首页 > 最新文献

International Journal of Bioprinting最新文献

英文 中文
Bioprinting of cell-laden protein-based hydrogels: From cartilage to bone tissue engineering 细胞载蛋白水凝胶的生物打印:从软骨到骨组织工程
3区 医学 Pub Date : 2023-09-07 DOI: 10.36922/ijb.1089
Mehran Khajehmohammadi, Negar Bakhtiary, Niyousha Davari, Soulmaz Sarkari, Hamidreza Tolabi, Dejian Li, Behafarid Ghalandari, Baoqing Yu, Farnaz Ghorbani
The fabrication of cell-laden protein-based hydrogels (PBHs) for bioprinting necessitates careful consideration of numerous factors to ensure optimal structure and functionality. Bioprinting techniques, such as single-cell, multi-cell, and cell aggregate bioprinting, are employed to encapsulate cells within PBHs bioink, enabling the creation of scaffolds for cartilage and bone regeneration. During the fabrication process, it is imperative to account for biophysical and biochemical factors that influence cell behavior and protein structure within the PBHs. Precise control of crosslinking methods, hydrogel rheological properties, and printing parameters is also crucial to achieve desired scaffold properties without compromising cell viability and protein integrity. This review primarily focuses on the influence of biophysical factors, including composition, microstructure, biodegradation, and crosslinking, as well as biochemical factors, including chemical structure, growth factors, and signaling molecules, on protein structure and cell behavior. Additionally, key considerations for bioprinting PBHs and their impact on the successful regeneration of tissues are discussed. Furthermore, the review highlights current advancements, existing challenges, and promising prospects in the development of cell-laden PBHs for bioprinting applications and the regeneration of bone and cartilage.
用于生物打印的细胞负载蛋白基水凝胶(PBHs)的制造需要仔细考虑许多因素,以确保最佳的结构和功能。生物打印技术,如单细胞、多细胞和细胞聚合生物打印,被用于将细胞包裹在PBHs生物链接中,从而能够创建软骨和骨再生的支架。在制造过程中,必须考虑影响pbh内细胞行为和蛋白质结构的生物物理和生化因素。精确控制交联方法、水凝胶流变特性和打印参数对于在不影响细胞活力和蛋白质完整性的情况下实现所需的支架特性也至关重要。本文主要综述了生物物理因素(包括组成、微观结构、生物降解和交联)和生化因素(包括化学结构、生长因子和信号分子)对蛋白质结构和细胞行为的影响。此外,还讨论了生物打印pbh的关键考虑因素及其对组织成功再生的影响。此外,本文还重点介绍了负载细胞pbh在生物打印和骨软骨再生方面的发展现状、存在的挑战和前景。
{"title":"Bioprinting of cell-laden protein-based hydrogels: From cartilage to bone tissue engineering","authors":"Mehran Khajehmohammadi, Negar Bakhtiary, Niyousha Davari, Soulmaz Sarkari, Hamidreza Tolabi, Dejian Li, Behafarid Ghalandari, Baoqing Yu, Farnaz Ghorbani","doi":"10.36922/ijb.1089","DOIUrl":"https://doi.org/10.36922/ijb.1089","url":null,"abstract":"The fabrication of cell-laden protein-based hydrogels (PBHs) for bioprinting necessitates careful consideration of numerous factors to ensure optimal structure and functionality. Bioprinting techniques, such as single-cell, multi-cell, and cell aggregate bioprinting, are employed to encapsulate cells within PBHs bioink, enabling the creation of scaffolds for cartilage and bone regeneration. During the fabrication process, it is imperative to account for biophysical and biochemical factors that influence cell behavior and protein structure within the PBHs. Precise control of crosslinking methods, hydrogel rheological properties, and printing parameters is also crucial to achieve desired scaffold properties without compromising cell viability and protein integrity. This review primarily focuses on the influence of biophysical factors, including composition, microstructure, biodegradation, and crosslinking, as well as biochemical factors, including chemical structure, growth factors, and signaling molecules, on protein structure and cell behavior. Additionally, key considerations for bioprinting PBHs and their impact on the successful regeneration of tissues are discussed. Furthermore, the review highlights current advancements, existing challenges, and promising prospects in the development of cell-laden PBHs for bioprinting applications and the regeneration of bone and cartilage.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135097801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of a synthetic peptide-based bioink (PeptiInk Alpha 1) for in vitro 3D bioprinting of cartilage tissue models 合成肽基生物链接(PeptiInk Alpha 1)用于软骨组织模型体外3D生物打印的评价
3区 医学 Pub Date : 2023-09-06 DOI: 10.36922/ijb.0899
Patricia Santos-Beato, Andrew A. Pitsillides, Alberto Saiani, Aline Miller, Ryo Torii, Deepak M. Kalaskar
Cartilage pathology in human disease is poorly understood and requires further research. Various attempts have been made to study cartilage pathologies using in vitro human cartilage models as an alternative for preclinical research. Three-dimensional (3D) bioprinting is a technique that has been used to 3D-bioprint cartilage tissue models in vitro using animal-derived materials such as gelatine or hyaluronan, which present challenges in terms of scalability, reproducibility, and ethical concerns. We present an assessment of synthetic self-assembling peptides as bioinks for bioprinted human in vitro cartilage models. Primary human chondrocytes were mixed with PeptiInk Alpha 1, 3D-bioprinted and cultured for 14 days, and compared with 3D chondrocyte pellet controls. Cell viability was assessed through LIVE/DEAD assays and DNA quantification. High cell viability was observed in the PeptiInk culture, while a fast decrease in DNA levels was observed in the 3D pellet control. Histological evaluation using hematoxylin and eosin staining and immunofluorescence labeling for SOX-9, collagen type II, and aggrecan showed a homogeneous cell distribution in the 3D-bioprinted PeptiInks as well as high expression of chondrogenic markers in both control and PeptiInk cultures. mRNA expression levels assessed by - qRT-PCR (quantitative real time-polymerase chain reaction) confirmed chondrogenic cell behavior. These data showed promise in the potential use of PeptiInk Alpha 1 as a bioprintable manufacturing material for human cartilage in vitro models.
软骨病理在人类疾病的了解很少,需要进一步的研究。利用体外人软骨模型作为临床前研究的替代方法,已经进行了各种各样的尝试来研究软骨病理。三维(3D)生物打印是一种使用动物源性材料(如明胶或透明质酸)体外3D生物打印软骨组织模型的技术,但在可扩展性、可重复性和伦理问题方面存在挑战。我们提出了一种评估合成自组装肽作为生物打印人类体外软骨模型的生物墨水。将人原代软骨细胞与PeptiInk Alpha 1混合,3D打印培养14天,并与3D软骨细胞颗粒对照进行比较。通过LIVE/DEAD测定和DNA定量评估细胞活力。在PeptiInk培养中观察到高细胞活力,而在3D颗粒对照中观察到DNA水平快速下降。使用苏木精和伊红染色以及免疫荧光标记对SOX-9、II型胶原和聚集蛋白进行组织学评估显示,3d生物打印的PeptiInk中细胞分布均匀,并且在对照和PeptiInk培养物中软骨标志物的高表达。通过定量实时聚合酶链反应(qRT-PCR)评估mRNA表达水平证实了软骨细胞的行为。这些数据显示了PeptiInk Alpha 1作为人体软骨体外模型的生物可打印制造材料的潜力。
{"title":"Evaluation of a synthetic peptide-based bioink (PeptiInk Alpha 1) for in vitro 3D bioprinting of cartilage tissue models","authors":"Patricia Santos-Beato, Andrew A. Pitsillides, Alberto Saiani, Aline Miller, Ryo Torii, Deepak M. Kalaskar","doi":"10.36922/ijb.0899","DOIUrl":"https://doi.org/10.36922/ijb.0899","url":null,"abstract":"Cartilage pathology in human disease is poorly understood and requires further research. Various attempts have been made to study cartilage pathologies using in vitro human cartilage models as an alternative for preclinical research. Three-dimensional (3D) bioprinting is a technique that has been used to 3D-bioprint cartilage tissue models in vitro using animal-derived materials such as gelatine or hyaluronan, which present challenges in terms of scalability, reproducibility, and ethical concerns. We present an assessment of synthetic self-assembling peptides as bioinks for bioprinted human in vitro cartilage models. Primary human chondrocytes were mixed with PeptiInk Alpha 1, 3D-bioprinted and cultured for 14 days, and compared with 3D chondrocyte pellet controls. Cell viability was assessed through LIVE/DEAD assays and DNA quantification. High cell viability was observed in the PeptiInk culture, while a fast decrease in DNA levels was observed in the 3D pellet control. Histological evaluation using hematoxylin and eosin staining and immunofluorescence labeling for SOX-9, collagen type II, and aggrecan showed a homogeneous cell distribution in the 3D-bioprinted PeptiInks as well as high expression of chondrogenic markers in both control and PeptiInk cultures. mRNA expression levels assessed by - qRT-PCR (quantitative real time-polymerase chain reaction) confirmed chondrogenic cell behavior. These data showed promise in the potential use of PeptiInk Alpha 1 as a bioprintable manufacturing material for human cartilage in vitro models.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135204658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiscale 3D bioprinting for the recapitulation of lung tissue 用于肺组织再现的多尺度3D生物打印
3区 医学 Pub Date : 2023-09-04 DOI: 10.36922/ijb.1166
Pengbei Fan, Fanli Jin, Yanqin Qin, Yuanyuan Wu, Qingzhen Yang, Han Liu, Jiansheng Li
Lung tissue engineering (LTE) has gained significant attention as a highly promising and innovative strategy to tackle the formidable obstacles posed by lung-related diseases and the lack of compatible donor organs availability. In the realm of groundbreaking advancements in tissue engineering (TE), one particular technology that has emerged as a game-changer is three-dimensional (3D) bioprinting. It distinguishes itself by offering a potent and versatile approach to constructing intricate structures while opening up new horizons for TE and regenerative medicine (RM). This review focuses on the application of multiscale 3D bioprinting techniques in LTE and the reconstitution of lung tissue in vitro. We analyzed the key aspects such as bioink formulations and printing strategies utilized from macroscale 3D bioprinting to micro/nanoscale 3D bioprinting. Additionally, we evaluated the potential of multiscale bioprinting to replicate the complex architecture of the lung, ranging from macrostructures to micro/nanoscale features. We discussed the challenges and future directions in biofabrication approaches for LTE. Furthermore, we highlight the current progress and future perspectives in tissue reconstitution of lung in vitro, considering factors such as cell source, functionalization, and integration of physiological cues. Overall, multiscale 3D bioprinting offers exciting possibilities for the development of functional lung tissues, enabling disease modeling, new drug screening, and personalized regenerative therapies.    
肺组织工程(LTE)作为一种非常有前途和创新的策略,已经获得了极大的关注,以解决肺部相关疾病和缺乏相容供体器官所带来的巨大障碍。在组织工程(TE)领域的突破性进展中,一项特殊的技术已经成为改变游戏规则的技术,那就是三维(3D)生物打印。它的特点是提供了一种强大而通用的方法来构建复杂的结构,同时为TE和再生医学(RM)开辟了新的视野。本文综述了多尺度生物3D打印技术在LTE和体外肺组织重建中的应用。我们分析了从宏观生物3D打印到微/纳米尺度生物3D打印的关键方面,如生物墨水配方和打印策略。此外,我们评估了多尺度生物打印复制肺部复杂结构的潜力,从宏观结构到微/纳米尺度特征。我们讨论了LTE生物制造方法的挑战和未来方向。此外,我们强调了体外肺组织重建的当前进展和未来展望,考虑到细胞来源、功能和生理信号的整合等因素。总体而言,多尺度生物3D打印为功能性肺组织的开发提供了令人兴奋的可能性,使疾病建模、新药筛选和个性化再生治疗成为可能。,,,,
{"title":"Multiscale 3D bioprinting for the recapitulation of lung tissue","authors":"Pengbei Fan, Fanli Jin, Yanqin Qin, Yuanyuan Wu, Qingzhen Yang, Han Liu, Jiansheng Li","doi":"10.36922/ijb.1166","DOIUrl":"https://doi.org/10.36922/ijb.1166","url":null,"abstract":"Lung tissue engineering (LTE) has gained significant attention as a highly promising and innovative strategy to tackle the formidable obstacles posed by lung-related diseases and the lack of compatible donor organs availability. In the realm of groundbreaking advancements in tissue engineering (TE), one particular technology that has emerged as a game-changer is three-dimensional (3D) bioprinting. It distinguishes itself by offering a potent and versatile approach to constructing intricate structures while opening up new horizons for TE and regenerative medicine (RM). This review focuses on the application of multiscale 3D bioprinting techniques in LTE and the reconstitution of lung tissue in vitro. We analyzed the key aspects such as bioink formulations and printing strategies utilized from macroscale 3D bioprinting to micro/nanoscale 3D bioprinting. Additionally, we evaluated the potential of multiscale bioprinting to replicate the complex architecture of the lung, ranging from macrostructures to micro/nanoscale features. We discussed the challenges and future directions in biofabrication approaches for LTE. Furthermore, we highlight the current progress and future perspectives in tissue reconstitution of lung in vitro, considering factors such as cell source, functionalization, and integration of physiological cues. Overall, multiscale 3D bioprinting offers exciting possibilities for the development of functional lung tissues, enabling disease modeling, new drug screening, and personalized regenerative therapies.    ","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135492003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lightweight load-bearing heat dissipation multifunctional pomelo peel-inspired structures fabricated by laser powder bed fusion 采用激光粉末床熔接技术制备的轻质、承重、散热、多功能柚子皮结构
3区 医学 Pub Date : 2023-08-30 DOI: 10.36922/ijb.1011
Linxuan Li, Dongdong Gu, He Liu, Han Zhang, Junhao Shan, Yijuan Zhang
   The heat dissipation structure used in modern airborne radar chassis not only requires lightweight, but also pursues better mechanical properties and heat dissipation performance. In this study, a stochastically porous pomelo peel-inspired gradient structure was fabricated by laser powder bed fusion using Al-Mg-Sc-Zr powder. This study focused on the formability, microstructure, mechanical properties, and heat dissipation performance of the biomimetic structure through experimental and finite element analysis approaches. The influence of volume fraction (VF) on structural mechanical properties, deformation modes, stress distribution, and heat dissipation performance was investigated. The results showed that the mechanical properties of the structure declined as the VFs decreased. The optimal mechanical performance was obtained at the VF of 45%, where the compressive strength, specific energy absorption (Ws), and specific compressive strength values were measured to be 63.47 MPa, 34.84 J/g, and 142.16 MPa/(g·cm-3), respectively. Moreover, the Ws of the structures was higher than that of the reported aluminum alloy structures at the same VF. The biomimetic structure exhibited improved heat dissipation performance as the VFs decreased, with Reynolds number ranging from 2700 to 13,400. The structure of 30% VF with a remarkable heat transfer efficiency index of 1.86 displayed the best heat dissipation performance. In addition, compared with the traditional fin structures, the bionic structure possessed better thermal resistance, heat transfer efficiency index, and temperature uniformity at the same VF. This study demonstrated notable potential of pomelo peel-inspired design for lightweight load-bearing applications capable of heat-dissipating performance, providing a novel perspective for design and fabrication of versatile structures in the aviation field.
,,现代机载雷达底盘采用的散热结构不仅要求轻量化,而且追求更好的力学性能和散热性能。本文以Al-Mg-Sc-Zr粉末为材料,采用激光粉末床熔接法制备了柚子皮激发的随机多孔梯度结构。本研究主要通过实验和有限元分析方法对仿生结构的成形性、微观结构、力学性能和散热性能进行了研究。研究了体积分数(VF)对结构力学性能、变形模式、应力分布和散热性能的影响。结果表明,随着VFs的减小,结构的力学性能有所下降。当VF为45%时,材料的抗压强度、比能吸收(Ws)和比抗压强度分别为63.47 MPa、34.84 J/g和142.16 MPa/(g·cm-3),力学性能最佳。在相同的VF下,该结构的w值高于已有报道的铝合金结构。随着VFs的减小,仿生结构的散热性能得到改善,其雷诺数在2700 ~ 13400之间。30% VF的结构散热性能最好,传热效率指数为1.86。此外,与传统翅片结构相比,仿生结构具有更好的热阻、换热效率指数和相同VF下的温度均匀性。这项研究展示了柚子皮启发设计在具有散热性能的轻质承重应用中的显著潜力,为航空领域多用途结构的设计和制造提供了新的视角。
{"title":"Lightweight load-bearing heat dissipation multifunctional pomelo peel-inspired structures fabricated by laser powder bed fusion","authors":"Linxuan Li, Dongdong Gu, He Liu, Han Zhang, Junhao Shan, Yijuan Zhang","doi":"10.36922/ijb.1011","DOIUrl":"https://doi.org/10.36922/ijb.1011","url":null,"abstract":"   The heat dissipation structure used in modern airborne radar chassis not only requires lightweight, but also pursues better mechanical properties and heat dissipation performance. In this study, a stochastically porous pomelo peel-inspired gradient structure was fabricated by laser powder bed fusion using Al-Mg-Sc-Zr powder. This study focused on the formability, microstructure, mechanical properties, and heat dissipation performance of the biomimetic structure through experimental and finite element analysis approaches. The influence of volume fraction (VF) on structural mechanical properties, deformation modes, stress distribution, and heat dissipation performance was investigated. The results showed that the mechanical properties of the structure declined as the VFs decreased. The optimal mechanical performance was obtained at the VF of 45%, where the compressive strength, specific energy absorption (Ws), and specific compressive strength values were measured to be 63.47 MPa, 34.84 J/g, and 142.16 MPa/(g·cm-3), respectively. Moreover, the Ws of the structures was higher than that of the reported aluminum alloy structures at the same VF. The biomimetic structure exhibited improved heat dissipation performance as the VFs decreased, with Reynolds number ranging from 2700 to 13,400. The structure of 30% VF with a remarkable heat transfer efficiency index of 1.86 displayed the best heat dissipation performance. In addition, compared with the traditional fin structures, the bionic structure possessed better thermal resistance, heat transfer efficiency index, and temperature uniformity at the same VF. This study demonstrated notable potential of pomelo peel-inspired design for lightweight load-bearing applications capable of heat-dissipating performance, providing a novel perspective for design and fabrication of versatile structures in the aviation field.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136242101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in biomaterials and biofabrication for enhancing islet transplantation 促进胰岛移植的生物材料和生物制造进展
3区 医学 Pub Date : 2023-08-25 DOI: 10.36922/ijb.1024
Dayoon Kang, Jaewook Kim, Jinah Jang
Type 1 diabetes (T1D) is characterized by the degeneration of insulin-producing beta cells within pancreatic islets, resulting in impaired endogenous insulin synthesis, which necessitates exogenous insulin therapy. Although intensive insulin therapy has been effective in many patients, a subset of individuals with unstable T1D encounter challenges in maintaining optimal glycemic control through insulin injections. Pancreatic islet transplantation has emerged as a promising therapeutic alternative for such patients, offering enhanced glucose regulation, reduced risk of complications, and liberation from exogenous insulin reliance. However, impediments such as immune rejection and the need for an optimal transplantation environment limit the success of islet transplantation. Revascularization, a crucial requirement for proper islet functionality, poses a challenge in transplantation settings. Biomaterial-based biofabrication approaches have attracted considerable attention to address these challenges. Biomaterials engineered to emulate the native extracellular matrix provide a supportive environment for islet viability and functionality. This review article presents the recent advancements in biomaterials and biofabrication technologies aimed at engineering cell delivery systems to enhance the efficacy of islet transplantation. Immune protection and vascularization strategies are discussed, key biomaterials employed in islet transplantation are highlighted, and various biofabrication techniques, including electrospinning, microfabrication, and bioprinting, are explored. Furthermore, the future directions and challenges in the field of cell delivery systems for islet transplantation are discussed. The integration of appropriate biomaterials and biofabrication methods has significant potential to promote successful islet transplantation by facilitating vascularization and bolstering the immune defense mechanisms.
1型糖尿病(T1D)的特点是胰岛内产生胰岛素的β细胞变性,导致内源性胰岛素合成受损,这就需要外源性胰岛素治疗。尽管强化胰岛素治疗对许多患者有效,但一小部分不稳定T1D患者在通过胰岛素注射维持最佳血糖控制方面遇到了挑战。胰岛移植已成为这类患者的一种很有前景的治疗选择,提供增强的葡萄糖调节,降低并发症的风险,并从外源性胰岛素依赖中解放出来。然而,诸如免疫排斥和对最佳移植环境的需求等障碍限制了胰岛移植的成功。血管重建是胰岛正常功能的关键要求,在移植环境中提出了挑战。基于生物材料的生物制造方法已经引起了相当大的关注,以解决这些挑战。模拟天然细胞外基质的生物材料为胰岛的生存和功能提供了一个支持性的环境。本文综述了生物材料和生物制造技术的最新进展,旨在提高胰岛移植的有效性。讨论了免疫保护和血管化策略,重点介绍了用于胰岛移植的关键生物材料,并探讨了各种生物制造技术,包括静电纺丝、微加工和生物打印。最后,对胰岛移植细胞传递系统的发展方向和面临的挑战进行了展望。结合合适的生物材料和生物制造方法,通过促进血管化和增强免疫防御机制,具有促进胰岛移植成功的巨大潜力。
{"title":"Advancements in biomaterials and biofabrication for enhancing islet transplantation","authors":"Dayoon Kang, Jaewook Kim, Jinah Jang","doi":"10.36922/ijb.1024","DOIUrl":"https://doi.org/10.36922/ijb.1024","url":null,"abstract":"Type 1 diabetes (T1D) is characterized by the degeneration of insulin-producing beta cells within pancreatic islets, resulting in impaired endogenous insulin synthesis, which necessitates exogenous insulin therapy. Although intensive insulin therapy has been effective in many patients, a subset of individuals with unstable T1D encounter challenges in maintaining optimal glycemic control through insulin injections. Pancreatic islet transplantation has emerged as a promising therapeutic alternative for such patients, offering enhanced glucose regulation, reduced risk of complications, and liberation from exogenous insulin reliance. However, impediments such as immune rejection and the need for an optimal transplantation environment limit the success of islet transplantation. Revascularization, a crucial requirement for proper islet functionality, poses a challenge in transplantation settings. Biomaterial-based biofabrication approaches have attracted considerable attention to address these challenges. Biomaterials engineered to emulate the native extracellular matrix provide a supportive environment for islet viability and functionality. This review article presents the recent advancements in biomaterials and biofabrication technologies aimed at engineering cell delivery systems to enhance the efficacy of islet transplantation. Immune protection and vascularization strategies are discussed, key biomaterials employed in islet transplantation are highlighted, and various biofabrication techniques, including electrospinning, microfabrication, and bioprinting, are explored. Furthermore, the future directions and challenges in the field of cell delivery systems for islet transplantation are discussed. The integration of appropriate biomaterials and biofabrication methods has significant potential to promote successful islet transplantation by facilitating vascularization and bolstering the immune defense mechanisms.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135236027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Biomimetic 3D bioprinting approaches to engineer the tumor microenvironment 利用仿生3D生物打印技术设计肿瘤微环境
3区 医学 Pub Date : 2023-08-22 DOI: 10.36922/ijb.1022
Fabiano Bini, Salvatore D’Alessandro, Tarun Agarwal, Daniele Marciano, Serena Duchi, Enrico Lucarelli, Giancarlo Ruocco, Franco Marinozzi, Gianluca Cidonio
With the increasing incidence and mortality rates, cancer remains a major health challenge in the world. Despite advances in therapies and clinical programs, the efficacy of anti-cancer drugs often fails to translate from pre-clinical models to patient clinical trials. To date, pre-clinical cancer models, including two-dimensional cell cultures and animal models, have limited versatility and accuracy in recapitulating the complexity of human cancer. To address these limitations, a growing focus has fostered the development of three-dimensional (3D) tumor models that closely resemble the in vivo tumor microenvironment and heterogeneity. Recent efforts have leveraged bioengineering technologies, such as biofabrication, to engineer new platforms that mimic healthy and diseased organs, aiming to overcome the shortcomings of conventional models, such as for musculoskeletal tissues. Notably, 3D bioprinting has emerged as a powerful tool in cancer research, offering precise control over cell and biomaterial deposition to fabricate architecturally complex and reproducible functional models. The following review underscores the urgent need for more accurate and relevant 3D tumor models, highlighting the advantages of the use of biofabrication approaches to engineer new biomimetics platforms. We provide an updated discussion on the role of bioengineering technologies in cancer research and modeling with particular focus on 3D bioprinting platforms, as well as a close view on biomaterial inks and 3D bioprinting technologies employed in cancer modeling. Further insights into the 3D bioprinting tissue-specific modeling panorama are presented in this paper, offering a comprehensive overview of the new possibilities for cancer study and drug discovery.  
随着发病率和死亡率的增加,癌症仍然是世界上一个主要的健康挑战。尽管治疗和临床项目取得了进展,但抗癌药物的疗效往往无法从临床前模型转化为患者临床试验。迄今为止,临床前癌症模型,包括二维细胞培养和动物模型,在概括人类癌症的复杂性方面具有有限的通用性和准确性。为了解决这些局限性,越来越多的人关注于促进三维(3D)肿瘤模型的发展,这些模型与体内肿瘤微环境和异质性非常相似。最近的努力利用生物工程技术,如生物制造,来设计模拟健康和患病器官的新平台,旨在克服传统模型(如肌肉骨骼组织)的缺点。值得注意的是,3D生物打印已经成为癌症研究的有力工具,可以精确控制细胞和生物材料沉积,以制造结构复杂且可复制的功能模型。下面的综述强调了迫切需要更准确和相关的3D肿瘤模型,强调了使用生物制造方法来设计新的仿生平台的优势。我们提供了关于生物工程技术在癌症研究和建模中的作用的最新讨论,特别关注3D生物打印平台,以及生物材料墨水和3D生物打印技术在癌症建模中的应用。本文提出了对3D生物打印组织特异性建模全景的进一步见解,全面概述了癌症研究和药物发现的新可能性。,,
{"title":"Biomimetic 3D bioprinting approaches to engineer the tumor microenvironment","authors":"Fabiano Bini, Salvatore D’Alessandro, Tarun Agarwal, Daniele Marciano, Serena Duchi, Enrico Lucarelli, Giancarlo Ruocco, Franco Marinozzi, Gianluca Cidonio","doi":"10.36922/ijb.1022","DOIUrl":"https://doi.org/10.36922/ijb.1022","url":null,"abstract":"With the increasing incidence and mortality rates, cancer remains a major health challenge in the world. Despite advances in therapies and clinical programs, the efficacy of anti-cancer drugs often fails to translate from pre-clinical models to patient clinical trials. To date, pre-clinical cancer models, including two-dimensional cell cultures and animal models, have limited versatility and accuracy in recapitulating the complexity of human cancer. To address these limitations, a growing focus has fostered the development of three-dimensional (3D) tumor models that closely resemble the in vivo tumor microenvironment and heterogeneity. Recent efforts have leveraged bioengineering technologies, such as biofabrication, to engineer new platforms that mimic healthy and diseased organs, aiming to overcome the shortcomings of conventional models, such as for musculoskeletal tissues. Notably, 3D bioprinting has emerged as a powerful tool in cancer research, offering precise control over cell and biomaterial deposition to fabricate architecturally complex and reproducible functional models. The following review underscores the urgent need for more accurate and relevant 3D tumor models, highlighting the advantages of the use of biofabrication approaches to engineer new biomimetics platforms. We provide an updated discussion on the role of bioengineering technologies in cancer research and modeling with particular focus on 3D bioprinting platforms, as well as a close view on biomaterial inks and 3D bioprinting technologies employed in cancer modeling. Further insights into the 3D bioprinting tissue-specific modeling panorama are presented in this paper, offering a comprehensive overview of the new possibilities for cancer study and drug discovery.  ","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135717934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D bioprinting-based single liver tumor spheroid analysis for aflatoxin B1-induced drug-resistant cancer cell 基于3D生物打印的单肝肿瘤球体分析黄曲霉毒素b1诱导的耐药癌细胞
3区 医学 Pub Date : 2023-08-18 DOI: 10.36922/ijb.0985
Viet Phuong Cao, Sera Hong, Joon Myong Song
Aflatoxin B1, found in a variety of foods, is a mycotoxin known to cause cancer. Therefore, humans may be exposed to it through their daily diet. In this study, a three-dimensional (3D) tumor spheroid model was developed via 3D bioprinting to examine whether exposure of HepG2 liver tumor spheroids to aflatoxin B1 can increase the population of drug-resistant liver cancer cells in a single tumor spheroid. Two biomarkers, CD133 (prominin-1) and aldehyde dehydrogenase 1 (ALDH1), were used to identify drug-resistant cancer cells formed in the single liver tumor spheroids. The induction of drug-resistant cancer cells in the single tumor spheroids was examined through single spheroid imaging and fluorescence-activated cell sorting (FACS). The increase of drug-resistant cancer cells, which was caused by aflatoxin B1 in a dose-dependent manner, was quantitatively monitored at the single tumor spheroid level using both methods. 3D bioprinting-fabricated single liver tumor spheroid model successfully determined drug-resistant liver cancer cells caused by aflatoxin B1
黄曲霉毒素B1存在于多种食物中,是一种已知会致癌的霉菌毒素。因此,人类可能会通过日常饮食接触到它。本研究通过生物3D打印技术建立了一个三维(3D)肿瘤球体模型,以检验HepG2肝肿瘤球体暴露于黄曲霉毒素B1是否会增加单个肿瘤球体中耐药肝癌细胞的数量。两种生物标志物CD133 (pronin -1)和醛脱氢酶1 (ALDH1)被用来鉴定在单个肝肿瘤球体中形成的耐药癌细胞。通过单球体成像和荧光激活细胞分选(FACS)检测单个肿瘤球体对耐药癌细胞的诱导作用。利用两种方法在单个肿瘤球体水平上定量监测黄曲霉毒素B1引起的耐药癌细胞的增加,其呈剂量依赖性。生物3D打印制备单个肝癌球体模型成功测定黄曲霉毒素B1致肝癌耐药细胞
{"title":"3D bioprinting-based single liver tumor spheroid analysis for aflatoxin B1-induced drug-resistant cancer cell","authors":"Viet Phuong Cao, Sera Hong, Joon Myong Song","doi":"10.36922/ijb.0985","DOIUrl":"https://doi.org/10.36922/ijb.0985","url":null,"abstract":"Aflatoxin B1, found in a variety of foods, is a mycotoxin known to cause cancer. Therefore, humans may be exposed to it through their daily diet. In this study, a three-dimensional (3D) tumor spheroid model was developed via 3D bioprinting to examine whether exposure of HepG2 liver tumor spheroids to aflatoxin B1 can increase the population of drug-resistant liver cancer cells in a single tumor spheroid. Two biomarkers, CD133 (prominin-1) and aldehyde dehydrogenase 1 (ALDH1), were used to identify drug-resistant cancer cells formed in the single liver tumor spheroids. The induction of drug-resistant cancer cells in the single tumor spheroids was examined through single spheroid imaging and fluorescence-activated cell sorting (FACS). The increase of drug-resistant cancer cells, which was caused by aflatoxin B1 in a dose-dependent manner, was quantitatively monitored at the single tumor spheroid level using both methods. 3D bioprinting-fabricated single liver tumor spheroid model successfully determined drug-resistant liver cancer cells caused by aflatoxin B1","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136214709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melt electrospinning writing PCL scaffolds after alkaline modification with outstanding cytocompatibility and osteoinduction 碱性改性后的熔融静电纺丝书写PCL支架具有良好的细胞相容性和成骨性
IF 8.4 3区 医学 Pub Date : 2023-08-11 DOI: 10.36922/ijb.1071
Yubo Shi, Lei Wang, Liguo Sun, Zhennan Qiu, Xiaoli Qu, Jingyi Dang, Zhao Zhang, Jiankang He, Hongbin Fan
Melt electrospinning writing (MEW) is a promising three-dimensional (3D) printing technology that enables the creation of scaffolds with highly ordered microfibers. Polycaprolactone (PCL) is an ideal material for MEW scaffold fabrication due to its exceptional printability. However, its low cellular affinity can hinder its performance in bone tissue engineering. This study aimed to explore the potential of NaOH treatment as a means of enhancing the cytocompatibility and osteoinductive properties of PCL scaffolds. After modification with a NaOH solution, the physiochemical properties of the MEW PCL scaffold were analyzed. The surface of the scaffold was found to have nanopits and nanogrooves, which differed from the smooth surface of the PCL scaffold. Atomic force microscopy and automatic water contact angle assays revealed an increase in surface roughness and wettability, both of which were found to be beneficial for cell proliferation and adhesion. In vitro experiments demonstrated that the NaOH-treated surface was able to induce osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) via the integrinα2/β1-PI3K-Akt signaling pathway, which had not been previously observed. The study involved implanting PCL scaffold to repair a cranial defect. After 1 and 3 months of implantation, histological analysis and micro-computed tomography scans showed a higher amount of newly formed bone on the NaOH-treated PCL scaffolds compared to the PCL scaffold. The study concluded that NaOH treatment was a simple and effective way to enhance cellular affinity and osteoinductive property of MEW PCL scaffold. This strategy may provide a cost-efficient method for promoting bone regeneration.
熔融静电纺丝书写(MEW)是一种很有前途的三维(3D)打印技术,它可以制造高度有序的微纤维支架。聚己内酯(PCL)是一种理想的材料,由于其特殊的印刷性。然而,其细胞亲和性较低,阻碍了其在骨组织工程中的应用。本研究旨在探讨氢氧化钠作为一种增强PCL支架细胞相容性和骨诱导性能的手段的潜力。用NaOH溶液对其进行改性后,对其理化性能进行了分析。与PCL支架的光滑表面不同,支架表面存在纳米微孔和纳米沟槽。原子力显微镜和自动水接触角分析显示,表面粗糙度和润湿性增加,这两者都有利于细胞增殖和粘附。体外实验表明,naoh处理后的表面能够通过整合素α2/β1-PI3K-Akt信号通路诱导大鼠骨髓间充质干细胞(BMSCs)成骨分化,这是之前未观察到的。该研究涉及植入PCL支架修复颅骨缺损。植入1个月和3个月后,组织学分析和显微计算机断层扫描显示,与PCL支架相比,naoh处理的PCL支架上新形成的骨量更高。本研究认为NaOH处理是一种简单有效的增强MEW PCL支架细胞亲和力和成骨诱导性能的方法。这种策略可能为促进骨再生提供一种经济有效的方法。
{"title":"Melt electrospinning writing PCL scaffolds after alkaline modification with outstanding cytocompatibility and osteoinduction","authors":"Yubo Shi, Lei Wang, Liguo Sun, Zhennan Qiu, Xiaoli Qu, Jingyi Dang, Zhao Zhang, Jiankang He, Hongbin Fan","doi":"10.36922/ijb.1071","DOIUrl":"https://doi.org/10.36922/ijb.1071","url":null,"abstract":"Melt electrospinning writing (MEW) is a promising three-dimensional (3D) printing technology that enables the creation of scaffolds with highly ordered microfibers. Polycaprolactone (PCL) is an ideal material for MEW scaffold fabrication due to its exceptional printability. However, its low cellular affinity can hinder its performance in bone tissue engineering. This study aimed to explore the potential of NaOH treatment as a means of enhancing the cytocompatibility and osteoinductive properties of PCL scaffolds. After modification with a NaOH solution, the physiochemical properties of the MEW PCL scaffold were analyzed. The surface of the scaffold was found to have nanopits and nanogrooves, which differed from the smooth surface of the PCL scaffold. Atomic force microscopy and automatic water contact angle assays revealed an increase in surface roughness and wettability, both of which were found to be beneficial for cell proliferation and adhesion. In vitro experiments demonstrated that the NaOH-treated surface was able to induce osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) via the integrinα2/β1-PI3K-Akt signaling pathway, which had not been previously observed. The study involved implanting PCL scaffold to repair a cranial defect. After 1 and 3 months of implantation, histological analysis and micro-computed tomography scans showed a higher amount of newly formed bone on the NaOH-treated PCL scaffolds compared to the PCL scaffold. The study concluded that NaOH treatment was a simple and effective way to enhance cellular affinity and osteoinductive property of MEW PCL scaffold. This strategy may provide a cost-efficient method for promoting bone regeneration.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72426440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D printing and bioprinting in urology 泌尿外科的3D打印和生物打印
IF 8.4 3区 医学 Pub Date : 2023-08-10 DOI: 10.36922/ijb.0969
Kun Liu, Nan Hu, Zhihai Yu, Xin-Zheng Zhang, Hualin Ma, Huawei Qu, Changshun Ruan
Three-dimensional (3D) printing with highly flexible fabrication offers unlimited possibilities to create complex constructs. With the addition of active substances such as biomaterials, living cells, and growth factors, 3D printing can be upgraded to 3D bioprinting, endowing fabricated constructs with biological functions. Urology, as one of the important branches of clinical medicine, covers a variety of organs in the human body, such as kidneys, bladder, urethra, and prostate. The urological organs are multi-tubular, heterogeneous, and anisotropic, bringing huge challenges to 3D printing and bioprinting. This review aims to summarize the development of 3D printing and bioprinting technologies in urology in the last decade based on the Science Citation Index-Expanded (SCI-E) in the Web of Science Core Collection online database (Clarivate). First, we demonstrate the search strategies for published papers using the keywords such as “3D printing,” “3D bioprinting,” and “urology.” Then, eight common 3D printing technologies were introduced in detail with their characteristics, advantages, and disadvantages. Furthermore, the application of 3D printing in urology was explored, such as the fabrication of diseased organs for doctor–patient communication, surgical planning, clinical teaching, and the creation of customized medical devices. Finally, we discuss the exploration of 3D bioprinting to create in vitro bionic 3D environment models for urology. Overall, 3D printing provides the technical support for urology to better serve patients and aid teaching, and 3D bioprinting enables the clinical applications of fabricated constructs for the replacement and repair of urologically damaged organs in future.
具有高度柔性制造的三维(3D)打印为创建复杂结构提供了无限的可能性。随着生物材料、活细胞、生长因子等活性物质的加入,3D打印可以升级为3D生物打印,使制造的结构物具有生物功能。泌尿外科是临床医学的重要分支之一,涵盖了人体的肾脏、膀胱、尿道、前列腺等多种器官。泌尿系统器官具有多管性、异质性和各向异性,这给3D打印和生物打印带来了巨大的挑战。本文以Web of Science Core Collection在线数据库(Clarivate)中的SCI-E为基础,综述了近十年来3D打印和生物打印技术在泌尿外科领域的发展。首先,我们演示了使用“3D打印”、“3D生物打印”和“泌尿学”等关键词搜索已发表论文的策略。然后,详细介绍了八种常见的3D打印技术,以及它们的特点、优缺点。此外,还探讨了3D打印在泌尿外科的应用,如用于医患交流、手术计划、临床教学的病变器官的制造以及定制医疗设备的创建。最后,我们讨论了3D生物打印在泌尿外科体外仿生3D环境模型中的探索。总体而言,3D打印为泌尿外科更好地服务患者和辅助教学提供了技术支持,3D生物打印为未来泌尿系统损伤器官的替换和修复提供了临床应用。
{"title":"3D printing and bioprinting in urology","authors":"Kun Liu, Nan Hu, Zhihai Yu, Xin-Zheng Zhang, Hualin Ma, Huawei Qu, Changshun Ruan","doi":"10.36922/ijb.0969","DOIUrl":"https://doi.org/10.36922/ijb.0969","url":null,"abstract":"Three-dimensional (3D) printing with highly flexible fabrication offers unlimited possibilities to create complex constructs. With the addition of active substances such as biomaterials, living cells, and growth factors, 3D printing can be upgraded to 3D bioprinting, endowing fabricated constructs with biological functions. Urology, as one of the important branches of clinical medicine, covers a variety of organs in the human body, such as kidneys, bladder, urethra, and prostate. The urological organs are multi-tubular, heterogeneous, and anisotropic, bringing huge challenges to 3D printing and bioprinting. This review aims to summarize the development of 3D printing and bioprinting technologies in urology in the last decade based on the Science Citation Index-Expanded (SCI-E) in the Web of Science Core Collection online database (Clarivate). First, we demonstrate the search strategies for published papers using the keywords such as “3D printing,” “3D bioprinting,” and “urology.” Then, eight common 3D printing technologies were introduced in detail with their characteristics, advantages, and disadvantages. Furthermore, the application of 3D printing in urology was explored, such as the fabrication of diseased organs for doctor–patient communication, surgical planning, clinical teaching, and the creation of customized medical devices. Finally, we discuss the exploration of 3D bioprinting to create in vitro bionic 3D environment models for urology. Overall, 3D printing provides the technical support for urology to better serve patients and aid teaching, and 3D bioprinting enables the clinical applications of fabricated constructs for the replacement and repair of urologically damaged organs in future.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79904793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rheology-informed hierarchical machine learning model for the prediction of printing resolution in extrusion-based bioprinting 基于流变学的分层机器学习模型用于挤压生物打印中打印分辨率的预测
IF 8.4 3区 医学 Pub Date : 2023-08-09 DOI: 10.36922/ijb.1280
Dageon Oh, M. Shirzad, Min Chang Kim, Eun-Jae Chung, S. Y. Nam
In this study, a rheology-informed hierarchical machine learning (RIHML) model was developed to improve the prediction accuracy of the printing resolution of constructs fabricated by extrusion-based bioprinting. Specifically, the RIHML model, as well as conventional models such as the concentration-dependent model and printing parameter-dependent model, was trained and tested using a small dataset of bioink properties and printing parameters. Interestingly, the results showed that the RIHML model exhibited the lowest error percentage in predicting the printing resolution for different printing parameters such as nozzle velocities and pressures, as well as for different concentrations of the bioink constituents. Besides, the RIHML model could predict the printing resolution with reasonably low errors even when using a new material added to the alginate-based bioink, which is a challenging task for conventional models. Overall, the results indicate that the RIHML model can be a useful tool to predict the printing resolution of extrusion-based bioprinting, and it is versatile and expandable compared to conventional models since the RIHML model can easily generalize and embrace new data.
在本研究中,开发了一种基于流变学的分层机器学习(RIHML)模型,以提高挤压生物打印构建体打印分辨率的预测精度。具体来说,RIHML模型以及传统的模型,如浓度依赖模型和打印参数依赖模型,使用生物墨水特性和打印参数的小数据集进行训练和测试。有趣的是,结果表明,RIHML模型在预测不同打印参数(如喷嘴速度和压力)以及不同浓度的生物墨水成分的打印分辨率时表现出最低的错误率。此外,即使在藻酸盐基生物墨水中添加新材料,RIHML模型也能以相当低的误差预测打印分辨率,这是传统模型的一个挑战。总体而言,结果表明,RIHML模型可以作为预测挤出生物打印分辨率的有用工具,并且与传统模型相比,RIHML模型具有通用性和可扩展性,因为RIHML模型可以很容易地概括和接受新数据。
{"title":"Rheology-informed hierarchical machine learning model for the prediction of printing resolution in extrusion-based bioprinting","authors":"Dageon Oh, M. Shirzad, Min Chang Kim, Eun-Jae Chung, S. Y. Nam","doi":"10.36922/ijb.1280","DOIUrl":"https://doi.org/10.36922/ijb.1280","url":null,"abstract":"In this study, a rheology-informed hierarchical machine learning (RIHML) model was developed to improve the prediction accuracy of the printing resolution of constructs fabricated by extrusion-based bioprinting. Specifically, the RIHML model, as well as conventional models such as the concentration-dependent model and printing parameter-dependent model, was trained and tested using a small dataset of bioink properties and printing parameters. Interestingly, the results showed that the RIHML model exhibited the lowest error percentage in predicting the printing resolution for different printing parameters such as nozzle velocities and pressures, as well as for different concentrations of the bioink constituents. Besides, the RIHML model could predict the printing resolution with reasonably low errors even when using a new material added to the alginate-based bioink, which is a challenging task for conventional models. Overall, the results indicate that the RIHML model can be a useful tool to predict the printing resolution of extrusion-based bioprinting, and it is versatile and expandable compared to conventional models since the RIHML model can easily generalize and embrace new data.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86301473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Bioprinting
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1