首页 > 最新文献

Carbon Management最新文献

英文 中文
Optimizing climate related global development pathways in the global calculator using Monte Carlo Markov chains and genetic algorithms 利用蒙特卡洛马尔可夫链和遗传算法在全球计算器中优化与气候相关的全球发展路径
IF 3.1 4区 环境科学与生态学 Q1 Environmental Science Pub Date : 2022-01-02 DOI: 10.1080/17583004.2022.2133014
J. García, O. Mwabonje, J. Woods
Abstract Novel pathway optimization methods are presented using the 'Global Calculator’ model and webtool 1 to goal-seek within a set of optimization constraints. The Global Calculator (GC) is a model used to forecast climate-related develop pathways for the world’s energy, food and land systems to 2050. The optimization methods enable the GC’s user to specify optimization constraints and return a combination of input parameters that satisfy them. The optimization methods evaluated aim to address the challenge of efficiently navigating the GC's ample parameter space (8e70 parameter combinations) using Monte Carlo Markov Chains and genetic algorithms. The optimization methods are used to calculate an optimal input combination of the ‘lever’ settings in the GC that satisfy twelve input constraints while minimizing cumulative CO2 emissions and maximizing GDP output. This optimal development pathway yields a prediction to 2100 of 2,835 GtCO2 cumulative emissions and a 3.7% increase in GDP with respect to the “business as usual” pathway defined by the International Energy Agency, the IEA’s 6DS scenario, a likely extension of current trends. At a similar or lower ambition level as the benchmark scenarios considered to date (distributed effort, consumer reluctance, low action on forests and consumer activism), the optimal pathway shows a significant decrease in CO2 emissions and increased GDP. The chosen optimization method presented here enables the generation of optimal, user defined/constrained, bespoke pathways to sustainability, relying on the Global Calculator’s whole system approach and assumptions.
摘要提出了一种新的路径优化方法,使用“全局计算器”模型和webtool 1在一组优化约束下进行目标搜索。全球计算器(GC)是一个用于预测到2050年世界能源、粮食和土地系统与气候相关的发展路径的模型。优化方法使GC的用户能够指定优化约束,并返回满足这些约束的输入参数的组合。评估的优化方法旨在解决使用蒙特卡罗马尔可夫链和遗传算法有效导航GC的充足参数空间(8e70参数组合)的挑战。优化方法用于计算GC中“杠杆”设置的最佳输入组合,该组合满足12个输入约束,同时最大限度地减少累计二氧化碳排放并最大限度地提高GDP产出。相对于国际能源署定义的“一切照旧”途径,即国际能源署的6DS情景,这一最佳发展途径可预测2100年累计排放量为2835 GtCO2,GDP增长3.7%,这可能是当前趋势的延伸。在与迄今为止考虑的基准情景类似或更低的雄心水平上(分散的努力、消费者的不情愿、对森林的低行动和消费者的积极性),最佳途径显示二氧化碳排放量显著减少,GDP增加。这里提供的所选优化方法能够根据全球计算器的整个系统方法和假设,生成最佳的、用户定义/约束的、定制的可持续发展途径。
{"title":"Optimizing climate related global development pathways in the global calculator using Monte Carlo Markov chains and genetic algorithms","authors":"J. García, O. Mwabonje, J. Woods","doi":"10.1080/17583004.2022.2133014","DOIUrl":"https://doi.org/10.1080/17583004.2022.2133014","url":null,"abstract":"Abstract Novel pathway optimization methods are presented using the 'Global Calculator’ model and webtool 1 to goal-seek within a set of optimization constraints. The Global Calculator (GC) is a model used to forecast climate-related develop pathways for the world’s energy, food and land systems to 2050. The optimization methods enable the GC’s user to specify optimization constraints and return a combination of input parameters that satisfy them. The optimization methods evaluated aim to address the challenge of efficiently navigating the GC's ample parameter space (8e70 parameter combinations) using Monte Carlo Markov Chains and genetic algorithms. The optimization methods are used to calculate an optimal input combination of the ‘lever’ settings in the GC that satisfy twelve input constraints while minimizing cumulative CO2 emissions and maximizing GDP output. This optimal development pathway yields a prediction to 2100 of 2,835 GtCO2 cumulative emissions and a 3.7% increase in GDP with respect to the “business as usual” pathway defined by the International Energy Agency, the IEA’s 6DS scenario, a likely extension of current trends. At a similar or lower ambition level as the benchmark scenarios considered to date (distributed effort, consumer reluctance, low action on forests and consumer activism), the optimal pathway shows a significant decrease in CO2 emissions and increased GDP. The chosen optimization method presented here enables the generation of optimal, user defined/constrained, bespoke pathways to sustainability, relying on the Global Calculator’s whole system approach and assumptions.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42303976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical rate analysis for CO2 injection in depleted gas field, Sarawak Basin, offshore East Malaysia 马来西亚东部近海砂拉越盆地枯竭气田CO2注入的临界速率分析
IF 3.1 4区 环境科学与生态学 Q1 Environmental Science Pub Date : 2022-01-02 DOI: 10.1080/17583004.2022.2074312
Nur Zafirah Mat Razali, K. A. Mustapha, M. Z. Kashim, Muhammad Shahir Misnan, S. S. Md Shah, Zainol Affendi Abu Bakar
Abstract This study aimed to address the challenges and strategies to determine the critical rate of CO2 injection into a carbonate depleted gas field. In this research, the critical rate is the maximum allowable injection rate before formation damage initiation. The cause of formation damage could be due to in-situ mobilization or trapping of migratory fines resulting in plugging the flow path. This study performed a thorough investigation of a different rock-fluid system to evaluate the safe injection limit, as the critical rate is different for each rock-fluid system. The geochemical effect of CO2 injection toward carbonate formation was also investigated in this research. Other than that, the porosity and permeability changes due to CO2-brine-rock multiphase flow characteristics were considered to understand the feasibility of CO2 sequestration into carbonate formation. This research discussed experimental design to mimic the CO2 injection scenario of CO2 into carbonate depleted gas field. Therefore, several core flooding experiments were conducted under reservoir conditions using representative native cores, CO2, and synthetic formation brine. Abrupt changes in differential pressure (ΔP), analysis of effluent collected after CO2 multi-rate flow, and pH reading are the key indicators to consider that the condition has reached a critical rate. The experimental result demonstrated the existence of fines migration, scale formation, and salt precipitation after the core was subjected to supercritical CO2 multi-rate flow. Considering these issues and challenges associated with injectivity, this study recommended a maximum injection rate prior to field scale injection.
摘要本研究旨在解决确定碳酸盐贫化气田CO2注入临界速率的挑战和策略。在本研究中,临界速率是地层损伤开始前的最大允许注入速率。地层损坏的原因可能是由于现场调动或截留迁移细粒,导致流动路径堵塞。本研究对不同的岩石流体系统进行了彻底的调查,以评估安全注入极限,因为每个岩石流体系统的临界速率不同。本研究还探讨了CO2注入对碳酸盐岩地层的地球化学作用。除此之外,还考虑了CO2-盐水-岩石多相流动特性引起的孔隙度和渗透率变化,以了解CO2封存到碳酸盐岩地层中的可行性。本研究讨论了模拟CO2注入碳酸盐贫化气田的实验设计。因此,在储层条件下,使用具有代表性的天然岩心、CO2和合成地层盐水进行了几次岩心驱替实验。压差(ΔP)的突然变化、CO2多速率流后收集的污水的分析以及pH读数是考虑条件已达到临界速率的关键指标。实验结果表明,在超临界CO2多速流作用下,岩心存在细粒迁移、结垢和盐沉淀现象。考虑到这些与注入能力相关的问题和挑战,本研究建议在现场规模注入之前采用最大注入速率。
{"title":"Critical rate analysis for CO2 injection in depleted gas field, Sarawak Basin, offshore East Malaysia","authors":"Nur Zafirah Mat Razali, K. A. Mustapha, M. Z. Kashim, Muhammad Shahir Misnan, S. S. Md Shah, Zainol Affendi Abu Bakar","doi":"10.1080/17583004.2022.2074312","DOIUrl":"https://doi.org/10.1080/17583004.2022.2074312","url":null,"abstract":"Abstract This study aimed to address the challenges and strategies to determine the critical rate of CO2 injection into a carbonate depleted gas field. In this research, the critical rate is the maximum allowable injection rate before formation damage initiation. The cause of formation damage could be due to in-situ mobilization or trapping of migratory fines resulting in plugging the flow path. This study performed a thorough investigation of a different rock-fluid system to evaluate the safe injection limit, as the critical rate is different for each rock-fluid system. The geochemical effect of CO2 injection toward carbonate formation was also investigated in this research. Other than that, the porosity and permeability changes due to CO2-brine-rock multiphase flow characteristics were considered to understand the feasibility of CO2 sequestration into carbonate formation. This research discussed experimental design to mimic the CO2 injection scenario of CO2 into carbonate depleted gas field. Therefore, several core flooding experiments were conducted under reservoir conditions using representative native cores, CO2, and synthetic formation brine. Abrupt changes in differential pressure (ΔP), analysis of effluent collected after CO2 multi-rate flow, and pH reading are the key indicators to consider that the condition has reached a critical rate. The experimental result demonstrated the existence of fines migration, scale formation, and salt precipitation after the core was subjected to supercritical CO2 multi-rate flow. Considering these issues and challenges associated with injectivity, this study recommended a maximum injection rate prior to field scale injection.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48728020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Quantification of economically feasible mitigation potential from agriculture, forestry and other land uses in Mexico 量化墨西哥农业、林业和其他土地利用在经济上可行的缓解潜力
IF 3.1 4区 环境科学与生态学 Q1 Environmental Science Pub Date : 2022-01-02 DOI: 10.1080/17583004.2022.2151939
T. Sapkota, K. Dittmer, I. Ortiz-Monasterio, G. P. Mathivanan, K. Sonder, Juan Carlos Leyva, Miguel Angel García, Diana Ysimoto Monroy, Sadie W. Shelton, E. Wollenberg
Abstract Countries often lack methods for rapidly, but robustly determining greenhouse gas (GHG) mitigation actions and their impacts comprehensively in the land use sector to support commitments to the Paris Agreement. We present rapid assessment methods based on easily available spatial data and adoption costs for mitigation related to crops, livestock and forestry to identify priority locations and actions. Applying the methods for the case of Mexico, we found a national mitigation potential of 87.88 million tons (Mt) CO2eq yr−1, comprising 7.91, 7.66 and 72.31 Mt CO2eq yr−1 from crops, livestock and forestry/agro-forestry, respectively. At the state level, mitigation potentials were highest in Chiapas (13 Mt CO2eq) followed by Campeche (8 Mt CO2eq). Eleven states had a land use mitigation potential between 2.5 to 6.5 Mt CO2eq, while other states had mitigation potentials of less than 2 Mt CO2eq. Mitigation options for crops and livestock could reduce 60% and 6% of the respective emissions. Mitigation options for forestry could reduce emissions by half. If properly implemented, mitigation potentials on cropland can be realized with net benefits, compared to livestock and forestry options, which involve net costs. The method supports science-based priority setting of mitigation actions by location and subsector and should help inform future policy and implementation of countries’ nationally determined contributions.
各国往往缺乏快速而有力地全面确定土地利用领域温室气体(GHG)减排行动及其影响的方法,以支持对《巴黎协定》的承诺。我们提出了基于易于获得的空间数据和与作物、牲畜和林业有关的缓解采用成本的快速评估方法,以确定优先地点和行动。将方法应用于墨西哥的案例,我们发现全国减排潜力为8788万吨(Mt)二氧化碳当量年- 1,其中作物、畜牧业和林业/农林复合林业分别为7.91、7.66和7231万吨二氧化碳当量年- 1。在州一级,恰帕斯州的缓解潜力最高(13 Mt CO2eq),其次是坎佩切州(8 Mt CO2eq)。11个州的土地利用缓解潜力在250万吨至650万吨二氧化碳当量之间,而其他州的缓解潜力不到200万吨二氧化碳当量。作物和牲畜的缓解方案可分别减少60%和6%的排放量。林业的缓解方案可以减少一半的排放量。如果实施得当,与涉及净成本的畜牧业和林业方案相比,可以实现对农田的缓解潜力,并带来净效益。该方法支持按地点和分部门以科学为基础确定缓解行动的优先事项,并应有助于为各国未来的政策和国家自主贡献的实施提供信息。
{"title":"Quantification of economically feasible mitigation potential from agriculture, forestry and other land uses in Mexico","authors":"T. Sapkota, K. Dittmer, I. Ortiz-Monasterio, G. P. Mathivanan, K. Sonder, Juan Carlos Leyva, Miguel Angel García, Diana Ysimoto Monroy, Sadie W. Shelton, E. Wollenberg","doi":"10.1080/17583004.2022.2151939","DOIUrl":"https://doi.org/10.1080/17583004.2022.2151939","url":null,"abstract":"Abstract Countries often lack methods for rapidly, but robustly determining greenhouse gas (GHG) mitigation actions and their impacts comprehensively in the land use sector to support commitments to the Paris Agreement. We present rapid assessment methods based on easily available spatial data and adoption costs for mitigation related to crops, livestock and forestry to identify priority locations and actions. Applying the methods for the case of Mexico, we found a national mitigation potential of 87.88 million tons (Mt) CO2eq yr−1, comprising 7.91, 7.66 and 72.31 Mt CO2eq yr−1 from crops, livestock and forestry/agro-forestry, respectively. At the state level, mitigation potentials were highest in Chiapas (13 Mt CO2eq) followed by Campeche (8 Mt CO2eq). Eleven states had a land use mitigation potential between 2.5 to 6.5 Mt CO2eq, while other states had mitigation potentials of less than 2 Mt CO2eq. Mitigation options for crops and livestock could reduce 60% and 6% of the respective emissions. Mitigation options for forestry could reduce emissions by half. If properly implemented, mitigation potentials on cropland can be realized with net benefits, compared to livestock and forestry options, which involve net costs. The method supports science-based priority setting of mitigation actions by location and subsector and should help inform future policy and implementation of countries’ nationally determined contributions.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48873263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A procedure to estimate variances and covariances on GHG emissions and inventories 一种估算温室气体排放和清单方差和协方差的程序
IF 3.1 4区 环境科学与生态学 Q1 Environmental Science Pub Date : 2022-01-02 DOI: 10.1080/17583004.2022.2086486
E. Marujo, G. G. Rodrigues, Weber A. N. Amaral, Fernanda Leonardis, Arthur Covatti
Abstract This study presents a method for estimating the mean and variance of total CO2 emission from multiple sources used by a company. The procedure is also readily applicable to estimate these parameters for other greenhouse gases (GHG) inventories and to determine a reliable confidence interval for the total emissions of GHG of a company. Our method represents an improvement over the existing methods that assume independence between emissions from different sources. The foundation of the proposed method is an iterative decomposition process applied to analyze the emissions correlations among activities, raw materials and other inputs used in a company’s operations. From these correlations and the individual estimates of means and variances of emission factors, we show how to generate a confidence interval for the total GHG emission of a company. The application of the method is illustrated for a hypothetical manufacturing plant of bicycles and car toys, whose total CO2 emission is estimated within a precise confidence interval.
摘要:本文提出了一种估算企业多源二氧化碳排放总量均值和方差的方法。该程序也很容易适用于估计其他温室气体清单的这些参数,并确定公司温室气体总排放量的可靠置信区间。我们的方法是对现有方法的改进,这些方法假定不同源的排放之间是独立的。提出的方法的基础是一个迭代分解过程,用于分析公司运营中使用的活动、原材料和其他投入之间的排放相关性。根据这些相关性以及对排放因子均值和方差的个人估计,我们展示了如何为一家公司的温室气体排放总量生成一个置信区间。以一个假设的自行车和汽车玩具制造工厂为例,说明了该方法的应用,该工厂的二氧化碳排放总量在一个精确的置信区间内估计。
{"title":"A procedure to estimate variances and covariances on GHG emissions and inventories","authors":"E. Marujo, G. G. Rodrigues, Weber A. N. Amaral, Fernanda Leonardis, Arthur Covatti","doi":"10.1080/17583004.2022.2086486","DOIUrl":"https://doi.org/10.1080/17583004.2022.2086486","url":null,"abstract":"Abstract This study presents a method for estimating the mean and variance of total CO2 emission from multiple sources used by a company. The procedure is also readily applicable to estimate these parameters for other greenhouse gases (GHG) inventories and to determine a reliable confidence interval for the total emissions of GHG of a company. Our method represents an improvement over the existing methods that assume independence between emissions from different sources. The foundation of the proposed method is an iterative decomposition process applied to analyze the emissions correlations among activities, raw materials and other inputs used in a company’s operations. From these correlations and the individual estimates of means and variances of emission factors, we show how to generate a confidence interval for the total GHG emission of a company. The application of the method is illustrated for a hypothetical manufacturing plant of bicycles and car toys, whose total CO2 emission is estimated within a precise confidence interval.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42703522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The contribution of the German building sector to achieve the 1.5 °C target 德国建筑部门对实现1.5 °C目标
IF 3.1 4区 环境科学与生态学 Q1 Environmental Science Pub Date : 2022-01-02 DOI: 10.1080/17583004.2022.2133015
Tobias Kropp, K. Lennerts, M. Fisch, Christian Kley, Thomas Wilken, S. Marx, J. Zak
Abstract The melting greenhouse gas emissions budget of the German building sector for the 1.5 °C target requires fast counteraction. In this paper, an analysis of the applicable legal and regulatory framework, the funding situation as well as national and international strategies on a transformation towards climate neutrality elucidates that the suggested approaches do not take a holistic view into account. They neglect, that embodied emissions from construction and emissions from operations phases of buildings must be oriented on the remaining budget, as well as material and human resources associated with the required actions. Therefore a framework to decarbonise the German building sector with eleven recommendations for action, which addresses these findings, is developed with a panel of experts. The results clarify, that the focus must be on adapting the existing building stock since renovation processes release significantly fewer emissions than the construction of new buildings. Stricter legal requirements for building envelopes have no significant effect on the reduction of emissions. Instead, fast-acting measures, such as the usage of district heating, photovoltaics, heat pumps, the optimisation of building operation and digitalisation, must be implemented in a prioritised manner to save resources and maintain the emissions budget longer. To be able to align effective measures it is necessary to engage all Stakeholders and to establish reliable political guidance down to the building level. HIGHLIGHTS A decarbonisation framework for German building sector is developed. An emissions budget is required as a benchmark for measures in new buildings and stock. Focus on fast-acting measures in existing buildings to maintain the budget and resources. Establish a buildings database to evaluate the state, plan resources and monitor effects. The energy sector has to decarbonise simultaneously, due to increasing interconnection.
德国建筑行业的温室气体排放预算为1.5°C的目标需要快速反击。在本文中,对适用的法律和监管框架、资金状况以及向气候中和转型的国家和国际战略的分析表明,建议的方法没有考虑到整体的观点。它们忽略了建筑和建筑物运营阶段的具体排放必须以剩余预算以及与所需行动有关的物质和人力资源为导向。因此,一个专家小组制定了一个框架,以使德国建筑部门脱碳,并提出了11项行动建议,以解决这些发现。研究结果表明,重点必须放在改造现有建筑上,因为改造过程比新建建筑释放的排放量要少得多。更严格的建筑围护结构法律要求对减少排放没有显著影响。相反,必须以优先的方式实施速效措施,如区域供热、光伏、热泵、建筑运营优化和数字化,以节省资源并延长排放预算。为了能够协调有效的措施,有必要让所有利益攸关方参与进来,并在建设层面建立可靠的政治指导。重点介绍了德国建筑行业的脱碳框架。排放预算需要作为新建筑和库存措施的基准。重点在现有楼宇采取快速措施,以维持预算和资源。建立建筑数据库,评估现状,规划资源,监测效果。由于日益增长的互联互通,能源部门必须同时去碳化。
{"title":"The contribution of the German building sector to achieve the 1.5 °C target","authors":"Tobias Kropp, K. Lennerts, M. Fisch, Christian Kley, Thomas Wilken, S. Marx, J. Zak","doi":"10.1080/17583004.2022.2133015","DOIUrl":"https://doi.org/10.1080/17583004.2022.2133015","url":null,"abstract":"Abstract The melting greenhouse gas emissions budget of the German building sector for the 1.5 °C target requires fast counteraction. In this paper, an analysis of the applicable legal and regulatory framework, the funding situation as well as national and international strategies on a transformation towards climate neutrality elucidates that the suggested approaches do not take a holistic view into account. They neglect, that embodied emissions from construction and emissions from operations phases of buildings must be oriented on the remaining budget, as well as material and human resources associated with the required actions. Therefore a framework to decarbonise the German building sector with eleven recommendations for action, which addresses these findings, is developed with a panel of experts. The results clarify, that the focus must be on adapting the existing building stock since renovation processes release significantly fewer emissions than the construction of new buildings. Stricter legal requirements for building envelopes have no significant effect on the reduction of emissions. Instead, fast-acting measures, such as the usage of district heating, photovoltaics, heat pumps, the optimisation of building operation and digitalisation, must be implemented in a prioritised manner to save resources and maintain the emissions budget longer. To be able to align effective measures it is necessary to engage all Stakeholders and to establish reliable political guidance down to the building level. HIGHLIGHTS A decarbonisation framework for German building sector is developed. An emissions budget is required as a benchmark for measures in new buildings and stock. Focus on fast-acting measures in existing buildings to maintain the budget and resources. Establish a buildings database to evaluate the state, plan resources and monitor effects. The energy sector has to decarbonise simultaneously, due to increasing interconnection.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44930862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversification of rice growing areas in Eastern India with integrated soil–crop system management for GHGs mitigation and higher productivity 通过综合土壤-作物系统管理实现印度东部水稻种植区多样化,以减少温室气体排放和提高生产力
IF 3.1 4区 环境科学与生态学 Q1 Environmental Science Pub Date : 2022-01-02 DOI: 10.1080/17583004.2021.2023049
Akshay K. Singh, A. K. Ghorai, G. Kar
Abstract Mono-cropping, burning of crop residues, imbalanced fertilization and limited use of farm manure are resulting in loss of soil organic carbon (SOC). In this study, integrated soil-crop management (ILMsoil), improved management (IMsoil) and conventional management (CMsoil) was studied to enhance the soil carbon sequestration for mitigation of greenhouse gas (GHG) emissions. The life cycle assessment (LCA) approach was used to estimate carbon footprint from successive crops of rice, mustard and jute with or without intercrops or mixed crops. The adoption of ILMsoil helped in reducing the carbon footprint by 78%. The overall economic yield increased by 25% over IMsoil as well. Net CO2-eq emission was 68% less under ILMsoil as compared to other systems. The reduction in net LCA-GHG emission was mainly due to high SOC sequestration by jute crop and leguminous intercrops and mixed crops. Improved crop diversification and agronomic productivity as used in ILMsoil system may decrease the inputs of non-renewable energy and consequently reduce the emission of GHGs from agroecosystems. Improvement of soil health, minimization in nutrient and water losses, and application of the increased amount of organic fertilizers were found helpful in reducing the carbon footprint. ILMsoil method of cultivation in 0.70 million hectare of jute growing area may reduce about 0.40 million tonnes of CO2-eq from atmosphere every year and provide carbon credit of 1.22 million US$to the farmers of eastern India.
单作、秸秆焚烧、施肥不平衡和有机肥利用有限是造成土壤有机碳(SOC)流失的主要原因。本研究通过土壤-作物综合管理(ILMsoil)、改良管理(IMsoil)和常规管理(CMsoil)来增强土壤固碳以减缓温室气体(GHG)排放。采用生命周期评价(LCA)方法对水稻、芥菜和黄麻连作有无间作或混作的碳足迹进行了估算。采用ILMsoil帮助减少了78%的碳足迹。总体经济产量也比IMsoil提高了25%。与其他系统相比,ILMsoil的净co2当量排放量减少68%。黄麻、豆科间作和混作对有机碳的高固碳作用是减少LCA-GHG净排放量的主要原因。改良作物多样化和提高农业生产力可以减少不可再生能源的投入,从而减少农业生态系统的温室气体排放。改善土壤健康、减少养分和水分流失以及增加有机肥的施用有助于减少碳足迹。在70万公顷黄麻种植区采用ILMsoil种植方法,每年可从大气中减少约40万吨二氧化碳当量,并为印度东部农民提供122万美元的碳信用。
{"title":"Diversification of rice growing areas in Eastern India with integrated soil–crop system management for GHGs mitigation and higher productivity","authors":"Akshay K. Singh, A. K. Ghorai, G. Kar","doi":"10.1080/17583004.2021.2023049","DOIUrl":"https://doi.org/10.1080/17583004.2021.2023049","url":null,"abstract":"Abstract Mono-cropping, burning of crop residues, imbalanced fertilization and limited use of farm manure are resulting in loss of soil organic carbon (SOC). In this study, integrated soil-crop management (ILMsoil), improved management (IMsoil) and conventional management (CMsoil) was studied to enhance the soil carbon sequestration for mitigation of greenhouse gas (GHG) emissions. The life cycle assessment (LCA) approach was used to estimate carbon footprint from successive crops of rice, mustard and jute with or without intercrops or mixed crops. The adoption of ILMsoil helped in reducing the carbon footprint by 78%. The overall economic yield increased by 25% over IMsoil as well. Net CO2-eq emission was 68% less under ILMsoil as compared to other systems. The reduction in net LCA-GHG emission was mainly due to high SOC sequestration by jute crop and leguminous intercrops and mixed crops. Improved crop diversification and agronomic productivity as used in ILMsoil system may decrease the inputs of non-renewable energy and consequently reduce the emission of GHGs from agroecosystems. Improvement of soil health, minimization in nutrient and water losses, and application of the increased amount of organic fertilizers were found helpful in reducing the carbon footprint. ILMsoil method of cultivation in 0.70 million hectare of jute growing area may reduce about 0.40 million tonnes of CO2-eq from atmosphere every year and provide carbon credit of 1.22 million US$to the farmers of eastern India.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44719826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Carbon footprint of cows’ milk: a case study of peri-urban and urban dairy farms within Mekelle milk-shed, Ethiopia 牛奶的碳足迹:埃塞俄比亚Mekelle牛奶棚内城郊和城市奶牛场的案例研究
IF 3.1 4区 环境科学与生态学 Q1 Environmental Science Pub Date : 2022-01-02 DOI: 10.1080/17583004.2022.2039301
E. Balcha, H. T. Menghistu, A. Zenebe, Birhanu Hadush
Abstract In Ethiopia, there is an urge to enhance milk production where urban and peri-urban farms play important role. Therefore, the role of such production system in Greenhouse gas (GHG) emissions should be known. This study was conducted with the objective of estimating the carbon footprint (CF) of milk within Mekelle milkshed, Ethiopia. 50 urban and 42 peri-urban dairy farms were selected randomly and both primary and secondary data was collected. Lifecycle Assessment (LCA) approach was employed to quantify GHG emissions using cradle to- farm gate approach. The mean GHG emissions per cattle unit (000 kg CO2-e y-1) were 2.84 ± 1.23 and 3.19 ± 1.99 for peri-urban and urban farms, respectively. The share of enteric fermentation was 75.5% and 73.6% for peri-urban and urban farms, respectively. Milk contributed for 88.5% and 90.8% to the economic value of peri-urban and urban farms, respectively. Overall, the CF of milk production in urban and peri-urban farms was 2.2 kg CO2-e/kg and 3.2 kg CO2-e/kg without economic allocation, and 2.0 kg CO2-e/kg and 2.8 kg CO2-e/kg with economic allocation. In order to reduce GHG emission intensity from dairy farms it is important to adopt climate smart dairy practices.
在埃塞俄比亚,迫切需要提高牛奶产量,其中城市和城郊农场发挥着重要作用。因此,应该了解这种生产系统在温室气体(GHG)排放中的作用。本研究以埃塞俄比亚Mekelle牛奶棚为研究对象,随机选取50个城市和42个城郊奶牛场,收集了主要和次要数据。采用生命周期评估(LCA)方法对温室气体排放量进行量化,采用从摇篮到农场大门的方法。城郊和城市农场单位牛平均温室气体排放量(000 kg CO2-e -1)分别为2.84±1.23和3.19±1.99。城郊和城郊农场肠道发酵比例分别为75.5%和73.6%。牛奶对城郊农场和城市农场经济价值的贡献率分别为88.5%和90.8%。总体而言,城市和城郊农场在不进行经济配置的情况下的产奶量CF分别为2.2 kg CO2-e/kg和3.2 kg CO2-e/kg,在进行经济配置的情况下分别为2.0 kg CO2-e/kg和2.8 kg CO2-e/kg。为了减少奶牛场的温室气体排放强度,采用气候智能型奶牛场实践非常重要。
{"title":"Carbon footprint of cows’ milk: a case study of peri-urban and urban dairy farms within Mekelle milk-shed, Ethiopia","authors":"E. Balcha, H. T. Menghistu, A. Zenebe, Birhanu Hadush","doi":"10.1080/17583004.2022.2039301","DOIUrl":"https://doi.org/10.1080/17583004.2022.2039301","url":null,"abstract":"Abstract In Ethiopia, there is an urge to enhance milk production where urban and peri-urban farms play important role. Therefore, the role of such production system in Greenhouse gas (GHG) emissions should be known. This study was conducted with the objective of estimating the carbon footprint (CF) of milk within Mekelle milkshed, Ethiopia. 50 urban and 42 peri-urban dairy farms were selected randomly and both primary and secondary data was collected. Lifecycle Assessment (LCA) approach was employed to quantify GHG emissions using cradle to- farm gate approach. The mean GHG emissions per cattle unit (000 kg CO2-e y-1) were 2.84 ± 1.23 and 3.19 ± 1.99 for peri-urban and urban farms, respectively. The share of enteric fermentation was 75.5% and 73.6% for peri-urban and urban farms, respectively. Milk contributed for 88.5% and 90.8% to the economic value of peri-urban and urban farms, respectively. Overall, the CF of milk production in urban and peri-urban farms was 2.2 kg CO2-e/kg and 3.2 kg CO2-e/kg without economic allocation, and 2.0 kg CO2-e/kg and 2.8 kg CO2-e/kg with economic allocation. In order to reduce GHG emission intensity from dairy farms it is important to adopt climate smart dairy practices.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45272235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Contribution of cropland expansion to regional carbon stocks in an arid area of China: a case study in Xinjiang 中国干旱区耕地扩张对区域碳储量的贡献——以新疆为例
IF 3.1 4区 环境科学与生态学 Q1 Environmental Science Pub Date : 2022-01-02 DOI: 10.1080/17583004.2022.2043446
Yuangang Wang, C. Li, Friday Uchenna Ochege, Q. Han, O. Hellwich, Shixin Wu, G. Luo
Abstract There has been an increasing number of studies on the potential effects of land-use change on the carbon (C) balance. However, few of these studies have focused on arid regions. Cropland in Xinjiang, a typical arid region in China, has expanded dramatically over the last 40 years. This study applied the Carbon Bookkeeping Model to estimate the changes in C stocks resulting from cropland expansion in Xinjiang from 1975 to 2015. The results showed that the area of cropland increased by a factor of ∼1.6. This increase was driven by advancements in agricultural technology and favorable agricultural policies. The increase in cropland area of 2.03 Mha (M = 106) was the result of the clearing of ∼4.09 Mha land for cropland and the conversion of 2.06 Mha cropland to other land cover types. The expansion in cropland resulted in substantial sequestration of C, with that in Xinjiang amounting to 94.24 Tg C (1Tg = 1012g), accounting for 1.4% of the regional C stocks. Land clearing for cropland (LCC) had the greatest contribution to C sequestration in Xinjiang. The rate of increase in C density through LCC was 0.61 Mg C ha−1a−1 and 1.54 Mg C ha−1a−1 from 1975 to 2004 and 2005 to 2015, respectively. C sequestration due to cropland loss (CLO) of 29.40 Tg C was attributed to the expansion of built-up land and afforestation. Sustainable agricultural activities represented by large-scale clearing for cropland were a major C sink in Xinjiang. Therefore, sustainable management of cropland is essential for maintaining a high C density and preventing loss of C to the atmosphere through cropland abandonment in the future.
土地利用变化对碳(C)平衡潜在影响的研究越来越多。然而,这些研究很少集中在干旱地区。新疆是中国典型的干旱地区,在过去的40年里,新疆的耕地面积急剧扩大。本文应用碳记账模型对1975 - 2015年新疆耕地扩张导致的碳储量变化进行了估算。结果表明,耕地面积增加了约1.6倍。这一增长是由农业技术进步和有利的农业政策推动的。耕地面积增加2.03 Mha (M = 106)的原因是将约4.09 Mha的耕地转为耕地,并将2.06 Mha的耕地转为其他土地覆盖类型。耕地面积的扩大导致碳的大量固存,新疆地区碳固存量达94.24 Tg C (1Tg = 1012g),占区域碳储量的1.4%。退耕还田(LCC)对碳汇的贡献最大。1975 - 2004年和2005 - 2015年,LCC对C密度的贡献率分别为0.61 Mg C ha - 1a−1和1.54 Mg C ha - 1a−1。由于耕地损失(CLO)造成的29.40 Tg C的碳固存归因于建设用地和造林的扩大。以大规模耕地清理为代表的可持续农业活动是新疆主要的碳汇。因此,农田的可持续管理对于保持较高的碳密度和防止未来因农田废弃而导致的碳向大气的损失至关重要。
{"title":"Contribution of cropland expansion to regional carbon stocks in an arid area of China: a case study in Xinjiang","authors":"Yuangang Wang, C. Li, Friday Uchenna Ochege, Q. Han, O. Hellwich, Shixin Wu, G. Luo","doi":"10.1080/17583004.2022.2043446","DOIUrl":"https://doi.org/10.1080/17583004.2022.2043446","url":null,"abstract":"Abstract There has been an increasing number of studies on the potential effects of land-use change on the carbon (C) balance. However, few of these studies have focused on arid regions. Cropland in Xinjiang, a typical arid region in China, has expanded dramatically over the last 40 years. This study applied the Carbon Bookkeeping Model to estimate the changes in C stocks resulting from cropland expansion in Xinjiang from 1975 to 2015. The results showed that the area of cropland increased by a factor of ∼1.6. This increase was driven by advancements in agricultural technology and favorable agricultural policies. The increase in cropland area of 2.03 Mha (M = 106) was the result of the clearing of ∼4.09 Mha land for cropland and the conversion of 2.06 Mha cropland to other land cover types. The expansion in cropland resulted in substantial sequestration of C, with that in Xinjiang amounting to 94.24 Tg C (1Tg = 1012g), accounting for 1.4% of the regional C stocks. Land clearing for cropland (LCC) had the greatest contribution to C sequestration in Xinjiang. The rate of increase in C density through LCC was 0.61 Mg C ha−1a−1 and 1.54 Mg C ha−1a−1 from 1975 to 2004 and 2005 to 2015, respectively. C sequestration due to cropland loss (CLO) of 29.40 Tg C was attributed to the expansion of built-up land and afforestation. Sustainable agricultural activities represented by large-scale clearing for cropland were a major C sink in Xinjiang. Therefore, sustainable management of cropland is essential for maintaining a high C density and preventing loss of C to the atmosphere through cropland abandonment in the future.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44108415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Why is Bangladesh’s electricity generation heading towards a GHG emissions-intensive future? 为什么孟加拉国的发电正在走向温室气体排放密集型的未来?
IF 3.1 4区 环境科学与生态学 Q1 Environmental Science Pub Date : 2022-01-02 DOI: 10.1080/17583004.2022.2068454
Kumar Biswajit Debnath, M. Mourshed
Abstract Bangladesh—recently graduated to developing nation category from a least developed country with an emerging economy also is one of the severely affected countries by climate change—is heading towards a coal-intensive electricity generation mix contrary to global decarbonisation efforts. It is facing formidable challenges in achieving universal access to affordable, reliable, and sustainable electricity, decarbonising the energy mix by 2030 to achieve the objective of Sustainable Development Goal (SDG) 7, despite a 285% increase of installed capacity between 2008–09 and 2020–21 and aiming at achieving 40 GW and 60 GW by 2030 and 2041 with planned expansions, respectively. This study reviewed Bangladesh’s electricity sector developments—demand, generation, transmission, and distribution (T&D)—to identify progress in policies, drivers, and challenges behind the Greenhouse gas (GHG) emissions-intensive future direction. The rapid population and economic growth and shift towards industry-based economy drove the exponential growth in energy demand, eventually influencing the rapid generation capacity and T&D infrastructure development. However, Bangladesh has targeted transitioning from natural gas to coal dominating fuel mix due to the lower renewable potential, energy, and food security challenges, because of the anticipated substantial future electricity demand for becoming an Upper Middle and a High-income country by 2031 and 2041, respectively. We also recommended nuclear energy, (renewable) electricity import and floating solar plants to decarbonise the current trajectory.
孟加拉国——最近从一个新兴经济体的最不发达国家升格为发展中国家,也是受气候变化影响最严重的国家之一——正在朝着与全球脱碳努力背道而驰的煤炭密集型发电组合发展。尽管2008-09年至2020-21年期间装机容量增长了285%,并计划在2030年和2041年分别实现40吉瓦和60吉瓦的扩张目标,但在实现普遍获得负担得起、可靠和可持续的电力、到2030年实现能源结构脱碳以实现可持续发展目标(SDG) 7方面,中国面临着巨大的挑战。本研究回顾了孟加拉国电力行业的发展——需求、发电、输电和配电(T&D)——以确定温室气体排放密集型未来发展方向背后的政策、驱动因素和挑战方面的进展。人口和经济的快速增长以及向工业经济的转型推动了能源需求的指数级增长,最终影响了快速的发电能力和输配电基础设施的发展。然而,由于可再生能源潜力较低,能源和粮食安全方面的挑战,孟加拉国的目标是从天然气向煤炭主导燃料结构过渡,因为预计到2031年和2041年,孟加拉国将分别成为中高收入和高收入国家,未来的电力需求将大幅增加。我们还建议使用核能、(可再生)电力进口和浮动太阳能发电厂来降低目前的碳排放轨迹。
{"title":"Why is Bangladesh’s electricity generation heading towards a GHG emissions-intensive future?","authors":"Kumar Biswajit Debnath, M. Mourshed","doi":"10.1080/17583004.2022.2068454","DOIUrl":"https://doi.org/10.1080/17583004.2022.2068454","url":null,"abstract":"Abstract Bangladesh—recently graduated to developing nation category from a least developed country with an emerging economy also is one of the severely affected countries by climate change—is heading towards a coal-intensive electricity generation mix contrary to global decarbonisation efforts. It is facing formidable challenges in achieving universal access to affordable, reliable, and sustainable electricity, decarbonising the energy mix by 2030 to achieve the objective of Sustainable Development Goal (SDG) 7, despite a 285% increase of installed capacity between 2008–09 and 2020–21 and aiming at achieving 40 GW and 60 GW by 2030 and 2041 with planned expansions, respectively. This study reviewed Bangladesh’s electricity sector developments—demand, generation, transmission, and distribution (T&D)—to identify progress in policies, drivers, and challenges behind the Greenhouse gas (GHG) emissions-intensive future direction. The rapid population and economic growth and shift towards industry-based economy drove the exponential growth in energy demand, eventually influencing the rapid generation capacity and T&D infrastructure development. However, Bangladesh has targeted transitioning from natural gas to coal dominating fuel mix due to the lower renewable potential, energy, and food security challenges, because of the anticipated substantial future electricity demand for becoming an Upper Middle and a High-income country by 2031 and 2041, respectively. We also recommended nuclear energy, (renewable) electricity import and floating solar plants to decarbonise the current trajectory.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43589856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
CO2 emissions from biomass combustion Accounting of CO2 emissions from biomass under the UNFCCC 根据《联合国气候变化框架公约》计算生物质燃烧产生的二氧化碳排放量
IF 3.1 4区 环境科学与生态学 Q1 Environmental Science Pub Date : 2022-01-02 DOI: 10.1080/17583004.2022.2067456
T. Pulles, M. Gillenwater, K. Radunsky
Abstract Many Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are envisaging the use of significant amounts of biomass as a primary source in their energy supply. The present greenhouse gas (GHG) emission inventory guidelines, based on methods and approaches originally proposed by the IPCC in the 1990s do not add the CO2 emissions from the combustion or incineration of these biogenic fuels to national total emissions, as it is assumed these emissions reverse recent CO2 removals from the atmosphere during photosynthetic growth of the biomass, largely within the Party’s own boundaries. In a national annual inventory under the UNFCCC, the biomass carbon harvested in a specific year is balanced against the biomass carbon oxidation processes addressed in the energy and waste sectors of GHG inventories. The CO2 emissions from biomass oxidation in the present Intergovernmental Panel on Climate Change (IPPC) inventory approach are accounted for by the country harvesting the biomass via the subtraction of the harvested biomass from C pools on their lands. This harvested biomass carbon is implicitly assumed to be oxidized both in the year and the country of harvest, regardless of whether this is factual. In the case of biomass exports, the CO2 emissions from the combustion/oxidation of this harvested biomass are not included in the national totals of the country where the biomass is used, as under the present approach this would lead to double counting on the global scale. With the increasing use of biomass on industrial scales, the assumptions underlying this approach start to introduce material inaccuracies on a national scale (versus global). Biomass combustion may no longer be negligible compared with fossil fuel combustion as biogenic fuels are increasingly traded internationally. In this paper, we review the present IPCC carbon mass flow approach and propose a change in the reporting and accounting methods that has the potential to address this national GHG emissions reporting issue.
《联合国气候变化框架公约》(UNFCCC)的许多缔约方正在设想将大量生物质作为其能源供应的主要来源。目前的温室气体(GHG)排放清单指南基于IPCC在20世纪90年代最初提出的方法和途径,并未将这些生物燃料燃烧或焚烧产生的二氧化碳排放计入国家总排放量,因为假定这些排放抵消了最近在生物质光合作用生长期间从大气中清除的二氧化碳,主要是在缔约方自己的边界内。在《联合国气候变化框架公约》下的国家年度清单中,特定年份收获的生物质碳与温室气体清单中能源和废物部门处理的生物质碳氧化过程相平衡。在目前的政府间气候变化专门委员会(IPPC)清单方法中,生物质氧化产生的二氧化碳排放量是由收获生物质的国家通过从其土地上的碳库中减去收获的生物质来计算的。这种收获的生物质碳被隐含地假设在收获的年份和国家被氧化,不管这是否属实。在生物质出口的情况下,这种收获的生物质燃烧/氧化产生的二氧化碳排放量不包括在使用生物质的国家的全国总量中,因为根据目前的方法,这将导致在全球范围内重复计算。随着生物质在工业规模上的使用越来越多,这种方法的基础假设开始在国家范围内(相对于全球范围)引入材料不准确性。随着生物燃料在国际上的交易日益增多,与化石燃料燃烧相比,生物质燃烧可能不再是微不足道的。在本文中,我们回顾了目前的IPCC碳质量流方法,并提出了一种报告和会计方法的变化,该方法有可能解决这一国家温室气体排放报告问题。
{"title":"CO2 emissions from biomass combustion Accounting of CO2 emissions from biomass under the UNFCCC","authors":"T. Pulles, M. Gillenwater, K. Radunsky","doi":"10.1080/17583004.2022.2067456","DOIUrl":"https://doi.org/10.1080/17583004.2022.2067456","url":null,"abstract":"Abstract Many Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are envisaging the use of significant amounts of biomass as a primary source in their energy supply. The present greenhouse gas (GHG) emission inventory guidelines, based on methods and approaches originally proposed by the IPCC in the 1990s do not add the CO2 emissions from the combustion or incineration of these biogenic fuels to national total emissions, as it is assumed these emissions reverse recent CO2 removals from the atmosphere during photosynthetic growth of the biomass, largely within the Party’s own boundaries. In a national annual inventory under the UNFCCC, the biomass carbon harvested in a specific year is balanced against the biomass carbon oxidation processes addressed in the energy and waste sectors of GHG inventories. The CO2 emissions from biomass oxidation in the present Intergovernmental Panel on Climate Change (IPPC) inventory approach are accounted for by the country harvesting the biomass via the subtraction of the harvested biomass from C pools on their lands. This harvested biomass carbon is implicitly assumed to be oxidized both in the year and the country of harvest, regardless of whether this is factual. In the case of biomass exports, the CO2 emissions from the combustion/oxidation of this harvested biomass are not included in the national totals of the country where the biomass is used, as under the present approach this would lead to double counting on the global scale. With the increasing use of biomass on industrial scales, the assumptions underlying this approach start to introduce material inaccuracies on a national scale (versus global). Biomass combustion may no longer be negligible compared with fossil fuel combustion as biogenic fuels are increasingly traded internationally. In this paper, we review the present IPCC carbon mass flow approach and propose a change in the reporting and accounting methods that has the potential to address this national GHG emissions reporting issue.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46906943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Carbon Management
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1