Purpose: We aim to develop modified clinical indication (CI)-based image quality scoring criteria (IQSC) for assessing image quality (IQ) and establishing acceptable quality doses (AQDs) in adult computed tomography (CT) examinations, based on CIs and patient sizes.
Approach: CT images, volume CT dose index ( ), and dose length product (DLP) were collected retrospectively between September 2020 and September 2021 for eight common CIs from two CT scanners at a central hospital in the Kingdom of Bahrain. Using the modified CI-based IQSC and a Likert scale (0 to 4), three radiologists assessed the IQ of each examination. AQDs were then established as the median value of and DLP for images with an average score of 3 and compared to national diagnostic reference levels (NDRLs).
Results: Out of 581 examinations, 60 were excluded from the study due to average scores above or below 3. The established AQDs were lower than the NDRLs for all CIs, except for oncologic follow-up for large patients (28 versus 26 mGy) in scanner A, besides abdominal pain for medium patients (16 versus 15 mGy) and large patients (34 versus 27 mGy), and diverticulitis/appendicitis for medium patients (15 versus 12 mGy) and large patients (33 versus 30 mGy) in scanner B, indicating the need for optimization.
Conclusions: CI-based IQSC is crucial for IQ assessment and establishing AQDs according to patient size. It identifies stations requiring optimization of patient radiation exposure.
{"title":"Assessment of image quality and establishment of local acceptable quality dose for computed tomography based on patient effective diameter.","authors":"Nada Hasan, Chadia Rizk, Fatema Marzooq, Khalid Khan, Maryam AlKhaja, Esameldeen Babikir","doi":"10.1117/1.JMI.11.4.043502","DOIUrl":"10.1117/1.JMI.11.4.043502","url":null,"abstract":"<p><strong>Purpose: </strong>We aim to develop modified clinical indication (CI)-based image quality scoring criteria (IQSC) for assessing image quality (IQ) and establishing acceptable quality doses (AQDs) in adult computed tomography (CT) examinations, based on CIs and patient sizes.</p><p><strong>Approach: </strong>CT images, volume CT dose index ( <math> <mrow> <msub><mrow><mi>CTDI</mi></mrow> <mrow><mi>vol</mi></mrow> </msub> </mrow> </math> ), and dose length product (DLP) were collected retrospectively between September 2020 and September 2021 for eight common CIs from two CT scanners at a central hospital in the Kingdom of Bahrain. Using the modified CI-based IQSC and a Likert scale (0 to 4), three radiologists assessed the IQ of each examination. AQDs were then established as the median value of <math> <mrow> <msub><mrow><mi>CTDI</mi></mrow> <mrow><mi>vol</mi></mrow> </msub> </mrow> </math> and DLP for images with an average score of 3 and compared to national diagnostic reference levels (NDRLs).</p><p><strong>Results: </strong>Out of 581 examinations, 60 were excluded from the study due to average scores above or below 3. The established AQDs were lower than the NDRLs for all CIs, except <math><mrow><mi>AQDs</mi> <mo>/</mo> <msub><mrow><mi>CTDI</mi></mrow> <mrow><mi>vol</mi></mrow> </msub> </mrow> </math> for oncologic follow-up for large patients (28 versus 26 mGy) in scanner A, besides abdominal pain for medium patients (16 versus 15 mGy) and large patients (34 versus 27 mGy), and diverticulitis/appendicitis for medium patients (15 versus 12 mGy) and large patients (33 versus 30 mGy) in scanner B, indicating the need for optimization.</p><p><strong>Conclusions: </strong>CI-based IQSC is crucial for IQ assessment and establishing AQDs according to patient size. It identifies stations requiring optimization of patient radiation exposure.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 4","pages":"043502"},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328147/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-08-28DOI: 10.1117/1.JMI.11.4.045504
Sarah J Lewis, Jayden B Wells, Warren M Reed, Claudia Mello-Thoms, Peter A O'Reilly, Marion Dimigen
Purpose: Reporting templates for chest radiographs (CXRs) for patients presenting or being clinically managed for severe acute respiratory syndrome coronavirus 2 [coronavirus disease 2019 (COVID-19)] has attracted advocacy from international radiology societies. We aim to explore the effectiveness and useability of three international templates through the concordance of, and between, radiologists reporting on the presence and severity of COVID-19 on CXRs.
Approach: Seventy CXRs were obtained from a referral hospital, 50 from patients with COVID-19 (30 rated "classic" COVID-19 appearance and 20 "indeterminate") and 10 "normal" and 10 "alternative pathology" CXRs. The recruited radiologists were assigned to three test sets with the same CXRs but with different template orders. Each radiologist read their test set three times and assigned a classification to the CXR using the Royal Australian New Zealand College of Radiology (RANZCR), British Society of Thoracic Imaging (BSTI), and Modified COVID-19 Reporting and Data System (Dutch; mCO-RADS) templates. Inter-reader variability and intra-reader variability were measured using Fleiss' kappa coefficient.
Results: Twelve Australian radiologists participated. The BSTI template had the highest inter-reader agreement (0.46; "moderate" agreement), followed by RANZCR (0.45) and mCO-RADS (0.32). Concordance was driven by strong agreement in "normal" and "alternative" classifications and was lowest for "indeterminate." General consistency was observed across classifications and templates, with intra-reader variability ranging from "good" to "very good" for COVID-19 CXRs (0.61), "normal" CXRs (0.76), and "alternative" (0.68).
Conclusions: Reporting templates may be useful in reducing variation among radiology reports, with intra-reader variability showing promise. Feasibility and implementation require a wider approach including referring and treating doctors plus the development of training packages for radiologists specific to the template being used.
{"title":"Use of reporting templates for chest radiographs in a coronavirus disease 2019 context: measuring concordance of radiologists with three international templates.","authors":"Sarah J Lewis, Jayden B Wells, Warren M Reed, Claudia Mello-Thoms, Peter A O'Reilly, Marion Dimigen","doi":"10.1117/1.JMI.11.4.045504","DOIUrl":"https://doi.org/10.1117/1.JMI.11.4.045504","url":null,"abstract":"<p><strong>Purpose: </strong>Reporting templates for chest radiographs (CXRs) for patients presenting or being clinically managed for severe acute respiratory syndrome coronavirus 2 [coronavirus disease 2019 (COVID-19)] has attracted advocacy from international radiology societies. We aim to explore the effectiveness and useability of three international templates through the concordance of, and between, radiologists reporting on the presence and severity of COVID-19 on CXRs.</p><p><strong>Approach: </strong>Seventy CXRs were obtained from a referral hospital, 50 from patients with COVID-19 (30 rated \"classic\" COVID-19 appearance and 20 \"indeterminate\") and 10 \"normal\" and 10 \"alternative pathology\" CXRs. The recruited radiologists were assigned to three test sets with the same CXRs but with different template orders. Each radiologist read their test set three times and assigned a classification to the CXR using the Royal Australian New Zealand College of Radiology (RANZCR), British Society of Thoracic Imaging (BSTI), and Modified COVID-19 Reporting and Data System (Dutch; mCO-RADS) templates. Inter-reader variability and intra-reader variability were measured using Fleiss' kappa coefficient.</p><p><strong>Results: </strong>Twelve Australian radiologists participated. The BSTI template had the highest inter-reader agreement (0.46; \"moderate\" agreement), followed by RANZCR (0.45) and mCO-RADS (0.32). Concordance was driven by strong agreement in \"normal\" and \"alternative\" classifications and was lowest for \"indeterminate.\" General consistency was observed across classifications and templates, with intra-reader variability ranging from \"good\" to \"very good\" for COVID-19 CXRs (0.61), \"normal\" CXRs (0.76), and \"alternative\" (0.68).</p><p><strong>Conclusions: </strong>Reporting templates may be useful in reducing variation among radiology reports, with intra-reader variability showing promise. Feasibility and implementation require a wider approach including referring and treating doctors plus the development of training packages for radiologists specific to the template being used.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 4","pages":"045504"},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-12DOI: 10.1117/1.JMI.11.4.044503
Hinrich Rahlfs, Markus Hüllebrand, Sebastian Schmitter, Christoph Strecker, Andreas Harloff, Anja Hennemuth
Purpose: Atherosclerosis of the carotid artery is a major risk factor for stroke. Quantitative assessment of the carotid vessel wall can be based on cross-sections of three-dimensional (3D) black-blood magnetic resonance imaging (MRI). To increase reproducibility, a reliable automatic segmentation in these cross-sections is essential.
Approach: We propose an automatic segmentation of the carotid artery in cross-sections perpendicular to the centerline to make the segmentation invariant to the image plane orientation and allow a correct assessment of the vessel wall thickness (VWT). We trained a residual U-Net on eight sparsely sampled cross-sections per carotid artery and evaluated if the model can segment areas that are not represented in the training data. We used 218 MRI datasets of 121 subjects that show hypertension and plaque in the ICA or CCA measuring in ultrasound.
Results: The model achieves a high mean Dice coefficient of 0.948/0.859 for the vessel's lumen/wall, a low mean Hausdorff distance of , and a low mean average contour distance of on the test set. The model reaches similar results for regions of the carotid artery that are not incorporated in the training set and on MRI of young, healthy subjects. The model also achieves a low median Hausdorff distance of on the 2021 Carotid Artery Vessel Wall Segmentation Challenge test set.
Conclusions: The proposed method can reduce the effort for carotid artery vessel wall assessment. Together with human supervision, it can be used for clinical applications, as it allows a reliable measurement of the VWT for different patient demographics and MRI acquisition settings.
{"title":"Learning carotid vessel wall segmentation in black-blood MRI using sparsely sampled cross-sections from 3D data.","authors":"Hinrich Rahlfs, Markus Hüllebrand, Sebastian Schmitter, Christoph Strecker, Andreas Harloff, Anja Hennemuth","doi":"10.1117/1.JMI.11.4.044503","DOIUrl":"10.1117/1.JMI.11.4.044503","url":null,"abstract":"<p><strong>Purpose: </strong>Atherosclerosis of the carotid artery is a major risk factor for stroke. Quantitative assessment of the carotid vessel wall can be based on cross-sections of three-dimensional (3D) black-blood magnetic resonance imaging (MRI). To increase reproducibility, a reliable automatic segmentation in these cross-sections is essential.</p><p><strong>Approach: </strong>We propose an automatic segmentation of the carotid artery in cross-sections perpendicular to the centerline to make the segmentation invariant to the image plane orientation and allow a correct assessment of the vessel wall thickness (VWT). We trained a residual U-Net on eight sparsely sampled cross-sections per carotid artery and evaluated if the model can segment areas that are not represented in the training data. We used 218 MRI datasets of 121 subjects that show hypertension and plaque in the ICA or CCA measuring <math><mrow><mo>≥</mo> <mn>1.5</mn> <mtext> </mtext> <mi>mm</mi></mrow> </math> in ultrasound.</p><p><strong>Results: </strong>The model achieves a high mean Dice coefficient of 0.948/0.859 for the vessel's lumen/wall, a low mean Hausdorff distance of <math><mrow><mn>0.417</mn> <mo>/</mo> <mn>0.660</mn> <mtext> </mtext> <mi>mm</mi></mrow> </math> , and a low mean average contour distance of <math><mrow><mn>0.094</mn> <mo>/</mo> <mn>0.119</mn> <mtext> </mtext> <mi>mm</mi></mrow> </math> on the test set. The model reaches similar results for regions of the carotid artery that are not incorporated in the training set and on MRI of young, healthy subjects. The model also achieves a low median Hausdorff distance of <math><mrow><mn>0.437</mn> <mo>/</mo> <mn>0.552</mn> <mtext> </mtext> <mi>mm</mi></mrow> </math> on the 2021 Carotid Artery Vessel Wall Segmentation Challenge test set.</p><p><strong>Conclusions: </strong>The proposed method can reduce the effort for carotid artery vessel wall assessment. Together with human supervision, it can be used for clinical applications, as it allows a reliable measurement of the VWT for different patient demographics and MRI acquisition settings.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 4","pages":"044503"},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-17DOI: 10.1117/1.JMI.11.4.044003
Arpitha Ravi, Philipp Bernhardt, Mathis Hoffmann, Richard Obler, Cuong Nguyen, Andreas Berting, René Chapot, Andreas Maier
Purpose: Monitoring radiation dose and time parameters during radiological interventions is crucial, especially in neurointerventional procedures, such as aneurysm treatment with embolization coils. The algorithm presented detects the presence of these embolization coils in medical images. It establishes a bounding box as a reference for automated collimation, with the primary objective being to enhance the efficiency and safety of neurointerventional procedures by actively optimizing image quality while minimizing patient dose.
Methods: Two distinct methodologies are evaluated in our study. The first involves deep learning, employing the Faster R-CNN model with a ResNet-50 FPN as a backbone and a RetinaNet model. The second method utilizes a classical blob detection approach, serving as a benchmark for comparison.
Results: We performed a fivefold cross-validation, and our top-performing model achieved mean mAP@75 of 0.84 across all folds on validation data and mean mAP@75 of 0.94 on independent test data. Since we use an upscaled bounding box, achieving 100% overlap between ground truth and prediction is not necessary. To highlight the real-world applications of our algorithm, we conducted a simulation featuring a coil constructed from an alloy wire, effectively showcasing the implementation of automatic collimation. This resulted in a notable reduction in the dose area product, signifying the reduction of stochastic risks for both patients and medical staff by minimizing scatter radiation. Additionally, our algorithm assists in avoiding extreme brightness or darkness in X-ray angiography images during narrow collimation, ultimately streamlining the collimation process for physicians.
Conclusion: To our knowledge, this marks the initial attempt at an approach successfully detecting embolization coils, showcasing the extended applications of integrating detection results into the X-ray angiography system. The method we present has the potential for broader application, allowing its extension to detect other medical objects utilized in interventional procedures.
{"title":"Optimizing neurointerventional procedures: an algorithm for embolization coil detection and automated collimation to enable dose reduction.","authors":"Arpitha Ravi, Philipp Bernhardt, Mathis Hoffmann, Richard Obler, Cuong Nguyen, Andreas Berting, René Chapot, Andreas Maier","doi":"10.1117/1.JMI.11.4.044003","DOIUrl":"10.1117/1.JMI.11.4.044003","url":null,"abstract":"<p><strong>Purpose: </strong>Monitoring radiation dose and time parameters during radiological interventions is crucial, especially in neurointerventional procedures, such as aneurysm treatment with embolization coils. The algorithm presented detects the presence of these embolization coils in medical images. It establishes a bounding box as a reference for automated collimation, with the primary objective being to enhance the efficiency and safety of neurointerventional procedures by actively optimizing image quality while minimizing patient dose.</p><p><strong>Methods: </strong>Two distinct methodologies are evaluated in our study. The first involves deep learning, employing the Faster R-CNN model with a ResNet-50 FPN as a backbone and a RetinaNet model. The second method utilizes a classical blob detection approach, serving as a benchmark for comparison.</p><p><strong>Results: </strong>We performed a fivefold cross-validation, and our top-performing model achieved mean mAP@75 of 0.84 across all folds on validation data and mean mAP@75 of 0.94 on independent test data. Since we use an upscaled bounding box, achieving 100% overlap between ground truth and prediction is not necessary. To highlight the real-world applications of our algorithm, we conducted a simulation featuring a coil constructed from an alloy wire, effectively showcasing the implementation of automatic collimation. This resulted in a notable reduction in the dose area product, signifying the reduction of stochastic risks for both patients and medical staff by minimizing scatter radiation. Additionally, our algorithm assists in avoiding extreme brightness or darkness in X-ray angiography images during narrow collimation, ultimately streamlining the collimation process for physicians.</p><p><strong>Conclusion: </strong>To our knowledge, this marks the initial attempt at an approach successfully detecting embolization coils, showcasing the extended applications of integrating detection results into the X-ray angiography system. The method we present has the potential for broader application, allowing its extension to detect other medical objects utilized in interventional procedures.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 4","pages":"044003"},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259374/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-19DOI: 10.1117/1.JMI.11.4.046001
Maksym Sharma, Miranda Kirby, Aaron Fenster, David G McCormack, Grace Parraga
<p><strong>Purpose: </strong>Our objective was to train machine-learning algorithms on hyperpolarized <math> <mrow> <mmultiscripts><mrow><mi>He</mi></mrow> <mprescripts></mprescripts> <none></none> <mrow><mn>3</mn></mrow> </mmultiscripts> </mrow> </math> magnetic resonance imaging (MRI) datasets to generate models of accelerated lung function decline in participants with and without chronic-obstructive-pulmonary-disease. We hypothesized that hyperpolarized gas MRI ventilation, machine-learning, and multivariate modeling could be combined to predict clinically-relevant changes in forced expiratory volume in 1 s ( <math> <mrow><msub><mi>FEV</mi> <mn>1</mn></msub> </mrow> </math> ) across 3 years.</p><p><strong>Approach: </strong>Hyperpolarized <math> <mrow> <mmultiscripts><mrow><mi>He</mi></mrow> <mprescripts></mprescripts> <none></none> <mrow><mn>3</mn></mrow> </mmultiscripts> </mrow> </math> MRI was acquired using a coronal Cartesian fast gradient recalled echo sequence with a partial echo and segmented using a k-means clustering algorithm. A maximum entropy mask was used to generate a region-of-interest for texture feature extraction using a custom-developed algorithm and the PyRadiomics platform. The principal component and Boruta analyses were used for feature selection. Ensemble-based and single machine-learning classifiers were evaluated using area-under-the-receiver-operator-curve and sensitivity-specificity analysis.</p><p><strong>Results: </strong>We evaluated 88 ex-smoker participants with <math><mrow><mn>31</mn> <mo>±</mo> <mn>7</mn></mrow> </math> months follow-up data, 57 of whom (22 females/35 males, <math><mrow><mn>70</mn> <mo>±</mo> <mn>9</mn></mrow> </math> years) had negligible changes in <math> <mrow><msub><mi>FEV</mi> <mn>1</mn></msub> </mrow> </math> and 31 participants (7 females/24 males, <math><mrow><mn>68</mn> <mo>±</mo> <mn>9</mn></mrow> </math> years) with worsening <math> <mrow> <msub><mrow><mi>FEV</mi></mrow> <mrow><mn>1</mn></mrow> </msub> <mo>≥</mo> <mn>60</mn> <mtext> </mtext> <mi>mL</mi> <mo>/</mo> <mtext>year</mtext></mrow> </math> . In addition, 3/88 ex-smokers reported a change in smoking status. We generated machine-learning models to predict <math> <mrow><msub><mi>FEV</mi> <mn>1</mn></msub> </mrow> </math> decline using demographics, spirometry, and texture features, with the later yielding the highest classification accuracy of 81%. The combined model (trained on all available measurements) achieved the overall best classification accuracy of 82%; however, it was not significantly different from the model trained on MRI texture features alone.</p><p><strong>Conclusion: </strong>For the first time, we have employed hyperpolarized <math> <mrow> <mmultiscripts><mrow><mi>He</mi></mrow> <mprescripts></mprescripts> <none></none> <mrow><mn>3</mn></mrow> </mmultiscripts> </mrow> </math> MRI ventilation texture features and machine-learning to identify ex-smokers with accelerated decline in <math> <mrow><msub><mi>FEV
{"title":"Machine learning and magnetic resonance image texture analysis predicts accelerated lung function decline in ex-smokers with and without chronic obstructive pulmonary disease.","authors":"Maksym Sharma, Miranda Kirby, Aaron Fenster, David G McCormack, Grace Parraga","doi":"10.1117/1.JMI.11.4.046001","DOIUrl":"10.1117/1.JMI.11.4.046001","url":null,"abstract":"<p><strong>Purpose: </strong>Our objective was to train machine-learning algorithms on hyperpolarized <math> <mrow> <mmultiscripts><mrow><mi>He</mi></mrow> <mprescripts></mprescripts> <none></none> <mrow><mn>3</mn></mrow> </mmultiscripts> </mrow> </math> magnetic resonance imaging (MRI) datasets to generate models of accelerated lung function decline in participants with and without chronic-obstructive-pulmonary-disease. We hypothesized that hyperpolarized gas MRI ventilation, machine-learning, and multivariate modeling could be combined to predict clinically-relevant changes in forced expiratory volume in 1 s ( <math> <mrow><msub><mi>FEV</mi> <mn>1</mn></msub> </mrow> </math> ) across 3 years.</p><p><strong>Approach: </strong>Hyperpolarized <math> <mrow> <mmultiscripts><mrow><mi>He</mi></mrow> <mprescripts></mprescripts> <none></none> <mrow><mn>3</mn></mrow> </mmultiscripts> </mrow> </math> MRI was acquired using a coronal Cartesian fast gradient recalled echo sequence with a partial echo and segmented using a k-means clustering algorithm. A maximum entropy mask was used to generate a region-of-interest for texture feature extraction using a custom-developed algorithm and the PyRadiomics platform. The principal component and Boruta analyses were used for feature selection. Ensemble-based and single machine-learning classifiers were evaluated using area-under-the-receiver-operator-curve and sensitivity-specificity analysis.</p><p><strong>Results: </strong>We evaluated 88 ex-smoker participants with <math><mrow><mn>31</mn> <mo>±</mo> <mn>7</mn></mrow> </math> months follow-up data, 57 of whom (22 females/35 males, <math><mrow><mn>70</mn> <mo>±</mo> <mn>9</mn></mrow> </math> years) had negligible changes in <math> <mrow><msub><mi>FEV</mi> <mn>1</mn></msub> </mrow> </math> and 31 participants (7 females/24 males, <math><mrow><mn>68</mn> <mo>±</mo> <mn>9</mn></mrow> </math> years) with worsening <math> <mrow> <msub><mrow><mi>FEV</mi></mrow> <mrow><mn>1</mn></mrow> </msub> <mo>≥</mo> <mn>60</mn> <mtext> </mtext> <mi>mL</mi> <mo>/</mo> <mtext>year</mtext></mrow> </math> . In addition, 3/88 ex-smokers reported a change in smoking status. We generated machine-learning models to predict <math> <mrow><msub><mi>FEV</mi> <mn>1</mn></msub> </mrow> </math> decline using demographics, spirometry, and texture features, with the later yielding the highest classification accuracy of 81%. The combined model (trained on all available measurements) achieved the overall best classification accuracy of 82%; however, it was not significantly different from the model trained on MRI texture features alone.</p><p><strong>Conclusion: </strong>For the first time, we have employed hyperpolarized <math> <mrow> <mmultiscripts><mrow><mi>He</mi></mrow> <mprescripts></mprescripts> <none></none> <mrow><mn>3</mn></mrow> </mmultiscripts> </mrow> </math> MRI ventilation texture features and machine-learning to identify ex-smokers with accelerated decline in <math> <mrow><msub><mi>FEV","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 4","pages":"046001"},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259551/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Recently, diffusion posterior sampling (DPS), where score-based diffusion priors are combined with likelihood models, has been used to produce high-quality computed tomography (CT) images given low-quality measurements. This technique permits one-time, unsupervised training of a CT prior, which can then be incorporated with an arbitrary data model. However, current methods rely on a linear model of X-ray CT physics to reconstruct. Although it is common to linearize the transmission tomography reconstruction problem, this is an approximation to the true and inherently nonlinear forward model. We propose a DPS method that integrates a general nonlinear measurement model.
Approach: We implement a traditional unconditional diffusion model by training a prior score function estimator and apply Bayes' rule to combine this prior with a measurement likelihood score function derived from the nonlinear physical model to arrive at a posterior score function that can be used to sample the reverse-time diffusion process. We develop computational enhancements for the approach and evaluate the reconstruction approach in several simulation studies.
Results: The proposed nonlinear DPS provides improved performance over traditional reconstruction methods and DPS with a linear model. Moreover, as compared with a conditionally trained deep learning approach, the nonlinear DPS approach shows a better ability to provide high-quality images for different acquisition protocols.
Conclusion: This plug-and-play method allows the incorporation of a diffusion-based prior with a general nonlinear CT measurement model. This permits the application of the approach to different systems, protocols, etc., without the need for any additional training.
{"title":"CT reconstruction using diffusion posterior sampling conditioned on a nonlinear measurement model.","authors":"Shudong Li, Xiao Jiang, Matthew Tivnan, Grace J Gang, Yuan Shen, J Webster Stayman","doi":"10.1117/1.JMI.11.4.043504","DOIUrl":"10.1117/1.JMI.11.4.043504","url":null,"abstract":"<p><strong>Purpose: </strong>Recently, diffusion posterior sampling (DPS), where score-based diffusion priors are combined with likelihood models, has been used to produce high-quality computed tomography (CT) images given low-quality measurements. This technique permits one-time, unsupervised training of a CT prior, which can then be incorporated with an arbitrary data model. However, current methods rely on a linear model of X-ray CT physics to reconstruct. Although it is common to linearize the transmission tomography reconstruction problem, this is an approximation to the true and inherently nonlinear forward model. We propose a DPS method that integrates a general nonlinear measurement model.</p><p><strong>Approach: </strong>We implement a traditional unconditional diffusion model by training a prior score function estimator and apply Bayes' rule to combine this prior with a measurement likelihood score function derived from the nonlinear physical model to arrive at a posterior score function that can be used to sample the reverse-time diffusion process. We develop computational enhancements for the approach and evaluate the reconstruction approach in several simulation studies.</p><p><strong>Results: </strong>The proposed nonlinear DPS provides improved performance over traditional reconstruction methods and DPS with a linear model. Moreover, as compared with a conditionally trained deep learning approach, the nonlinear DPS approach shows a better ability to provide high-quality images for different acquisition protocols.</p><p><strong>Conclusion: </strong>This plug-and-play method allows the incorporation of a diffusion-based prior with a general nonlinear CT measurement model. This permits the application of the approach to different systems, protocols, etc., without the need for any additional training.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 4","pages":"043504"},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362816/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-08-06DOI: 10.1117/1.JMI.11.4.044506
Steven Squires, Alistair Mackenzie, Dafydd Gareth Evans, Sacha J Howell, Susan M Astley
Purpose: Breast density is associated with the risk of developing cancer and can be automatically estimated using deep learning models from digital mammograms. Our aim is to evaluate the capacity and reliability of such models to predict density from low-dose mammograms taken to enable risk estimates for younger women.
Approach: We trained deep learning models on standard-dose and simulated low-dose mammograms. The models were then tested on a mammography dataset with paired standard- and low-dose images. The effect of different factors (including age, density, and dose ratio) on the differences between predictions on standard and low doses is analyzed. Methods to improve performance are assessed, and factors that reduce the model quality are demonstrated.
Results: We showed that, although many factors have no significant effect on the quality of low-dose density prediction, both density and breast area have an impact. The correlation between density predictions on low- and standard-dose images of breasts with the largest breast area is 0.985 (0.949 to 0.995), whereas that with the smallest is 0.882 (0.697 to 0.961). We also demonstrated that averaging across craniocaudal-mediolateral oblique (CC-MLO) images and across repeatedly trained models can improve predictive performance.
Conclusions: Low-dose mammography can be used to produce density and risk estimates that are comparable to standard-dose images. Averaging across CC-MLO and model predictions should improve this performance. The model quality is reduced when making predictions on denser and smaller breasts.
目的:乳房密度与罹患癌症的风险有关,可以使用深度学习模型从数字乳房X光照片中自动估算出乳房密度。我们的目的是评估此类模型预测低剂量乳房 X 光照片密度的能力和可靠性,以便对年轻女性进行风险估计:我们在标准剂量和模拟低剂量乳房 X 光照片上训练了深度学习模型。然后在标准剂量和低剂量图像配对的乳房 X 射线照相数据集上对模型进行测试。分析了不同因素(包括年龄、密度和剂量比)对标准剂量和低剂量预测差异的影响。评估了提高性能的方法,并展示了降低模型质量的因素:结果:我们发现,虽然很多因素对低剂量密度预测的质量没有显著影响,但密度和乳房面积都有影响。乳房面积最大的乳房在低剂量和标准剂量图像上的密度预测相关性为 0.985(0.949 至 0.995),而乳房面积最小的乳房在低剂量和标准剂量图像上的密度预测相关性为 0.882(0.697 至 0.961)。我们还证明,在颅尾-中间偏斜(CC-MLO)图像和反复训练的模型之间进行平均,可以提高预测性能:结论:低剂量乳腺 X 射线照相术可产生与标准剂量图像相当的密度和风险估计值。CC-MLO和模型预测的平均值应能提高这一性能。对密度较高和较小的乳房进行预测时,模型质量会下降。
{"title":"Capability and reliability of deep learning models to make density predictions on low-dose mammograms.","authors":"Steven Squires, Alistair Mackenzie, Dafydd Gareth Evans, Sacha J Howell, Susan M Astley","doi":"10.1117/1.JMI.11.4.044506","DOIUrl":"10.1117/1.JMI.11.4.044506","url":null,"abstract":"<p><strong>Purpose: </strong>Breast density is associated with the risk of developing cancer and can be automatically estimated using deep learning models from digital mammograms. Our aim is to evaluate the capacity and reliability of such models to predict density from low-dose mammograms taken to enable risk estimates for younger women.</p><p><strong>Approach: </strong>We trained deep learning models on standard-dose and simulated low-dose mammograms. The models were then tested on a mammography dataset with paired standard- and low-dose images. The effect of different factors (including age, density, and dose ratio) on the differences between predictions on standard and low doses is analyzed. Methods to improve performance are assessed, and factors that reduce the model quality are demonstrated.</p><p><strong>Results: </strong>We showed that, although many factors have no significant effect on the quality of low-dose density prediction, both density and breast area have an impact. The correlation between density predictions on low- and standard-dose images of breasts with the largest breast area is 0.985 (0.949 to 0.995), whereas that with the smallest is 0.882 (0.697 to 0.961). We also demonstrated that averaging across craniocaudal-mediolateral oblique (CC-MLO) images and across repeatedly trained models can improve predictive performance.</p><p><strong>Conclusions: </strong>Low-dose mammography can be used to produce density and risk estimates that are comparable to standard-dose images. Averaging across CC-MLO and model predictions should improve this performance. The model quality is reduced when making predictions on denser and smaller breasts.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 4","pages":"044506"},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-08-01DOI: 10.1117/1.JMI.11.4.044005
Artyom Tsanda, Hannes Nickisch, Tobias Wissel, Tobias Klinder, Tobias Knopp, Michael Grass
Purpose: The trend towards lower radiation doses and advances in computed tomography (CT) reconstruction may impair the operation of pretrained segmentation models, giving rise to the problem of estimating the dose robustness of existing segmentation models. Previous studies addressing the issue suffer either from a lack of registered low- and full-dose CT images or from simplified simulations.
Approach: We employed raw data from full-dose acquisitions to simulate low-dose CT scans, avoiding the need to rescan a patient. The accuracy of the simulation is validated using a real CT scan of a phantom. We consider down to 20% reduction of radiation dose, for which we measure deviations of several pretrained segmentation models from the full-dose prediction. In addition, compatibility with existing denoising methods is considered.
Results: The results reveal the surprising robustness of the TotalSegmentator approach, showing minimal differences at the pixel level even without denoising. Less robust models show good compatibility with the denoising methods, which help to improve robustness in almost all cases. With denoising based on a convolutional neural network (CNN), the median Dice between low- and full-dose data does not fall below 0.9 (12 for the Hausdorff distance) for all but one model. We observe volatile results for labels with effective radii less than 19 mm and improved results for contrasted CT acquisitions.
Conclusion: The proposed approach facilitates clinically relevant analysis of dose robustness for human organ segmentation models. The results outline the robustness properties of a diverse set of models. Further studies are needed to identify the robustness of approaches for lesion segmentation and to rank the factors contributing to dose robustness.
{"title":"Dose robustness of deep learning models for anatomic segmentation of computed tomography images.","authors":"Artyom Tsanda, Hannes Nickisch, Tobias Wissel, Tobias Klinder, Tobias Knopp, Michael Grass","doi":"10.1117/1.JMI.11.4.044005","DOIUrl":"10.1117/1.JMI.11.4.044005","url":null,"abstract":"<p><strong>Purpose: </strong>The trend towards lower radiation doses and advances in computed tomography (CT) reconstruction may impair the operation of pretrained segmentation models, giving rise to the problem of estimating the dose robustness of existing segmentation models. Previous studies addressing the issue suffer either from a lack of registered low- and full-dose CT images or from simplified simulations.</p><p><strong>Approach: </strong>We employed raw data from full-dose acquisitions to simulate low-dose CT scans, avoiding the need to rescan a patient. The accuracy of the simulation is validated using a real CT scan of a phantom. We consider down to 20% reduction of radiation dose, for which we measure deviations of several pretrained segmentation models from the full-dose prediction. In addition, compatibility with existing denoising methods is considered.</p><p><strong>Results: </strong>The results reveal the surprising robustness of the TotalSegmentator approach, showing minimal differences at the pixel level even without denoising. Less robust models show good compatibility with the denoising methods, which help to improve robustness in almost all cases. With denoising based on a convolutional neural network (CNN), the median Dice between low- and full-dose data does not fall below 0.9 (12 for the Hausdorff distance) for all but one model. We observe volatile results for labels with effective radii less than 19 mm and improved results for contrasted CT acquisitions.</p><p><strong>Conclusion: </strong>The proposed approach facilitates clinically relevant analysis of dose robustness for human organ segmentation models. The results outline the robustness properties of a diverse set of models. Further studies are needed to identify the robustness of approaches for lesion segmentation and to rank the factors contributing to dose robustness.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 4","pages":"044005"},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141890472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-08-30DOI: 10.1117/1.JMI.11.4.040101
Bennett Landman
The editorial discusses highlights from JMI Issue 4.
社论讨论了第四期 JMI 的亮点。
{"title":"Highlights from JMI Issue 4.","authors":"Bennett Landman","doi":"10.1117/1.JMI.11.4.040101","DOIUrl":"https://doi.org/10.1117/1.JMI.11.4.040101","url":null,"abstract":"<p><p>The editorial discusses highlights from JMI Issue 4.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 4","pages":"040101"},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368250/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-08-23DOI: 10.1117/1.JMI.11.4.044006
Taebin Kim, Yao Li, Benjamin C Calhoun, Aatish Thennavan, Lisa A Carey, W Fraser Symmans, Melissa A Troester, Charles M Perou, J S Marron
Purpose: We address the need for effective stain domain adaptation methods in histopathology to enhance the performance of downstream computational tasks, particularly classification. Existing methods exhibit varying strengths and weaknesses, prompting the exploration of a different approach. The focus is on improving stain color consistency, expanding the stain domain scope, and minimizing the domain gap between image batches.
Approach: We introduce a new domain adaptation method, Stain simultaneous augmentation and normalization (SAN), designed to adjust the distribution of stain colors to align with a target distribution. Stain SAN combines the merits of established methods, such as stain normalization, stain augmentation, and stain mix-up, while mitigating their inherent limitations. Stain SAN adapts stain domains by resampling stain color matrices from a well-structured target distribution.
Results: Experimental evaluations of cross-dataset clinical estrogen receptor status classification demonstrate the efficacy of Stain SAN and its superior performance compared with existing stain adaptation methods. In one case, the area under the curve (AUC) increased by 11.4%. Overall, our results clearly show the improvements made over the history of the development of these methods culminating with substantial enhancement provided by Stain SAN. Furthermore, we show that Stain SAN achieves results comparable with the state-of-the-art generative adversarial network-based approach without requiring separate training for stain adaptation or access to the target domain during training. Stain SAN's performance is on par with HistAuGAN, proving its effectiveness and computational efficiency.
Conclusions: Stain SAN emerges as a promising solution, addressing the potential shortcomings of contemporary stain adaptation methods. Its effectiveness is underscored by notable improvements in the context of clinical estrogen receptor status classification, where it achieves the best AUC performance. The findings endorse Stain SAN as a robust approach for stain domain adaptation in histopathology images, with implications for advancing computational tasks in the field.
目的:我们需要组织病理学中有效的染色域适应方法,以提高下游计算任务(尤其是分类)的性能。现有方法表现出不同的优缺点,促使我们探索不同的方法。重点在于提高染色剂颜色的一致性、扩大染色剂领域范围以及尽量缩小图像批次之间的领域差距:我们引入了一种新的领域适应方法--染色同步增强和归一化(SAN),旨在调整染色颜色的分布,使其与目标分布相一致。染色同步增强和归一化结合了染色归一化、染色增强和染色混合等既有方法的优点,同时又减少了它们固有的局限性。Stain SAN 通过从结构良好的目标分布中重新采样染色剂颜色矩阵来调整染色剂域:结果:对跨数据集临床雌激素受体状态分类的实验评估证明了 Stain SAN 的功效以及与现有染色适应方法相比的卓越性能。在一个案例中,曲线下面积(AUC)增加了 11.4%。总之,我们的研究结果清楚地表明,这些方法在发展过程中不断改进,最终由 Stain SAN 实现了大幅提升。此外,我们还表明,Stain SAN 所取得的结果可与最先进的基于生成式对抗网络的方法相媲美,而无需对染色适应进行单独训练,也无需在训练期间访问目标域。Stain SAN 的性能与 HistAuGAN 相当,证明了其有效性和计算效率:Stain SAN 是一种很有前途的解决方案,它解决了当代染色适应方法的潜在缺陷。在临床雌激素受体状态分类方面,Stain SAN 取得了最佳的 AUC 性能,其显著的改进凸显了它的有效性。研究结果证明,Stain SAN 是组织病理学图像染色域适应的一种稳健方法,对推进该领域的计算任务具有重要意义。
{"title":"Stain SAN: simultaneous augmentation and normalization for histopathology images.","authors":"Taebin Kim, Yao Li, Benjamin C Calhoun, Aatish Thennavan, Lisa A Carey, W Fraser Symmans, Melissa A Troester, Charles M Perou, J S Marron","doi":"10.1117/1.JMI.11.4.044006","DOIUrl":"10.1117/1.JMI.11.4.044006","url":null,"abstract":"<p><strong>Purpose: </strong>We address the need for effective stain domain adaptation methods in histopathology to enhance the performance of downstream computational tasks, particularly classification. Existing methods exhibit varying strengths and weaknesses, prompting the exploration of a different approach. The focus is on improving stain color consistency, expanding the stain domain scope, and minimizing the domain gap between image batches.</p><p><strong>Approach: </strong>We introduce a new domain adaptation method, Stain simultaneous augmentation and normalization (SAN), designed to adjust the distribution of stain colors to align with a target distribution. Stain SAN combines the merits of established methods, such as stain normalization, stain augmentation, and stain mix-up, while mitigating their inherent limitations. Stain SAN adapts stain domains by resampling stain color matrices from a well-structured target distribution.</p><p><strong>Results: </strong>Experimental evaluations of cross-dataset clinical estrogen receptor status classification demonstrate the efficacy of Stain SAN and its superior performance compared with existing stain adaptation methods. In one case, the area under the curve (AUC) increased by 11.4%. Overall, our results clearly show the improvements made over the history of the development of these methods culminating with substantial enhancement provided by Stain SAN. Furthermore, we show that Stain SAN achieves results comparable with the state-of-the-art generative adversarial network-based approach without requiring separate training for stain adaptation or access to the target domain during training. Stain SAN's performance is on par with HistAuGAN, proving its effectiveness and computational efficiency.</p><p><strong>Conclusions: </strong>Stain SAN emerges as a promising solution, addressing the potential shortcomings of contemporary stain adaptation methods. Its effectiveness is underscored by notable improvements in the context of clinical estrogen receptor status classification, where it achieves the best AUC performance. The findings endorse Stain SAN as a robust approach for stain domain adaptation in histopathology images, with implications for advancing computational tasks in the field.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 4","pages":"044006"},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342968/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}