Pub Date : 2024-06-07DOI: 10.1186/s43088-024-00514-9
Sarah Al Azzam, Zabih Ullah, Sarfuddin Azmi, Mozaffarul Islam, Ishtiaque Ahmad, Mohd Kamil Hussain
Background
Rising global mortality due to antibiotic-resistant pathogens necessitates novel antibacterial and antifungal agents. This study focuses on synthesizing gold nanoparticles (GNPs) via tricyclic microwave irradiation (TMI) to combat Multi-Drug-Resistant Bacteria and Fungus. The demand for sustainable synthesis methods has led to the exploration of TMI for GNP production.
Results
Characterization demonstrates consistent, uniform, and dispersed GNPs with trigonal and hexagonal shapes. GNPs sized 20–55 nm exhibit superior antibacterial and antifungal activity, particularly against drug-resistant Gram-positive bacteria. Notably, GNPs display consistent efficacy against drug-resistant fungus and demonstrate potential for broad-spectrum antimicrobial applications.
Conclusion
TMI-synthesized GNPs, characterized by their favorable physical properties and size-dependent efficacy, show promise as effective agents against drug-resistant pathogens. Their ability to combat Gram-positive bacteria, Gram-negative bacteria, and drug-resistant fungus positions them as valuable tools in biomedical sciences. By addressing the urgent need for novel antimicrobial agents, TMI-synthesized GNPs offer a sustainable solution to the escalating global health challenge of antibiotic resistance.
{"title":"Tricyclic microwave-assisted synthesis of gold nanoparticles for biomedical applications: combatting multidrug-resistant bacteria and fungus","authors":"Sarah Al Azzam, Zabih Ullah, Sarfuddin Azmi, Mozaffarul Islam, Ishtiaque Ahmad, Mohd Kamil Hussain","doi":"10.1186/s43088-024-00514-9","DOIUrl":"10.1186/s43088-024-00514-9","url":null,"abstract":"<div><h3>Background</h3><p>Rising global mortality due to antibiotic-resistant pathogens necessitates novel antibacterial and antifungal agents. This study focuses on synthesizing gold nanoparticles (GNPs) via tricyclic microwave irradiation (TMI) to combat Multi-Drug-Resistant Bacteria and Fungus. The demand for sustainable synthesis methods has led to the exploration of TMI for GNP production.</p><h3>Results</h3><p>Characterization demonstrates consistent, uniform, and dispersed GNPs with trigonal and hexagonal shapes. GNPs sized 20–55 nm exhibit superior antibacterial and antifungal activity, particularly against drug-resistant Gram-positive bacteria. Notably, GNPs display consistent efficacy against drug-resistant fungus and demonstrate potential for broad-spectrum antimicrobial applications.</p><h3>Conclusion</h3><p>TMI-synthesized GNPs, characterized by their favorable physical properties and size-dependent efficacy, show promise as effective agents against drug-resistant pathogens. Their ability to combat Gram-positive bacteria, Gram-negative bacteria, and drug-resistant fungus positions them as valuable tools in biomedical sciences. By addressing the urgent need for novel antimicrobial agents, TMI-synthesized GNPs offer a sustainable solution to the escalating global health challenge of antibiotic resistance.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"13 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00514-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141286749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.1186/s43088-024-00515-8
Dina A. Desouky, Nahla A. Nosair, Dalia E. Sherif, Mohammed A. El-Magd, Mohamed K. Salama
<div><h3>Background</h3><p>Proprotein convertase subtilisin/kexin type-9 (PCSK9), an enzyme produced mainly by hepatocytes and breaks low-density lipoprotein receptor (LDL-R), inflammatory markers [toll like receptor 4 (TLR4), high mobility group box 1 (HMGB1), tumor necrosis factor alpha (TNFα), c-reactive protein (CRP)], and monocyte subtypes are associated with coronary artery disease (CAD) pathogenesis. The circulating microRNA-218 (miR-218) can relieve CAD through the suppression of HMGB1 in monocyte-derived inflammatory cytokines. Herein, we explored the association between circulatory miR-218 expression and serum levels of PCSK9, inflammatory markers, and monocyte subtypes in statin and non-statin CAD patients. This study involved 91 healthy (control) and 91 stable CAD participants which were subdivided into no-statin (NS, n = 25), low-statin (LS, n = 25), and high-statin (HS, n = 41) groups. low-density lipoprotein cholesterol (LDL-C) and CRP serum levels were calorimetrically determined. Serum levels of PCSK9, TLR4, HMGB1, and TNFα were detected by ELISA, while monocyte subsets [classical (CM), intermediate (IM), non-classical (NC)] were calculated by flow cytometry. Circulatory miR-218 expression was detected by real-time PCR.</p><h3>Results</h3><p>The CAD group had significantly lower miR-218 expression and significantly higher levels of PCSK9, inflammatory markers (HMGB1, CRP, TLR4, and TNFα), and IM% than the control group. Among CAD patients, LS and HS groups had significantly lower miR-218 expression, LDL-C levels, and inflammatory markers and significantly higher levels of PCSK9 than the NS group. The HS group exhibited the lowest miR-218 expression and inflammatory markers and the highest PCSK9 levels. However, there were no significant changes in IM% among statin and non-statin groups. In the three CAD groups, miR-218 showed a significantly negative correlation with PCSK9 and inflammatory markers (HMGB1, CRP, TLR4, and TNFα), while this expression exhibited a significantly negative correlation with CM%, IM%, and NCM% only in the NS group. Results of multivariable linear regression indicated a correlation between miR-218 and five independent variables (PCSK9, HMGB1, CRP, TLR4, and TNFα) in the total statin (LS + HS) group, and eight independent variables (PCSK9, HMGB1, CRP, TLR4, and TNFα, CM%, IM%, NCM%) in the NS group. Provided that all other independent variables are constant, miR-218 expression was significantly correlated to CRP (Beta = 0.234) and PCSK9 (Beta = − 0.875) in the total statin group; TLR4 (Beta = − 0.554) in the LS group; HMGB1 (Beta = − 0.507) in the HS group; and CRP (Beta = − 0.745) in the NS group.</p><h3>Conclusions</h3><p>Statin-treated CAD patients have a unique negative correlation between miR-218 and PCSK9, HMGB1, and TLR4, and subsequently with CAD progress. Therefore, it could be recommended to combine activators of miR-218 and inhibitors of PCSK9, HMGB1, and TLR4 with statin to efficiently treat
{"title":"Association between circulatory microRNA-218 expression, serum PCSK9 levels, inflammatory markers, and monocyte subsets in coronary artery disease patients: impact of statin therapy","authors":"Dina A. Desouky, Nahla A. Nosair, Dalia E. Sherif, Mohammed A. El-Magd, Mohamed K. Salama","doi":"10.1186/s43088-024-00515-8","DOIUrl":"10.1186/s43088-024-00515-8","url":null,"abstract":"<div><h3>Background</h3><p>Proprotein convertase subtilisin/kexin type-9 (PCSK9), an enzyme produced mainly by hepatocytes and breaks low-density lipoprotein receptor (LDL-R), inflammatory markers [toll like receptor 4 (TLR4), high mobility group box 1 (HMGB1), tumor necrosis factor alpha (TNFα), c-reactive protein (CRP)], and monocyte subtypes are associated with coronary artery disease (CAD) pathogenesis. The circulating microRNA-218 (miR-218) can relieve CAD through the suppression of HMGB1 in monocyte-derived inflammatory cytokines. Herein, we explored the association between circulatory miR-218 expression and serum levels of PCSK9, inflammatory markers, and monocyte subtypes in statin and non-statin CAD patients. This study involved 91 healthy (control) and 91 stable CAD participants which were subdivided into no-statin (NS, n = 25), low-statin (LS, n = 25), and high-statin (HS, n = 41) groups. low-density lipoprotein cholesterol (LDL-C) and CRP serum levels were calorimetrically determined. Serum levels of PCSK9, TLR4, HMGB1, and TNFα were detected by ELISA, while monocyte subsets [classical (CM), intermediate (IM), non-classical (NC)] were calculated by flow cytometry. Circulatory miR-218 expression was detected by real-time PCR.</p><h3>Results</h3><p>The CAD group had significantly lower miR-218 expression and significantly higher levels of PCSK9, inflammatory markers (HMGB1, CRP, TLR4, and TNFα), and IM% than the control group. Among CAD patients, LS and HS groups had significantly lower miR-218 expression, LDL-C levels, and inflammatory markers and significantly higher levels of PCSK9 than the NS group. The HS group exhibited the lowest miR-218 expression and inflammatory markers and the highest PCSK9 levels. However, there were no significant changes in IM% among statin and non-statin groups. In the three CAD groups, miR-218 showed a significantly negative correlation with PCSK9 and inflammatory markers (HMGB1, CRP, TLR4, and TNFα), while this expression exhibited a significantly negative correlation with CM%, IM%, and NCM% only in the NS group. Results of multivariable linear regression indicated a correlation between miR-218 and five independent variables (PCSK9, HMGB1, CRP, TLR4, and TNFα) in the total statin (LS + HS) group, and eight independent variables (PCSK9, HMGB1, CRP, TLR4, and TNFα, CM%, IM%, NCM%) in the NS group. Provided that all other independent variables are constant, miR-218 expression was significantly correlated to CRP (Beta = 0.234) and PCSK9 (Beta = − 0.875) in the total statin group; TLR4 (Beta = − 0.554) in the LS group; HMGB1 (Beta = − 0.507) in the HS group; and CRP (Beta = − 0.745) in the NS group.</p><h3>Conclusions</h3><p>Statin-treated CAD patients have a unique negative correlation between miR-218 and PCSK9, HMGB1, and TLR4, and subsequently with CAD progress. Therefore, it could be recommended to combine activators of miR-218 and inhibitors of PCSK9, HMGB1, and TLR4 with statin to efficiently treat","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"13 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00515-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141286748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Throughout the storage of blood, the red cells undergo alterations known as “storage lesions,” which involve shape changes and the formation of microparticles (MPs). Studies of the formation of red cell microparticles (RMPs) emphasize the prospective application of RMPs as a quality control measure in the preparation and storage of blood components in the future. In the present study, twenty packed RBC units in citrate phosphate dextrose adenine-1 (CPDA1) were collected from volunteers and stored for 35 days. Over 35 days of storage, samples were collected at six distinct time points weekly and evaluated for the presence of RMPs. MPs were separated by the ultracentrifugation method. Electron microscopy was used to characterize the morphology and size of the isolated microparticles, and flow cytometry was performed to determine the percentage of RMPs that expressed glycophorin A (CD235a) and Annexin V antigens. RMPs' procoagulant activity (PCA) was assessed using a plasma recalcification test. RMP concentration in accordance with ABO blood grouping was assessed by using various types of donated blood groups.
Results
RMPs progressively increased over storage. The procoagulant activity (PCA) exhibited a significant increase during storage, as evidenced by a shorter plasma recalcification time (P value = 0.001). A significant negative correlation (P value = 0.001) between plasma recalcification time and Annexin V-positive microparticles, as well as a dual-positive Annexin V/CD235a population, was identified, indicating a strong correlation between the direct quantitative assay by flowcytometry and the functional assay through the PCA.
Conclusion
RMPs increase on storage with increased PCA. Finding ways to reduce these microparticles in packed RBC units is crucial for reducing the risk of transfusion-related coagulopathy.
{"title":"Procoagulant activity of red blood cell microparticles in stored packed red blood cell units and its relation to ABO blood grouping","authors":"Ayat Salaheldin Mohamed Hassan, Nagwa Abdelkhalek ElKhafif, Noha Abdelal Amin, Rabab Fouad Yassin","doi":"10.1186/s43088-024-00509-6","DOIUrl":"10.1186/s43088-024-00509-6","url":null,"abstract":"<div><h3>Background</h3><p>Throughout the storage of blood, the red cells undergo alterations known as “storage lesions,” which involve shape changes and the formation of microparticles (MPs). Studies of the formation of red cell microparticles (RMPs) emphasize the prospective application of RMPs as a quality control measure in the preparation and storage of blood components in the future. In the present study, twenty packed RBC units in citrate phosphate dextrose adenine-1 (CPDA1) were collected from volunteers and stored for 35 days. Over 35 days of storage, samples were collected at six distinct time points weekly and evaluated for the presence of RMPs. MPs were separated by the ultracentrifugation method. Electron microscopy was used to characterize the morphology and size of the isolated microparticles, and flow cytometry was performed to determine the percentage of RMPs that expressed glycophorin A (CD235a) and Annexin V antigens. RMPs' procoagulant activity (PCA) was assessed using a plasma recalcification test. RMP concentration in accordance with ABO blood grouping was assessed by using various types of donated blood groups.</p><h3>Results</h3><p>RMPs progressively increased over storage. The procoagulant activity (PCA) exhibited a significant increase during storage, as evidenced by a shorter plasma recalcification time (<i>P</i> value = 0.001). A significant negative correlation (<i>P</i> value = 0.001) between plasma recalcification time and Annexin V-positive microparticles, as well as a dual-positive Annexin V/CD235a population, was identified, indicating a strong correlation between the direct quantitative assay by flowcytometry and the functional assay through the PCA.</p><h3>Conclusion</h3><p>RMPs increase on storage with increased PCA. Finding ways to reduce these microparticles in packed RBC units is crucial for reducing the risk of transfusion-related coagulopathy.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"13 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00509-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.1186/s43088-024-00507-8
Beatrice Njeri Irungu, Mary Nyangi, Fidelis Toloyi Ndombera
Background
The burden of cancer incidences and mortality is rapidly increasing worldwide resulting in an increased demand for new therapies. Secondary metabolites extracted from medicinal plants have significantly contributed toward discovery of new cancer therapies some of which are in clinical use. In this study, anticancer potential of four triterpenoids, namely oleanonic acid (EK-2), 3-epi-oleanolic acid (EK-8), 1,2,3,22,23-pentahydroxy-2,6,10,15,19,23-hexamethyl-6,10,14,18-tetracosatetraene (EK-4) and 2,3,22,23-tetrahydroxy-2,6,10,15,19,23-hexamethyl-6,10,14,18-tetracosatetraene (EK-9), extracted from Ekebergia capensis Sparrm root bark was evaluated.
Results
We employed CLC-Pred to initially evaluate cytotoxicity of previously isolated compounds in silico where predictions revealed high probability of bioactivity. The compounds were then submitted to the National Cancer Institute (NCI), Developmental Therapeutics Program, for bioactivity evaluation against NCI-60 human tumor cell lines. The four compounds demonstrated a range of potencies at a concentration of 10 µM. The results revealed that EK-9 was the most potent with mean growth percent of 32.84 and cases of lethality (negative growth percent) against two leukemia cell lines (HL-60 (TB) and RPMI-8226) and HT29 (colon cancer) and SK-MEL-5 (melanoma). This molecule was further evaluated in a five-dose assay where notable growth inhibition against leukemia cells, HL-60 (TB), RPMI-8226 and K-562 was observed with growth inhibitory activity (GI50) values of 3.10, 3.74 and 5.07 µM, respectively. In addition, total growth inhibition was observed at 11.2 μM and 18.9 μM for HL-60 (TB) and RPMI-8226 cells, respectively, partly accounting for the negative growth percent.
Conclusion
The study has demonstrated anticancer properties of the four triterpenoids with compound EK-9 being the most potent overall having selective bioactivity in leukemia and breast cancer cells. Further studies focusing on elucidating its mechanism of action will be useful in exploration of the therapeutic potential of triterpenoids in general.
{"title":"Anticancer potential of four triterpenoids against NCI-60 human tumor cell lines","authors":"Beatrice Njeri Irungu, Mary Nyangi, Fidelis Toloyi Ndombera","doi":"10.1186/s43088-024-00507-8","DOIUrl":"10.1186/s43088-024-00507-8","url":null,"abstract":"<div><h3>Background</h3><p>The burden of cancer incidences and mortality is rapidly increasing worldwide resulting in an increased demand for new therapies. Secondary metabolites extracted from medicinal plants have significantly contributed toward discovery of new cancer therapies some of which are in clinical use. In this study, anticancer potential of four triterpenoids, namely oleanonic acid (<b>EK-2</b>), 3-<i>epi</i>-oleanolic acid (<b>EK-8</b>), 1,2,3,22,23-pentahydroxy-2,6,10,15,19,23-hexamethyl-6,10,14,18-tetracosatetraene (<b>EK-4</b>) and 2,3,22,23-tetrahydroxy-2,6,10,15,19,23-hexamethyl-6,10,14,18-tetracosatetraene (<b>EK-9</b>), extracted from <i>Ekebergia capensis</i> Sparrm root bark was evaluated.</p><h3>Results</h3><p>We employed CLC-Pred to initially evaluate cytotoxicity of previously isolated compounds in silico where predictions revealed high probability of bioactivity. The compounds were then submitted to the National Cancer Institute (NCI), Developmental Therapeutics Program, for bioactivity evaluation against NCI-60 human tumor cell lines. The four compounds demonstrated a range of potencies at a concentration of 10 µM. The results revealed that <b>EK-9</b> was the most potent with mean growth percent of 32.84 and cases of lethality (negative growth percent) against two leukemia cell lines (HL-60 (TB) and RPMI-8226) and HT29 (colon cancer) and SK-MEL-5 (melanoma). This molecule was further evaluated in a five-dose assay where notable growth inhibition against leukemia cells, HL-60 (TB), RPMI-8226 and K-562 was observed with growth inhibitory activity (GI<sub>50</sub>) values of 3.10, 3.74 and 5.07 µM, respectively. In addition, total growth inhibition was observed at 11.2 μM and 18.9 μM for HL-60 (TB) and RPMI-8226 cells, respectively, partly accounting for the negative growth percent.</p><h3>Conclusion</h3><p>The study has demonstrated anticancer properties of the four triterpenoids with compound <b>EK-9</b> being the most potent overall having selective bioactivity in leukemia and breast cancer cells. Further studies focusing on elucidating its mechanism of action will be useful in exploration of the therapeutic potential of triterpenoids in general.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"13 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00507-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141187290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-24DOI: 10.1186/s43088-024-00504-x
Shaimaa S. Sobieh, Rowida G. Elshazly, Sahar A. Tawab, Sanaa S. Zaki
Background
Characterization of yeast virulence genes is an important tool for identifying the molecular pathways involved in switching yeast virulence. Biofilm formation (BF) and secreted aspartic proteinase (SAP) activity are essential virulence factors that contribute to yeast pathogenicity.
Results
Four Candida albicans and two Saccharomyces cerevisiae strains were tested for BF and SAP activity under optimum conditions, and the expression levels of several genes controlling BF were quantified under the optimal conditions. Biofilm formation was assessed by the microplate method at different pH values, incubation times and culture media. Similarly, SAP activity was assessed at different pH values and incubation periods. The expression levels of nine genes were determined via qRT-PCR technique. All tests were carried out in triplicate, and the values presented as the means ± standard deviations and were analysed with the SPSS programme. Only C. albicans (1), C. albicans (2) and S. cerevisiae 43 formed biofilms. The optimal BF was obtained after culture in sabouraud dextrose broth with 8% glucose at pH 7.5, 4 and 6, respectively, for 48h. Candida albicans biofilm production was more significant than that of S. cerevisiae 43. Moreover, the SAP activity was estimated under the optimum conditions. All yeasts showed optimal SAP activity at pH 4, but astonishingly the SAP activity of S. cerevisiae 44 was higher than that of C. albicans. The expression levels of EFG1 and ZAP1 (transcription factors); ALS3, HWP1and YWP1 (adhesion genes); SAP1 and SAP4 (aspartic proteinase) in C. albicans (1); and FLO11 (adhesion gene) and YPS3 (aspartic proteinase) in S. cerevisiae 43 were quantified during biofilm development at different time intervals. The expression levels of EFG1, ALS3, YWP1, SAP1, SAP4, FLO11 and YPS3 were upregulated at 8 h, while that of ZAP1 was upregulated at 48 h. Only HWP1 was downregulated.
Conclusions
The findings of the present study may provide information for overcoming yeast BF and pathogenicity by regulating specific genes at specific times. Additionally, this study revealed the virulence of the commensal S. cerevisiae, which may take the pathogenicity direction as C. albicans.
背景酵母毒力基因的表征是确定参与酵母毒力转换的分子途径的重要工具。结果对四株白念珠菌和两株酿酒酵母在最佳条件下的生物膜形成(BF)和分泌天冬氨酸蛋白酶(SAP)活性进行了检测,并对控制BF的几个基因在最佳条件下的表达水平进行了量化。在不同的 pH 值、培养时间和培养基条件下,采用微孔板法对生物膜的形成进行了评估。同样,在不同的 pH 值和培养时间下也对 SAP 活性进行了评估。通过 qRT-PCR 技术测定了九种基因的表达水平。所有测试均一式三份,数值以平均值±标准偏差表示,并使用 SPSS 程序进行分析。只有白僵菌(1)、白僵菌(2)和 S. cerevisiae 43 形成了生物膜。在 pH 值分别为 7.5、4 和 6 的含 8%葡萄糖的沙保葡萄糖肉汤中培养 48 小时后,获得了最佳生物膜。白色念珠菌生物膜的产生比 S. cerevisiae 43 更为显著。此外,还对最佳条件下的 SAP 活性进行了评估。所有酵母菌都在 pH 值为 4 时表现出最佳的 SAP 活性,但令人惊讶的是,酿酒酵母菌 44 的 SAP 活性高于白念珠菌。在生物膜形成过程中,对不同时间间隔内白僵菌(1)中的 EFG1 和 ZAP1(转录因子);ALS3、HWP1 和 YWP1(粘附基因);SAP1 和 SAP4(天冬氨酸蛋白酶);以及 S. cerevisiae 43 中的 FLO11(粘附基因)和 YPS3(天冬氨酸蛋白酶)的表达水平进行了量化。结论本研究的结果可为通过在特定时间调控特定基因来克服酵母生物膜和致病性提供信息。此外,本研究还揭示了共生酵母菌 S. cerevisiae 的致病性,它可能会像白僵菌一样走上致病的道路。
{"title":"Estimating the expression levels of genes controlling biofilm formation and evaluating the effects of different conditions on biofilm formation and secreted aspartic proteinase activity in Candida albicans and Saccharomyces cerevisiae: a comparative study","authors":"Shaimaa S. Sobieh, Rowida G. Elshazly, Sahar A. Tawab, Sanaa S. Zaki","doi":"10.1186/s43088-024-00504-x","DOIUrl":"10.1186/s43088-024-00504-x","url":null,"abstract":"<div><h3>Background</h3><p>Characterization of yeast virulence genes is an important tool for identifying the molecular pathways involved in switching yeast virulence. Biofilm formation (BF) and secreted aspartic proteinase (SAP) activity are essential virulence factors that contribute to yeast pathogenicity.</p><h3>Results</h3><p>Four <i>Candida albicans</i> and two <i>Saccharomyces cerevisiae</i> strains were tested for BF and SAP activity under optimum conditions, and the expression levels of several genes controlling BF were quantified under the optimal conditions. Biofilm formation was assessed by the microplate method at different pH values, incubation times and culture media. Similarly, SAP activity was assessed at different pH values and incubation periods. The expression levels of nine genes were determined via qRT-PCR technique. All tests were carried out in triplicate, and the values presented as the means ± standard deviations and were analysed with the SPSS programme. Only <i>C. albicans</i> (1), <i>C. albicans</i> (2) and <i>S. cerevisiae</i> 43 formed biofilms. The optimal BF was obtained after culture in sabouraud dextrose broth with 8% glucose at pH 7.5, 4 and 6, respectively, for 48h. <i>Candida albicans</i> biofilm production was more significant than that of <i>S. cerevisiae</i> 43. Moreover, the SAP activity was estimated under the optimum conditions. All yeasts showed optimal SAP activity at pH 4, but astonishingly the SAP activity of <i>S. cerevisiae</i> 44 was higher than that of <i>C. albicans</i>. The expression levels of <i>EFG1</i> and <i>ZAP1 (</i>transcription factors); <i>ALS3, HWP1</i>and <i>YWP1</i> (adhesion genes); <i>SAP1</i> and <i>SAP4</i> (aspartic proteinase) in <i>C. albicans</i> (1); and <i>FLO11</i> (adhesion gene) and <i>YPS3</i> (aspartic proteinase) in <i>S. cerevisiae</i> 43 were quantified during biofilm development at different time intervals. The expression levels of <i>EFG1, ALS3, YWP1, SAP1</i>, <i>SAP4</i>, <i>FLO11</i> and <i>YPS3</i> were upregulated at 8 h, while that of <i>ZAP1</i> was upregulated at 48 h. Only <i>HWP1</i> was downregulated.</p><h3>Conclusions</h3><p>The findings of the present study may provide information for overcoming yeast BF and pathogenicity by regulating specific genes at specific times. Additionally, this study revealed the virulence of the commensal <i>S. cerevisiae</i>, which may take the pathogenicity direction as <i>C. albicans</i>.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"13 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00504-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-23DOI: 10.1186/s43088-024-00506-9
Massimo Fioranelli, Maria Grazia Roccia, Bianca Przybylek, Francesca Romana Sconci, Maria Luisa Garo
Background
The inflammatory response is fundamental to the maintenance of an organism’s physiological homeostasis. Inflammation is controlled by a series of biological events driven by specific inflammatory molecules. When inflammation is within the homeostatic range, it is considered physiological; however, it becomes pathological when it exceeds the immune system’s homeostatic control.
Main text
Nowadays, the treatment of chronic pathological inflammation is a challenge for pharmacology, as current anti-inflammatory drugs are intended to control acute inflammation. The aim of this narrative review was to provide an overview of the role of molecular pharmacognosy and to demonstrate how current transcriptomics techniques can make an important contribution to the study of the biological functions of natural products in the context of multicomponent/multitarget medication. From our findings, although very few studies have been identified, encouraging results for low-grade chronic inflammations (LGCIs) of various causes emerged in recent transcriptomic studies on multicomponent medicinal products composed of plant and organ extracts at the level of the skin and the musculoskeletal system (Traumeel: Tr14), the liver (Lycopodium compositum: HC-24), and the joints (Zeel-T: Ze-14).
Conclusion
For adequate control of LGCI, molecular pharmacognosy may be an effective approach to exploring potentially useful herbal agents that are consistent with both physiotherapeutic tradition and modern pharmacology.
{"title":"Low-grade chronic inflammation and transcriptomics: how molecular pharmacognosy can help find new natural treatment alternatives—a narrative review","authors":"Massimo Fioranelli, Maria Grazia Roccia, Bianca Przybylek, Francesca Romana Sconci, Maria Luisa Garo","doi":"10.1186/s43088-024-00506-9","DOIUrl":"10.1186/s43088-024-00506-9","url":null,"abstract":"<div><h3>Background</h3><p>The inflammatory response is fundamental to the maintenance of an organism’s physiological homeostasis. Inflammation is controlled by a series of biological events driven by specific inflammatory molecules. When inflammation is within the homeostatic range, it is considered physiological; however, it becomes pathological when it exceeds the immune system’s homeostatic control.</p><h3>Main text</h3><p>Nowadays, the treatment of chronic pathological inflammation is a challenge for pharmacology, as current anti-inflammatory drugs are intended to control acute inflammation. The aim of this narrative review was to provide an overview of the role of molecular pharmacognosy and to demonstrate how current transcriptomics techniques can make an important contribution to the study of the biological functions of natural products in the context of multicomponent/multitarget medication. From our findings, although very few studies have been identified, encouraging results for low-grade chronic inflammations (LGCIs) of various causes emerged in recent transcriptomic studies on multicomponent medicinal products composed of plant and organ extracts at the level of the skin and the musculoskeletal system (Traumeel: Tr14), the liver (Lycopodium compositum: HC-24), and the joints (Zeel-T: Ze-14).</p><h3>Conclusion</h3><p>For adequate control of LGCI, molecular pharmacognosy may be an effective approach to exploring potentially useful herbal agents that are consistent with both physiotherapeutic tradition and modern pharmacology.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"13 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00506-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-20DOI: 10.1186/s43088-024-00505-w
Asmaa R. Hashim, Dina W. Bashir, Eman. Rashad, Mona K. Galal, Maha M. Rashad, Nasrallah M. Deraz, Elsayed A. Drweesh, S. M. El-Gharbawy
Background
Copper oxide nanoparticles (CuO-NPs) have gained interest due to their availability, efficiency, and their cost-effectiveness. Betaine is an essential methyl donor and takes part in various physiological activities inside the body; it is found to have protective and curative effects against various liver diseases. The present study aimed to evaluate the hepatotoxic effect of CuO-NPs on adult male albino rats and the ability of betaine to alleviate such hepatotoxicity.
Methods
Forty adult male albino Wister rats were grouped into 4 groups (10 rats/group): group I a negative control, group II (CuO-NPs) injected with CuO-NPs intra peritoneal by insulin needle (0.5 mg/kg/day), group III (betaine + CuO-NPs) administered betaine orally by gavage needle (250 mg/kg/day 1 h before CuO-NPs) and CuO-NPs (0.5 mg/kg/day) finally, group IV (betaine) administered betaine orally by gavage needle (250 mg/kg/day) for consecutive 28 days. Blood and liver samples were gathered and processed for biochemical, molecular, histopathological, and immunohistochemical investigations.
Results
Group II displayed a marked rise in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA) levels. Furthermore, there is an excessive upregulation of the inflammatory biomarkers interleukin1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). On the other hand, substantial reduction in glutathione (GSH) levels and significant downregulation at glutathione peroxidase (GPx) mRNA gene expression. Regarding the histopathological deviations, there were severe congestion, dilatation and hyalinization of blood vessels, steatosis, hydropic degeneration, hepatocytic necrosis, increased binucleation, degenerated bile ducts, hyperplasia of ducts epithelial lining, and inflammatory cells infiltration. Immunohistochemically, there was a pronounced immunoreactivity toward IL-1β. Luckily, the pre-administration of betaine was able to mitigate these changes. MDA was dramatically reduced, resulting in the downregulation of IL-1β and TNF-α. Additionally, there was a considerable rise in GSH levels and an upregulation of GPx. Histopathological deviations were substantially improved as diminished dilatation, hyalinization and congestion of blood vessels, hepatocytes, and bile ducts are normal to some extent. In addition, IL-1β immunohistochemical analysis revealed marked decreased intensity.
Conclusion
Betaine can effectively reduce the hepatotoxicity caused by CuO-NPs via its antioxidant properties and its ability to stimulate the cell redox system.
{"title":"Alleviative effect of betaine against copper oxide nanoparticles-induced hepatotoxicity in adult male albino rats: histopathological, biochemical, and molecular studies","authors":"Asmaa R. Hashim, Dina W. Bashir, Eman. Rashad, Mona K. Galal, Maha M. Rashad, Nasrallah M. Deraz, Elsayed A. Drweesh, S. M. El-Gharbawy","doi":"10.1186/s43088-024-00505-w","DOIUrl":"10.1186/s43088-024-00505-w","url":null,"abstract":"<div><h3>Background</h3><p>Copper oxide nanoparticles (CuO-NPs) have gained interest due to their availability, efficiency, and their cost-effectiveness. Betaine is an essential methyl donor and takes part in various physiological activities inside the body; it is found to have protective and curative effects against various liver diseases. The present study aimed to evaluate the hepatotoxic effect of CuO-NPs on adult male albino rats and the ability of betaine to alleviate such hepatotoxicity.</p><h3>Methods</h3><p>Forty adult male albino Wister rats were grouped into 4 groups (10 rats/group): group I a negative control, group II (CuO-NPs) injected with CuO-NPs intra peritoneal by insulin needle (0.5 mg/kg/day), group III (betaine + CuO-NPs) administered betaine orally by gavage needle (250 mg/kg/day 1 h before CuO-NPs) and CuO-NPs (0.5 mg/kg/day) finally, group IV (betaine) administered betaine orally by gavage needle (250 mg/kg/day) for consecutive 28 days. Blood and liver samples were gathered and processed for biochemical, molecular, histopathological, and immunohistochemical investigations.</p><h3>Results</h3><p>Group II displayed a marked rise in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA) levels. Furthermore, there is an excessive upregulation of the inflammatory biomarkers interleukin1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). On the other hand, substantial reduction in glutathione (GSH) levels and significant downregulation at glutathione peroxidase (GPx) mRNA gene expression. Regarding the histopathological deviations, there were severe congestion, dilatation and hyalinization of blood vessels, steatosis, hydropic degeneration, hepatocytic necrosis, increased binucleation, degenerated bile ducts, hyperplasia of ducts epithelial lining, and inflammatory cells infiltration. Immunohistochemically, there was a pronounced immunoreactivity toward IL-1β. Luckily, the pre-administration of betaine was able to mitigate these changes. MDA was dramatically reduced, resulting in the downregulation of IL-1β and TNF-α. Additionally, there was a considerable rise in GSH levels and an upregulation of GPx. Histopathological deviations were substantially improved as diminished dilatation, hyalinization and congestion of blood vessels, hepatocytes, and bile ducts are normal to some extent. In addition, IL-1β immunohistochemical analysis revealed marked decreased intensity.</p><h3>Conclusion</h3><p>Betaine can effectively reduce the hepatotoxicity caused by CuO-NPs via its antioxidant properties and its ability to stimulate the cell redox system.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"13 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00505-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141073681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Breakthrough achievements in protein structure prediction have occurred recently, mostly due to the advent of sophisticated machine learning methods and significant advancements in algorithmic approaches. The most recent version of the AlphaFold model, known as “AlphaFold-latest,” which expands the functionalities of the groundbreaking AlphaFold2, is the subject of this article. The goal of this novel model is to predict the three-dimensional structures of various biomolecules, such as ions, proteins, nucleic acids, small molecules, and non-standard residues. We demonstrate notable gains in precision, surpassing specialized tools across multiple domains, including protein–ligand interactions, protein–nucleic acid interactions, and antibody–antigen predictions. In conclusion, this AlphaFold framework has the ability to yield atomically-accurate structural predictions for a variety of biomolecular interactions, hence facilitating advancements in drug discovery.
{"title":"AlphaFold-latest: revolutionizing protein structure prediction for comprehensive biomolecular insights and therapeutic advancements","authors":"Henrietta Onyinye Uzoeto, Samuel Cosmas, Toluwalope Temitope Bakare, Olanrewaju Ayodeji Durojaye","doi":"10.1186/s43088-024-00503-y","DOIUrl":"10.1186/s43088-024-00503-y","url":null,"abstract":"<div><p>Breakthrough achievements in protein structure prediction have occurred recently, mostly due to the advent of sophisticated machine learning methods and significant advancements in algorithmic approaches. The most recent version of the AlphaFold model, known as “AlphaFold-latest,” which expands the functionalities of the groundbreaking AlphaFold2, is the subject of this article. The goal of this novel model is to predict the three-dimensional structures of various biomolecules, such as ions, proteins, nucleic acids, small molecules, and non-standard residues. We demonstrate notable gains in precision, surpassing specialized tools across multiple domains, including protein–ligand interactions, protein–nucleic acid interactions, and antibody–antigen predictions. In conclusion, this AlphaFold framework has the ability to yield atomically-accurate structural predictions for a variety of biomolecular interactions, hence facilitating advancements in drug discovery.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"13 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00503-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1186/s43088-024-00501-0
Mennat-allah Eid, Youssef Gomaa, Sameh Galal
Background
The structure of flexible or rigid pavement built on expansive subgrade soil that has a volumetric change is vulnerable to many problems that might cause failure. Pavement and construction became more durable and economical by enhancing the quality of subgrade expansive soil. Solid waste recycling has become very popular recently as a means of attaining sustainable waste management, so using lime kiln dust (LKD), which is a by-product of quick lime production, to treat expansive soil in pavement subgrades. This research describes the effect of LKD on the chemical composition, strength, and swelling of high and low-plastic clay that were extracted from two sites. The minimum LKD required for treating expansive soils was determined by using the Eades and Grim pH test. From tests, it was found that the addition of LKD increased the shrinkage limit by a range (250–500)% and decreased the plasticity and swelling potential by between (50 and 100)% of expansive subgrade soils. The strength according to CBR, increased approximately by 150% for CL soil and 800% for CH soil.
Results
The optimal percentage of LKD for CH soil is 6%, and for CL soil, it is 2%. The plastic limit increased by 50% for CH soil at 6% LKD. On the other hand, CL soil became non-plastic at 4% LKD. With an increase in the percentage of LKD, it led an the increase in the shrinkage limit by 500% in CH soil and 250% in CL soil. The free swell decreased by 50% in CH soil and 100% in CL soil. The swelling pressure decreased by 50% for two expansive soils. CBR increased by 800% in CH soil and by 150% in CL soil.
Conclusion
This work found that the addition of LKD improves the physical, chemical, and mechanical properties of expansive subgrade soil.
{"title":"Effectiveness of lime kiln dust on swelling of subgrade expansive soil","authors":"Mennat-allah Eid, Youssef Gomaa, Sameh Galal","doi":"10.1186/s43088-024-00501-0","DOIUrl":"10.1186/s43088-024-00501-0","url":null,"abstract":"<div><h3>Background</h3><p>The structure of flexible or rigid pavement built on expansive subgrade soil that has a volumetric change is vulnerable to many problems that might cause failure. Pavement and construction became more durable and economical by enhancing the quality of subgrade expansive soil. Solid waste recycling has become very popular recently as a means of attaining sustainable waste management, so using lime kiln dust (LKD), which is a by-product of quick lime production, to treat expansive soil in pavement subgrades. This research describes the effect of LKD on the chemical composition, strength, and swelling of high and low-plastic clay that were extracted from two sites. The minimum LKD required for treating expansive soils was determined by using the Eades and Grim pH test. From tests, it was found that the addition of LKD increased the shrinkage limit by a range (250–500)% and decreased the plasticity and swelling potential by between (50 and 100)% of expansive subgrade soils. The strength according to CBR, increased approximately by 150% for CL soil and 800% for CH soil.</p><h3>Results</h3><p>The optimal percentage of LKD for CH soil is 6%, and for CL soil, it is 2%. The plastic limit increased by 50% for CH soil at 6% LKD. On the other hand, CL soil became non-plastic at 4% LKD. With an increase in the percentage of LKD, it led an the increase in the shrinkage limit by 500% in CH soil and 250% in CL soil. The free swell decreased by 50% in CH soil and 100% in CL soil. The swelling pressure decreased by 50% for two expansive soils. CBR increased by 800% in CH soil and by 150% in CL soil.</p><h3>Conclusion</h3><p>This work found that the addition of LKD improves the physical, chemical, and mechanical properties of expansive subgrade soil.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"13 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00501-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140924793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11DOI: 10.1186/s43088-024-00502-z
Mahmoud M. Salem, Mohamed A. Yehia, Ali A. Omran, Hassan I. El Sundoly, Mohammed A. Soliman, Karim Abdelmalik
Background
Gabal Ras Abda area as a part of the Red Sea Mountain range, is characterized by inaccessible and rugged terrains. The exposed rock units are hardly followed in the field because of the rigid topography. Thus, the present work proposes and develops an integrated approach to map the exposed rock units and extract the geologic structures using satellite imagery data followed by both field and petrographic verification, saving time, efforts and cost.
Results
To achieve the target, both the measured spectral signature curves with Landsat-8 and Sentinel-2A data were used to develop and create the most enhanced Band Ratios and Principal Components for lithological discrimination and mapping which were (((Band7 + Band 4)/(Band 7), (Band 2)/(Band 2 + Band 5) and (Band 5) in RGB) and ((Band 9 + Band 11 + Band 12)/(Band 1), (Band 4 − Band 2) and (Band 11/Band 6) + (Band 6) in RGB)) with Principal Component Bands ((PC1, PC2 and PC3 in RGB) and (PC3, PC2 and PC1 in RGB)), respectively. Also, georeferenced Google Earth Pro, panchromatic band of Landsat-8 and ALOS PALSAR Digital Elevation Model images were used to extract the structural lineaments. Geologic, petrographic and field structural studies were emphasized the remote sensing results, indicating that the main rock types cropped out in Ras Abda area from the oldest to the youngest are older granitoids (quartz-diorites, tonalites and granodiorites), Dokhan volcanics (andesites, rhyodacites, rhyolites and their related tuffs), younger gabbros, younger granites (monzogranites, syenogranites and alkali-feldspar granites), post-granite dykes and offshoots (acidic, microgranitic and basic types) and Phanerozoic sedimentary rocks. Also, the study emphasized that the E-W trend is the main structural trend controlling the investigated area followed by WNW-ESE and NE-SW directions.
Conclusions
The results of remote sensing achieved compliance with the geologic, petrographic and structural investigation through distinctly differentiating the different rocks and extracting the lineaments, indicating the accuracy of the remote sensing results and emphasizing their importance and effective role in producing a precise and highly accurate geologic map.