动(机器)提取的肿瘤区域与放射科医生人工提取的肿瘤区域有更好的重叠。仿真结果表明,与现有技术相比,该方法在质量参数和精度方面具有重要意义。
{"title":"Image Analysis for MRI Based Brain Tumor Detection and Feature Extraction Using Biologically Inspired BWT and SVM.","authors":"Nilesh Bhaskarrao Bahadure,&nbsp;Arun Kumar Ray,&nbsp;Har Pal Thethi","doi":"10.1155/2017/9749108","DOIUrl":"https://doi.org/10.1155/2017/9749108","url":null,"abstract":"<p><p>The segmentation, detection, and extraction of infected tumor area from magnetic resonance (MR) images are a primary concern but a tedious and time taking task performed by radiologists or clinical experts, and their accuracy depends on their experience only. So, the use of computer aided technology becomes very necessary to overcome these limitations. In this study, to improve the performance and reduce the complexity involves in the medical image segmentation process, we have investigated Berkeley wavelet transformation (BWT) based brain tumor segmentation. Furthermore, to improve the accuracy and quality rate of the support vector machine (SVM) based classifier, relevant features are extracted from each segmented tissue. The experimental results of proposed technique have been evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on accuracy, sensitivity, specificity, and dice similarity index coefficient. The experimental results achieved 96.51% accuracy, 94.2% specificity, and 97.72% sensitivity, demonstrating the effectiveness of the proposed technique for identifying normal and abnormal tissues from brain MR images. The experimental results also obtained an average of 0.82 dice similarity index coefficient, which indicates better overlap between the automated (machines) extracted tumor region with manually extracted tumor region by radiologists. The simulation results prove the significance in terms of quality parameters and accuracy in comparison to state-of-the-art techniques.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2017 ","pages":"9749108"},"PeriodicalIF":7.6,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/9749108","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34877145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 446
Corrigendum to "Automatic Characterization of the Physiological Condition of the Carotid Artery in 2D Ultrasound Image Sequences Using Spatiotemporal and Spatiospectral 2D Maps". “使用时空和空间光谱二维地图在二维超声图像序列中自动表征颈动脉生理状况”的勘误表。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2017-01-01 Epub Date: 2017-06-28 DOI: 10.1155/2017/4237858
Hamed Hamid Muhammed, Jimmy C Azar

[This corrects the article DOI: 10.1155/2014/876267.].

[这更正了文章DOI: 10.1155/2014/876267.]。
{"title":"Corrigendum to \"Automatic Characterization of the Physiological Condition of the Carotid Artery in 2D Ultrasound Image Sequences Using Spatiotemporal and Spatiospectral 2D Maps\".","authors":"Hamed Hamid Muhammed,&nbsp;Jimmy C Azar","doi":"10.1155/2017/4237858","DOIUrl":"https://doi.org/10.1155/2017/4237858","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1155/2014/876267.].</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2017 ","pages":"4237858"},"PeriodicalIF":7.6,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/4237858","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35198670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Improved Extrapolation Scheme for Truncated CT Data Using 2D Fourier-Based Helgason-Ludwig Consistency Conditions. 基于二维傅里叶Helgason-Ludwig一致性条件的截断CT数据改进外推方案。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2017-01-01 Epub Date: 2017-07-20 DOI: 10.1155/2017/1867025
Yan Xia, Martin Berger, Sebastian Bauer, Shiyang Hu, Andre Aichert, Andreas Maier

We improve data extrapolation for truncated computed tomography (CT) projections by using Helgason-Ludwig (HL) consistency conditions that mathematically describe the overlap of information between projections. First, we theoretically derive a 2D Fourier representation of the HL consistency conditions from their original formulation (projection moment theorem), for both parallel-beam and fan-beam imaging geometry. The derivation result indicates that there is a zero energy region forming a double-wedge shape in 2D Fourier domain. This observation is also referred to as the Fourier property of a sinogram in the previous literature. The major benefit of this representation is that the consistency conditions can be efficiently evaluated via 2D fast Fourier transform (FFT). Then, we suggest a method that extrapolates the truncated projections with data from a uniform ellipse of which the parameters are determined by optimizing these consistency conditions. The forward projection of the optimized ellipse can be used to complete the truncation data. The proposed algorithm is evaluated using simulated data and reprojections of clinical data. Results show that the root mean square error (RMSE) is reduced substantially, compared to a state-of-the-art extrapolation method.

我们通过使用Helgason-Ludwig (HL)一致性条件来改进截断计算机断层扫描(CT)投影的数据外推,该条件在数学上描述了投影之间的信息重叠。首先,我们从理论上推导出HL一致性条件的二维傅里叶表示,从它们的原始公式(投影矩定理),为平行光束和扇形光束成像几何。推导结果表明,在二维傅里叶域中存在一个形成双楔形的零能区。这个观察结果在以前的文献中也被称为正弦图的傅里叶性质。这种表示的主要优点是可以通过二维快速傅里叶变换(FFT)有效地评估一致性条件。然后,我们提出了一种用均匀椭圆的数据外推截断投影的方法,其中参数是通过优化这些一致性条件来确定的。利用优化后椭圆的正投影完成数据的截断。该算法使用模拟数据和临床数据的重新投影进行评估。结果表明,与最先进的外推方法相比,该方法大大降低了均方根误差(RMSE)。
{"title":"An Improved Extrapolation Scheme for Truncated CT Data Using 2D Fourier-Based Helgason-Ludwig Consistency Conditions.","authors":"Yan Xia,&nbsp;Martin Berger,&nbsp;Sebastian Bauer,&nbsp;Shiyang Hu,&nbsp;Andre Aichert,&nbsp;Andreas Maier","doi":"10.1155/2017/1867025","DOIUrl":"https://doi.org/10.1155/2017/1867025","url":null,"abstract":"<p><p>We improve data extrapolation for truncated computed tomography (CT) projections by using Helgason-Ludwig (HL) consistency conditions that mathematically describe the overlap of information between projections. First, we theoretically derive a 2D Fourier representation of the HL consistency conditions from their original formulation (projection moment theorem), for both parallel-beam and fan-beam imaging geometry. The derivation result indicates that there is a zero energy region forming a double-wedge shape in 2D Fourier domain. This observation is also referred to as the Fourier property of a sinogram in the previous literature. The major benefit of this representation is that the consistency conditions can be efficiently evaluated via 2D fast Fourier transform (FFT). Then, we suggest a method that extrapolates the truncated projections with data from a uniform ellipse of which the parameters are determined by optimizing these consistency conditions. The forward projection of the optimized ellipse can be used to complete the truncation data. The proposed algorithm is evaluated using simulated data and reprojections of clinical data. Results show that the root mean square error (RMSE) is reduced substantially, compared to a state-of-the-art extrapolation method.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2017 ","pages":"1867025"},"PeriodicalIF":7.6,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/1867025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35321534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Quantitative Evaluation of Temporal Regularizers in Compressed Sensing Dynamic Contrast Enhanced MRI of the Breast. 压缩感知动态增强乳房MRI中时间正则化的定量评价。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2017-01-01 Epub Date: 2017-08-28 DOI: 10.1155/2017/7835749
Dong Wang, Lori R Arlinghaus, Thomas E Yankeelov, Xiaoping Yang, David S Smith

Purpose: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is used in cancer imaging to probe tumor vascular properties. Compressed sensing (CS) theory makes it possible to recover MR images from randomly undersampled k-space data using nonlinear recovery schemes. The purpose of this paper is to quantitatively evaluate common temporal sparsity-promoting regularizers for CS DCE-MRI of the breast.

Methods: We considered five ubiquitous temporal regularizers on 4.5x retrospectively undersampled Cartesian in vivo breast DCE-MRI data: Fourier transform (FT), Haar wavelet transform (WT), total variation (TV), second-order total generalized variation (TGV α2), and nuclear norm (NN). We measured the signal-to-error ratio (SER) of the reconstructed images, the error in tumor mean, and concordance correlation coefficients (CCCs) of the derived pharmacokinetic parameters Ktrans (volume transfer constant) and ve (extravascular-extracellular volume fraction) across a population of random sampling schemes.

Results: NN produced the lowest image error (SER: 29.1), while TV/TGV α2 produced the most accurate Ktrans (CCC: 0.974/0.974) and ve (CCC: 0.916/0.917). WT produced the highest image error (SER: 21.8), while FT produced the least accurate Ktrans (CCC: 0.842) and ve (CCC: 0.799).

Conclusion: TV/TGV α2 should be used as temporal constraints for CS DCE-MRI of the breast.

目的:动态对比增强磁共振成像(DCE-MRI)用于癌症成像,探测肿瘤血管特性。压缩感知(CS)理论使得使用非线性恢复方案从随机欠采样k空间数据中恢复MR图像成为可能。本文的目的是定量评估乳腺CS dce mri常见的时间稀疏性促进正则化器。方法:我们对4.5倍回顾性欠采样笛卡尔体内乳腺DCE-MRI数据考虑了五种普遍存在的时间正则化:傅里叶变换(FT)、哈尔小波变换(WT)、总变分(TV)、二阶总广义变分(TGV α2)和核范数(NN)。我们测量了重建图像的信错比(SER),肿瘤平均值的误差,以及衍生的药代动力学参数Ktrans(体积传递常数)和ve(血管外-细胞外体积分数)的一致性相关系数(CCCs)。结果:NN产生的图像误差最低(SER: 29.1), TV/TGV α2产生的Ktrans (CCC: 0.974/0.974)和ve (CCC: 0.916/0.917)最准确。WT产生的图像误差最高(SER: 21.8), FT产生的Ktrans (CCC: 0.842)和ve (CCC: 0.799)精度最低。结论:TV/TGV α2可作为乳腺CS - dce的时间约束。
{"title":"Quantitative Evaluation of Temporal Regularizers in Compressed Sensing Dynamic Contrast Enhanced MRI of the Breast.","authors":"Dong Wang,&nbsp;Lori R Arlinghaus,&nbsp;Thomas E Yankeelov,&nbsp;Xiaoping Yang,&nbsp;David S Smith","doi":"10.1155/2017/7835749","DOIUrl":"https://doi.org/10.1155/2017/7835749","url":null,"abstract":"<p><strong>Purpose: </strong>Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is used in cancer imaging to probe tumor vascular properties. Compressed sensing (CS) theory makes it possible to recover MR images from randomly undersampled <i>k</i>-space data using nonlinear recovery schemes. The purpose of this paper is to quantitatively evaluate common temporal sparsity-promoting regularizers for CS DCE-MRI of the breast.</p><p><strong>Methods: </strong>We considered five ubiquitous temporal regularizers on 4.5x retrospectively undersampled Cartesian in vivo breast DCE-MRI data: Fourier transform (FT), Haar wavelet transform (WT), total variation (TV), second-order total generalized variation (TGV <sub><i>α</i></sub><sup>2</sup>), and nuclear norm (NN). We measured the signal-to-error ratio (SER) of the reconstructed images, the error in tumor mean, and concordance correlation coefficients (CCCs) of the derived pharmacokinetic parameters <i>K</i><sup>trans</sup> (volume transfer constant) and <i>v</i><sub><i>e</i></sub> (extravascular-extracellular volume fraction) across a population of random sampling schemes.</p><p><strong>Results: </strong>NN produced the lowest image error (SER: 29.1), while TV/TGV <sub><i>α</i></sub><sup>2</sup> produced the most accurate <i>K</i><sup>trans</sup> (CCC: 0.974/0.974) and <i>v</i><sub><i>e</i></sub> (CCC: 0.916/0.917). WT produced the highest image error (SER: 21.8), while FT produced the least accurate <i>K</i><sup>trans</sup> (CCC: 0.842) and <i>v</i><sub>e</sub> (CCC: 0.799).</p><p><strong>Conclusion: </strong>TV/TGV <sub><i>α</i></sub><sup>2</sup> should be used as temporal constraints for CS DCE-MRI of the breast.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2017 ","pages":"7835749"},"PeriodicalIF":7.6,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/7835749","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35373103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Computer-Aided Cobb Measurement Based on Automatic Detection of Vertebral Slopes Using Deep Neural Network. 基于深度神经网络的椎体坡度自动检测的计算机辅助Cobb测量。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2017-01-01 Epub Date: 2017-10-03 DOI: 10.1155/2017/9083916
Junhua Zhang, Hongjian Li, Liang Lv, Yufeng Zhang

Objective: To develop a computer-aided method that reduces the variability of Cobb angle measurement for scoliosis assessment.

Methods: A deep neural network (DNN) was trained with vertebral patches extracted from spinal model radiographs. The Cobb angle of the spinal curve was calculated automatically from the vertebral slopes predicted by the DNN. Sixty-five in vivo radiographs and 40 model radiographs were analyzed. An experienced surgeon performed manual measurements on the aforementioned radiographs. Two examiners used both the proposed and the manual measurement methods to analyze the aforementioned radiographs.

Results: For model radiographs, the intraclass correlation coefficients were greater than 0.98, and the mean absolute differences were less than 3°. This indicates that the proposed system showed high repeatability for measurements of model radiographs. For the in vivo radiographs, the reliabilities were lower than those from the model radiographs, and the differences between the computer-aided measurement and the manual measurement by the surgeon were higher than 5°.

Conclusion: The variability of Cobb angle measurements can be reduced if the DNN system is trained with enough vertebral patches. Training data of in vivo radiographs must be included to improve the performance of DNN.

Significance: Vertebral slopes can be predicted by DNN. The computer-aided system can be used to perform automatic measurements of Cobb angle, which is used to make reliable and objective assessments of scoliosis.

目的:开发一种计算机辅助方法,减少脊柱侧凸评估中Cobb角测量的可变性。方法:利用从脊柱模型x线片中提取的椎体斑块进行深度神经网络训练。根据DNN预测的椎体斜率自动计算脊柱曲线的Cobb角。分析65张活体x线片和40张模型x线片。一位经验丰富的外科医生对上述x光片进行了手动测量。两名审查员使用了建议的和人工测量方法来分析上述x光片。结果:模型x线片类内相关系数均大于0.98,平均绝对差值小于3°。这表明所提出的系统对模型射线照相机的测量具有很高的重复性。对于活体x线片,可靠性低于模型x线片,计算机辅助测量与外科医生人工测量的差异大于5°。结论:采用足够的椎体补片训练DNN系统,可降低Cobb角测量的变异性。为了提高DNN的性能,必须包括活体x线片的训练数据。意义:DNN可以预测椎体斜率。计算机辅助系统可用于自动测量Cobb角,用于对脊柱侧凸进行可靠和客观的评估。
{"title":"Computer-Aided Cobb Measurement Based on Automatic Detection of Vertebral Slopes Using Deep Neural Network.","authors":"Junhua Zhang,&nbsp;Hongjian Li,&nbsp;Liang Lv,&nbsp;Yufeng Zhang","doi":"10.1155/2017/9083916","DOIUrl":"https://doi.org/10.1155/2017/9083916","url":null,"abstract":"<p><strong>Objective: </strong>To develop a computer-aided method that reduces the variability of Cobb angle measurement for scoliosis assessment.</p><p><strong>Methods: </strong>A deep neural network (DNN) was trained with vertebral patches extracted from spinal model radiographs. The Cobb angle of the spinal curve was calculated automatically from the vertebral slopes predicted by the DNN. Sixty-five in vivo radiographs and 40 model radiographs were analyzed. An experienced surgeon performed manual measurements on the aforementioned radiographs. Two examiners used both the proposed and the manual measurement methods to analyze the aforementioned radiographs.</p><p><strong>Results: </strong>For model radiographs, the intraclass correlation coefficients were greater than 0.98, and the mean absolute differences were less than 3°. This indicates that the proposed system showed high repeatability for measurements of model radiographs. For the in vivo radiographs, the reliabilities were lower than those from the model radiographs, and the differences between the computer-aided measurement and the manual measurement by the surgeon were higher than 5°.</p><p><strong>Conclusion: </strong>The variability of Cobb angle measurements can be reduced if the DNN system is trained with enough vertebral patches. Training data of in vivo radiographs must be included to improve the performance of DNN.</p><p><strong>Significance: </strong>Vertebral slopes can be predicted by DNN. The computer-aided system can be used to perform automatic measurements of Cobb angle, which is used to make reliable and objective assessments of scoliosis.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2017 ","pages":"9083916"},"PeriodicalIF":7.6,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/9083916","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35536423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 52
An Automatic Image Processing System for Glaucoma Screening. 青光眼筛查的自动图像处理系统。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2017-01-01 Epub Date: 2017-08-29 DOI: 10.1155/2017/4826385
Ahmed Almazroa, Sami Alodhayb, Kaamran Raahemifar, Vasudevan Lakshminarayanan

Horizontal and vertical cup to disc ratios are the most crucial parameters used clinically to detect glaucoma or monitor its progress and are manually evaluated from retinal fundus images of the optic nerve head. Due to the rarity of the glaucoma experts as well as the increasing in glaucoma's population, an automatically calculated horizontal and vertical cup to disc ratios (HCDR and VCDR, resp.) can be useful for glaucoma screening. We report on two algorithms to calculate the HCDR and VCDR. In the algorithms, level set and inpainting techniques were developed for segmenting the disc, while thresholding using Type-II fuzzy approach was developed for segmenting the cup. The results from the algorithms were verified using the manual markings of images from a dataset of glaucomatous images (retinal fundus images for glaucoma analysis (RIGA dataset)) by six ophthalmologists. The algorithm's accuracy for HCDR and VCDR combined was 74.2%. Only the accuracy of manual markings by one ophthalmologist was higher than the algorithm's accuracy. The algorithm's best agreement was with markings by ophthalmologist number 1 in 230 images (41.8%) of the total tested images.

水平和垂直杯盘比是临床上用于检测青光眼或监测其进展的最重要参数,并通过视神经头的视网膜眼底图像进行人工评估。由于青光眼专家的稀少和青光眼人群的增加,自动计算水平和垂直杯盘比(HCDR和VCDR,分别)可用于青光眼筛查。我们报告了计算HCDR和VCDR的两种算法。在算法中,开发了水平集和图像绘制技术用于分割椎间盘,而使用ii型模糊方法的阈值法用于分割杯子。六位眼科医生使用青光眼图像数据集(用于青光眼分析的视网膜眼底图像(RIGA数据集))的图像手工标记来验证算法的结果。该算法对HCDR和VCDR的综合准确率为74.2%。只有一位眼科医生手工标记的准确性高于该算法的准确性。该算法在230张(41.8%)测试图像中与1号眼科医生的标记最吻合。
{"title":"An Automatic Image Processing System for Glaucoma Screening.","authors":"Ahmed Almazroa,&nbsp;Sami Alodhayb,&nbsp;Kaamran Raahemifar,&nbsp;Vasudevan Lakshminarayanan","doi":"10.1155/2017/4826385","DOIUrl":"https://doi.org/10.1155/2017/4826385","url":null,"abstract":"<p><p>Horizontal and vertical cup to disc ratios are the most crucial parameters used clinically to detect glaucoma or monitor its progress and are manually evaluated from retinal fundus images of the optic nerve head. Due to the rarity of the glaucoma experts as well as the increasing in glaucoma's population, an automatically calculated horizontal and vertical cup to disc ratios (HCDR and VCDR, resp.) can be useful for glaucoma screening. We report on two algorithms to calculate the HCDR and VCDR. In the algorithms, level set and inpainting techniques were developed for segmenting the disc, while thresholding using Type-II fuzzy approach was developed for segmenting the cup. The results from the algorithms were verified using the manual markings of images from a dataset of glaucomatous images (retinal fundus images for glaucoma analysis (RIGA dataset)) by six ophthalmologists. The algorithm's accuracy for HCDR and VCDR combined was 74.2%. Only the accuracy of manual markings by one ophthalmologist was higher than the algorithm's accuracy. The algorithm's best agreement was with markings by ophthalmologist number 1 in 230 images (41.8%) of the total tested images.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2017 ","pages":"4826385"},"PeriodicalIF":7.6,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/4826385","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35545367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
Medical Image Fusion Based on Feature Extraction and Sparse Representation. 基于特征提取和稀疏表示的医学图像融合。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2017-01-01 Epub Date: 2017-02-21 DOI: 10.1155/2017/3020461
Yin Fei, Gao Wei, Song Zongxi

As a novel multiscale geometric analysis tool, sparse representation has shown many advantages over the conventional image representation methods. However, the standard sparse representation does not take intrinsic structure and its time complexity into consideration. In this paper, a new fusion mechanism for multimodal medical images based on sparse representation and decision map is proposed to deal with these problems simultaneously. Three decision maps are designed including structure information map (SM) and energy information map (EM) as well as structure and energy map (SEM) to make the results reserve more energy and edge information. SM contains the local structure feature captured by the Laplacian of a Gaussian (LOG) and EM contains the energy and energy distribution feature detected by the mean square deviation. The decision map is added to the normal sparse representation based method to improve the speed of the algorithm. Proposed approach also improves the quality of the fused results by enhancing the contrast and reserving more structure and energy information from the source images. The experiment results of 36 groups of CT/MR, MR-T1/MR-T2, and CT/PET images demonstrate that the method based on SR and SEM outperforms five state-of-the-art methods.

作为一种新型的多尺度几何分析工具,稀疏表示与传统的图像表示方法相比具有许多优点。然而,标准稀疏表示没有考虑固有结构及其时间复杂度。本文提出了一种基于稀疏表示和决策映射的多模态医学图像融合机制来同时处理这些问题。设计了结构信息图(SM)和能量信息图(EM)以及结构和能量图(SEM)三种决策图,使结果保留更多的能量和边缘信息。SM包含由拉普拉斯高斯函数(LOG)捕获的局部结构特征,EM包含由均方差检测到的能量和能量分布特征。在基于正态稀疏表示的方法中加入决策映射,提高了算法的速度。该方法通过增强对比度和保留更多源图像的结构和能量信息,提高了融合结果的质量。36组CT/MR、MR- t1 /MR- t2和CT/PET图像的实验结果表明,基于SR和SEM的方法优于5种最先进的方法。
{"title":"Medical Image Fusion Based on Feature Extraction and Sparse Representation.","authors":"Yin Fei,&nbsp;Gao Wei,&nbsp;Song Zongxi","doi":"10.1155/2017/3020461","DOIUrl":"https://doi.org/10.1155/2017/3020461","url":null,"abstract":"<p><p>As a novel multiscale geometric analysis tool, sparse representation has shown many advantages over the conventional image representation methods. However, the standard sparse representation does not take intrinsic structure and its time complexity into consideration. In this paper, a new fusion mechanism for multimodal medical images based on sparse representation and decision map is proposed to deal with these problems simultaneously. Three decision maps are designed including structure information map (SM) and energy information map (EM) as well as structure and energy map (SEM) to make the results reserve more energy and edge information. SM contains the local structure feature captured by the Laplacian of a Gaussian (LOG) and EM contains the energy and energy distribution feature detected by the mean square deviation. The decision map is added to the normal sparse representation based method to improve the speed of the algorithm. Proposed approach also improves the quality of the fused results by enhancing the contrast and reserving more structure and energy information from the source images. The experiment results of 36 groups of CT/MR, MR-T1/MR-T2, and CT/PET images demonstrate that the method based on SR and SEM outperforms five state-of-the-art methods.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2017 ","pages":"3020461"},"PeriodicalIF":7.6,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/3020461","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34837712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
期刊
International Journal of Biomedical Imaging
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1