Pub Date : 2024-08-30DOI: 10.1016/j.simpat.2024.103014
Ipsita Behera, Srichandan Sobhanayak
Cloud computing provides users and programs with scalable resources and on-demand services virtually in real time, making it a fundamental paradigm in modern computing. The concept for using remote computing resources is novel. Cloud computing relies on task scheduling to boost system performance, reduce execution time, and optimize resource use. Due to exponential task increase and problem complexity, the search space is huge. Optimization tasks like this are NP-hard. This work aims to find a near-optimal solution for a multi-objective task scheduling problem in the cloud while lowering search time. Using the Genetic Algorithm (GA) and Gravitational Search Algorithms (GSA) benefits while avoiding their drawbacks, we offer a standard cloud computing task scheduling method to improve system performance and optimize the Quality of service (QoS) parameters like energy, makespan, resource utilization and throughput. We use CloudSim to test standard functions, real-time, and synthetic workloads. The obtained results are compared to other similar, metaheuristic-based techniques that were evaluated under the same conditions. The designed technique outperforms Gravitational Search Algorithms (GSA), Ant Colony Optimization(ACO), and Particle Swarm optimization(PSO) in Degree Of Imbalance (12%), resource utilization (9%), Mean Response Time (7%) and energy consumption (6%).
{"title":"HTSA: A novel hybrid task scheduling algorithm for heterogeneous cloud computing environment","authors":"Ipsita Behera, Srichandan Sobhanayak","doi":"10.1016/j.simpat.2024.103014","DOIUrl":"10.1016/j.simpat.2024.103014","url":null,"abstract":"<div><p>Cloud computing provides users and programs with scalable resources and on-demand services virtually in real time, making it a fundamental paradigm in modern computing. The concept for using remote computing resources is novel. Cloud computing relies on task scheduling to boost system performance, reduce execution time, and optimize resource use. Due to exponential task increase and problem complexity, the search space is huge. Optimization tasks like this are NP-hard. This work aims to find a near-optimal solution for a multi-objective task scheduling problem in the cloud while lowering search time. Using the Genetic Algorithm (GA) and Gravitational Search Algorithms (GSA) benefits while avoiding their drawbacks, we offer a standard cloud computing task scheduling method to improve system performance and optimize the Quality of service (QoS) parameters like energy, makespan, resource utilization and throughput. We use CloudSim to test standard functions, real-time, and synthetic workloads. The obtained results are compared to other similar, metaheuristic-based techniques that were evaluated under the same conditions. The designed technique outperforms Gravitational Search Algorithms (GSA), Ant Colony Optimization(ACO), and Particle Swarm optimization(PSO) in Degree Of Imbalance (12%), resource utilization (9%), Mean Response Time (7%) and energy consumption (6%).</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"137 ","pages":"Article 103014"},"PeriodicalIF":3.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.simpat.2024.103012
Ebrahim Farrokh , Hamid Rokhy , Davood Lotfi
The linear cutting process in rock poses challenges for verification in field experiments, laboratory investigations, or numerical simulations. This study aims to analyze the rock cutting process and disc cutter force estimation when using linear cutting mode. Three-dimensional numerical simulations using the explicit dynamic finite element method (LS-DYNA software) are conducted to characterize the cutting process. In this regard, two computational algorithms (Lagrangian and Smoothed Particle Hydrodynamics (SPH)) and two material models (Johnson-Holmquist Concrete (JHC) and Riedel-Hiermaier-Thoma (RHT)) are compared, with SPH and RHT identified as more suitable for rock cutting simulation. The results of comparative analyses show that the Lagrangian computational algorithm is highly dependent on the erosion value, hence this method is not suitable for the simulation of the rock-cutting process. Comparing to the RHT material constitutive model, the Johnson-Holmquist model does not well model the post-failure softening strain behavior, which leads to a reduction in the width of the failure area. The comparative analyses also show that the normal and rolling forces predicted by the JHC model are well over 30% higher than the actual experimental results, while the RHT model shows a good agreement between the predictions and the actual results. Overall, the RHT material model with the use of the SPH computational algorithm shows a very good combination in rock cutting process simulation.
{"title":"On the application of RHT model and SPG algorithm for the analysis of rock cutting process","authors":"Ebrahim Farrokh , Hamid Rokhy , Davood Lotfi","doi":"10.1016/j.simpat.2024.103012","DOIUrl":"10.1016/j.simpat.2024.103012","url":null,"abstract":"<div><p>The linear cutting process in rock poses challenges for verification in field experiments, laboratory investigations, or numerical simulations. This study aims to analyze the rock cutting process and disc cutter force estimation when using linear cutting mode. Three-dimensional numerical simulations using the explicit dynamic finite element method (LS-DYNA software) are conducted to characterize the cutting process. In this regard, two computational algorithms (Lagrangian and Smoothed Particle Hydrodynamics (SPH)) and two material models (Johnson-Holmquist Concrete (JHC) and Riedel-Hiermaier-Thoma (RHT)) are compared, with SPH and RHT identified as more suitable for rock cutting simulation. The results of comparative analyses show that the Lagrangian computational algorithm is highly dependent on the erosion value, hence this method is not suitable for the simulation of the rock-cutting process. Comparing to the RHT material constitutive model, the Johnson-Holmquist model does not well model the post-failure softening strain behavior, which leads to a reduction in the width of the failure area. The comparative analyses also show that the normal and rolling forces predicted by the JHC model are well over 30% higher than the actual experimental results, while the RHT model shows a good agreement between the predictions and the actual results. Overall, the RHT material model with the use of the SPH computational algorithm shows a very good combination in rock cutting process simulation.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103012"},"PeriodicalIF":3.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-17DOI: 10.1016/j.simpat.2024.103011
Wenfeng Li , Huixian Fan , Lei Cai , Wenjing Guo , Ziteng Wu , Pengfei Yang
The pervasive uncertainties in multiple port equipment scheduling frequently result in container handling delays or ineffective plans. To address the complexities and uncertainties of port multiple equipment integrated scheduling problem, this paper introduces a Digital Twin-driven (DT-driven) proactive-reactive scheduling framework for the first time. This framework is designed to promptly respond to uncertainties in the scheduling process and provide a transparent visualization of operational information. It specifically tackles the integrated scheduling problem of port quay cranes, Intelligent Guided Vehicles (IGVs), and yard cranes, considering uncertainties such as fluctuations in operating time, equipment failures, and IGV route conflicts. By developing a virtual container port simulation, which features a U-shaped port layout and double-cycling mode drawn from real-world scenarios, the paper evaluates the proposed framework's effectiveness. The experimental results demonstrate that the digital twin framework method significantly improves efficiency and conserves energy. Additionally, in large-scale conditions, the makespan difference between the DT-driven approach and the non-DT-driven approach is as much as 19.56 %. In terms of energy consumption savings, the DT-driven approach's scheduling plan can save 3.67 % of energy consumption under large-scale conditions. Moreover, as the fluctuation index increases, the energy consumption savings become even more significant. This paper also discusses the potential implications of adopting this framework for port companies, highlighting its benefits in enhancing operational and energy efficiency and its incorporation into port management systems. The sensitivity analysis can offer guidance to port companies on optimal equipment allocation strategies.
多港口设备调度中普遍存在的不确定性经常导致集装箱装卸延迟或计划无效。针对港口多设备综合调度问题的复杂性和不确定性,本文首次提出了数字孪生驱动(DT-driven)的主动-反应调度框架。该框架旨在及时应对调度过程中的不确定性,并提供透明的可视化操作信息。它特别解决了港口码头起重机、智能导引车(IGV)和堆场起重机的综合调度问题,考虑了操作时间波动、设备故障和智能导引车路线冲突等不确定因素。通过开发一个虚拟集装箱港口仿真,该仿真具有 U 型港口布局和来自真实世界场景的双循环模式,本文评估了所建议框架的有效性。实验结果表明,数字孪生框架方法显著提高了效率并节约了能源。此外,在大规模条件下,数字孪生驱动方法与非数字孪生驱动方法的有效期差异高达 19.56%。在节省能耗方面,DT 驱动方法的调度计划在大规模条件下可节省 3.67% 的能耗。此外,随着波动指数的增加,能耗节省也会变得更加显著。本文还讨论了采用该框架对港口公司的潜在影响,强调了该框架在提高运营和能源效率以及将其纳入港口管理系统方面的优势。敏感性分析可为港口公司的最佳设备分配策略提供指导。
{"title":"Digital twin-driven proactive-reactive scheduling framework for port multi-equipment under a complex uncertain environment","authors":"Wenfeng Li , Huixian Fan , Lei Cai , Wenjing Guo , Ziteng Wu , Pengfei Yang","doi":"10.1016/j.simpat.2024.103011","DOIUrl":"10.1016/j.simpat.2024.103011","url":null,"abstract":"<div><p>The pervasive uncertainties in multiple port equipment scheduling frequently result in container handling delays or ineffective plans. To address the complexities and uncertainties of port multiple equipment integrated scheduling problem, this paper introduces a Digital Twin-driven (DT-driven) proactive-reactive scheduling framework for the first time. This framework is designed to promptly respond to uncertainties in the scheduling process and provide a transparent visualization of operational information. It specifically tackles the integrated scheduling problem of port quay cranes, Intelligent Guided Vehicles (IGVs), and yard cranes, considering uncertainties such as fluctuations in operating time, equipment failures, and IGV route conflicts. By developing a virtual container port simulation, which features a U-shaped port layout and double-cycling mode drawn from real-world scenarios, the paper evaluates the proposed framework's effectiveness. The experimental results demonstrate that the digital twin framework method significantly improves efficiency and conserves energy. Additionally, in large-scale conditions, the <em>makespan</em> difference between the DT-driven approach and the non-DT-driven approach is as much as 19.56 %. In terms of <em>energy consumption</em> savings, the DT-driven approach's scheduling plan can save 3.67 % of <em>energy consumption</em> under large-scale conditions. Moreover, as the fluctuation index increases, the <em>energy consumption</em> savings become even more significant. This paper also discusses the potential implications of adopting this framework for port companies, highlighting its benefits in enhancing operational and energy efficiency and its incorporation into port management systems. The sensitivity analysis can offer guidance to port companies on optimal equipment allocation strategies.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103011"},"PeriodicalIF":3.5,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.simpat.2024.103010
Ritik Bhardwaj , Arpita Bhargava , Vaibhav Kumar
This paper introduces Indoor Navigation Framework for Fire Evacuation Dynamics (INFED), a novel indoor navigation framework that combines dynamic fire constraints and path congestion management. INFED considers the three-dimensional (3D) attributes of both the agents (speed, volume, location, count) and the environment (3D volume, congestion, corridor height, and corridor length) to estimate navigation routes that avoid fire-affected evacuation paths. It achieves this by integrating various proposed algorithms as modules: Environment Establisher, Fired/Safe Node Identifier, Pre-processor, Weighted Graph Generator, and Path Generator. The 3D features of the agent and environment are used to effectively estimate the capacity of the corridors in an indoor environment for the estimation of path congestion. The path congestion so computed is used during evacuation to identify the safest and congestion-free path. We discuss the performance of INFED by implementing it on various realistic scenarios in a commercial floor setup. We found that the incorporation of safety constraints results in longer evacuation routes, ranging from a 6% increase under mild fire and congestion conditions to a 40% increase under severe fire and congestion conditions. In the event of a worst-case scenario where fire-free paths are scarce, INFED utilizes congestion to reduce agent speed along the recommended evacuation route. This mechanism is activated when congestion surpasses a threshold of 0.3. The system can be used by stakeholders to test various evacuation hypotheses, which can lead to better preparedness and rescue operations, ultimately saving lives in the event of a fire.
{"title":"INFED: Enhancing fire evacuation dynamics through 3D congestion-aware indoor navigation framework","authors":"Ritik Bhardwaj , Arpita Bhargava , Vaibhav Kumar","doi":"10.1016/j.simpat.2024.103010","DOIUrl":"10.1016/j.simpat.2024.103010","url":null,"abstract":"<div><p>This paper introduces Indoor Navigation Framework for Fire Evacuation Dynamics (INFED), a novel indoor navigation framework that combines dynamic fire constraints and path congestion management. INFED considers the three-dimensional (3D) attributes of both the agents (speed, volume, location, count) and the environment (3D volume, congestion, corridor height, and corridor length) to estimate navigation routes that avoid fire-affected evacuation paths. It achieves this by integrating various proposed algorithms as modules: Environment Establisher, Fired/Safe Node Identifier, Pre-processor, Weighted Graph Generator, and Path Generator. The 3D features of the agent and environment are used to effectively estimate the capacity of the corridors in an indoor environment for the estimation of path congestion. The path congestion so computed is used during evacuation to identify the safest and congestion-free path. We discuss the performance of INFED by implementing it on various realistic scenarios in a commercial floor setup. We found that the incorporation of safety constraints results in longer evacuation routes, ranging from a 6% increase under mild fire and congestion conditions to a 40% increase under severe fire and congestion conditions. In the event of a worst-case scenario where fire-free paths are scarce, INFED utilizes congestion to reduce agent speed along the recommended evacuation route. This mechanism is activated when congestion surpasses a threshold of 0.3. The system can be used by stakeholders to test various evacuation hypotheses, which can lead to better preparedness and rescue operations, ultimately saving lives in the event of a fire.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103010"},"PeriodicalIF":3.5,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1016/j.simpat.2024.103008
Yalan Zhang , Yuhang Xu , Yanrui Xu , Yue Hou , Xiaokun Wang , Yu Guo , Mohammad S. Obaidat , Xiaojuan Ban
Existing fluid simulation techniques mainly process single-phase fluids, and they have difficulties in accurately simulating and visualizing multiphase fluid dynamics. This paper proposes a new method for the real-time rendering of multiphase fluid simulations, which uses smoothed particle hydrodynamics in screen space. Meanwhile, the method employs phase fraction textures to differentiate various materials in multiphase fluid simulations, thereby portraying mixing and separation effects more realistically. Besides, efficient texture computation allows it to be integrated seamlessly into real-time simulation rendering workflows. Extensive testing confirms the effectiveness of the proposed method in rendering multiphase fluid behaviors with high visual fidelity and demonstrates its capability to process frames within 0.01 s, even in cases with up to 300,000 particles. This study enhances the fluid dynamics simulation field and provides a more accurate and efficient method for visualizing complex multiphase fluids in simulations.
{"title":"Real-time screen space rendering method for particle-based multiphase fluid simulation","authors":"Yalan Zhang , Yuhang Xu , Yanrui Xu , Yue Hou , Xiaokun Wang , Yu Guo , Mohammad S. Obaidat , Xiaojuan Ban","doi":"10.1016/j.simpat.2024.103008","DOIUrl":"10.1016/j.simpat.2024.103008","url":null,"abstract":"<div><p>Existing fluid simulation techniques mainly process single-phase fluids, and they have difficulties in accurately simulating and visualizing multiphase fluid dynamics. This paper proposes a new method for the real-time rendering of multiphase fluid simulations, which uses smoothed particle hydrodynamics in screen space. Meanwhile, the method employs phase fraction textures to differentiate various materials in multiphase fluid simulations, thereby portraying mixing and separation effects more realistically. Besides, efficient texture computation allows it to be integrated seamlessly into real-time simulation rendering workflows. Extensive testing confirms the effectiveness of the proposed method in rendering multiphase fluid behaviors with high visual fidelity and demonstrates its capability to process frames within 0.01 s, even in cases with up to 300,000 particles. This study enhances the fluid dynamics simulation field and provides a more accurate and efficient method for visualizing complex multiphase fluids in simulations.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103008"},"PeriodicalIF":3.5,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1016/j.simpat.2024.103007
Daniel Cascado-Caballero , Fernando Diaz-del-Rio , Daniel Cagigas-Muñiz , David Orellana-Martín , Ignacio Pérez-Hurtado
The evolution of simulation and implementation of P systems has been intense since the theoretical model of computation was created. In the field of software simulation of P systems, the proposals made so far have taken advantage mainly of the parallelism of GPUs, but not of the parallelism of existing multi-core processors. This paper proposes a new model for simulating P systems using a multi-threaded approach in a multi-core processor. This simulation approach establishes a new paradigm that is entirely in line with the philosophy of P-systems: since objects must react in parallel, asynchronously and autonomously with other objects, simulation using multiple synchronized threads completely mimics the behavior of objects within a membrane. This proposal has been implemented and tested using a simulator programmed in C#, and its correct operation has been tested for confluent and non-confluent systems. The experimental results confirm that the simulator scales well with the number of hardware threads of a multiprocessor. The obtained results show that the new model is correct and that it can be extended to other more complex types of P systems, in order to discover which are the limit of this multi-threaded approach when running it in multi-core processors.
自计算理论模型诞生以来,P 系统的仿真和实现就一直在不断发展。在 P 系统的软件仿真领域,迄今为止提出的建议主要利用了 GPU 的并行性,而没有利用现有多核处理器的并行性。本文提出了一种在多核处理器中使用多线程方法模拟 P 系统的新模型。这种仿真方法建立了一种完全符合 P 系统理念的新范式:由于对象必须与其他对象并行、异步和自主地做出反应,因此使用多个同步线程进行的仿真完全模拟了膜内对象的行为。我们使用 C# 编程的模拟器实现并测试了这一建议,并对其在汇合和非汇合系统中的正确运行进行了测试。实验结果证实,该模拟器能很好地与多处理器的硬件线程数保持一致。实验结果表明,新模型是正确的,而且可以扩展到其他更复杂类型的 P 系统,从而发现这种多线程方法在多核处理器中运行时的极限。
{"title":"A new approach for software-simulation of membrane systems using a multi-thread programming model","authors":"Daniel Cascado-Caballero , Fernando Diaz-del-Rio , Daniel Cagigas-Muñiz , David Orellana-Martín , Ignacio Pérez-Hurtado","doi":"10.1016/j.simpat.2024.103007","DOIUrl":"10.1016/j.simpat.2024.103007","url":null,"abstract":"<div><p>The evolution of simulation and implementation of P systems has been intense since the theoretical model of computation was created. In the field of software simulation of P systems, the proposals made so far have taken advantage mainly of the parallelism of GPUs, but not of the parallelism of existing multi-core processors. This paper proposes a new model for simulating P systems using a multi-threaded approach in a multi-core processor. This simulation approach establishes a new paradigm that is entirely in line with the philosophy of P-systems: since objects must react in parallel, asynchronously and autonomously with other objects, simulation using multiple synchronized threads completely mimics the behavior of objects within a membrane. This proposal has been implemented and tested using a simulator programmed in C#, and its correct operation has been tested for confluent and non-confluent systems. The experimental results confirm that the simulator scales well with the number of hardware threads of a multiprocessor. The obtained results show that the new model is correct and that it can be extended to other more complex types of P systems, in order to discover which are the limit of this multi-threaded approach when running it in multi-core processors.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103007"},"PeriodicalIF":3.5,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X24001217/pdfft?md5=051d2b5a0e4f14a254b5d9b67b0b861e&pid=1-s2.0-S1569190X24001217-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142011513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1016/j.simpat.2024.103009
Dmytro Svyetlichnyy
Additive manufacturing processes, including selective laser sintering (SLS) and selective laser melting (SLM), are rapidly developing industrial fields that require scientific support. Although SLS and SLM are very similar, the level of modeling and simulation of SLM is much higher than that of SLS. This results in the number of publications before 2024 according to Web of Science with SLM simulation approximately five times more than with SLS. To test the possibility of adequate SLS simulations, a platform based on the lattice Boltzmann method (LBM), previously developed and applied to model the SLM process, was used. In addition, the possibility of modeling similar processes (SLM, SLS, and SLS/SLM) using the same modeling tool on the same modeling platform is important. The objective of this paper is to present a model of the SLS process and confirmation of the possibility of using LBM for simulation of the SLS process. A simulation of SLS and SLM with the use of LBM, and qualitative comparison of the results of these simulation for bioactive glass 45S5 is the basis of the methodology used for the research. The simulation presented in this study confirmed the possibility of simulating SLM, SLS processes using common principles, approaches, and models. The results of SLS process simulations can be treated as qualitative and require further verification, whereas SLM simulations have been previously verified. The application of the lattice Boltzmann method, which is a computational fluid dynamics (CFD) method, opens the possibility of using almost every CFD method for the simulation of several kinds of SLS, and can accelerate research in this field.
{"title":"Simulation of the selective laser sintering/melting process of bioactive glass 45S5","authors":"Dmytro Svyetlichnyy","doi":"10.1016/j.simpat.2024.103009","DOIUrl":"10.1016/j.simpat.2024.103009","url":null,"abstract":"<div><p>Additive manufacturing processes, including selective laser sintering (SLS) and selective laser melting (SLM), are rapidly developing industrial fields that require scientific support. Although SLS and SLM are very similar, the level of modeling and simulation of SLM is much higher than that of SLS. This results in the number of publications before 2024 according to Web of Science with SLM simulation approximately five times more than with SLS. To test the possibility of adequate SLS simulations, a platform based on the lattice Boltzmann method (LBM), previously developed and applied to model the SLM process, was used. In addition, the possibility of modeling similar processes (SLM, SLS, and SLS/SLM) using the same modeling tool on the same modeling platform is important. The objective of this paper is to present a model of the SLS process and confirmation of the possibility of using LBM for simulation of the SLS process. A simulation of SLS and SLM with the use of LBM, and qualitative comparison of the results of these simulation for bioactive glass 45S5 is the basis of the methodology used for the research. The simulation presented in this study confirmed the possibility of simulating SLM, SLS processes using common principles, approaches, and models. The results of SLS process simulations can be treated as qualitative and require further verification, whereas SLM simulations have been previously verified. The application of the lattice Boltzmann method, which is a computational fluid dynamics (CFD) method, opens the possibility of using almost every CFD method for the simulation of several kinds of SLS, and can accelerate research in this field.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103009"},"PeriodicalIF":3.5,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X24001230/pdfft?md5=b61dc3f5302cc0d90dcb32dd6b0b282a&pid=1-s2.0-S1569190X24001230-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1016/j.simpat.2024.103006
Muhammad Umar Javed , Nadeem Javaid , Nabil Alrajeh , Muhammad Shafiq , Jin-Ghoo Choi
Healthcare systems face critical issues worldwide such as data breaches, lack of interoperability and inefficiencies in patient data management. These challenges hinder the quality of care and patient outcomes. The increasing adoption of Electric Vehicles (EVs) in Smart Healthcare Systems (SHSs) has brought about new security and privacy challenges. EVs, including electric ambulances, rely on communication networks to exchange critical information and perform energy trading. However, the open nature of these networks makes them vulnerable to various attacks, such as false information dissemination and collusion attacks. In the recent years, Blockchain (BC) technology has emerged as a transformative solution for various industries, including healthcare. The integration of BC in healthcare systems offers enhanced security, transparency and efficiency in managing patient data and other critical information. The paper introduces a data-oriented trust paradigm that is facilitated by revocation transparency. In order to enable the present EVs operating in a SHS to realize their full potential, the model aims to successfully manage security, privacy, storage and other issues. The electric ambulance, an integral part of an SHS, is a special type of EV, which is considered in the study. The proposed approach employs the Password Authenticated Key Exchange by Juggling (J-PAKE) mechanism to provide mutual authentication across distinct entities inside a SHS. Moreover, the Real-time Message Content Validation (RMCV) approach precludes collusion attacks by performing a message credibility check. Moving ahead, anonymization of reputation data is performed via K-anonymity algorithm. Restrictions on the identification of the consistent patterns seen in the reputation data serve to avoid privacy leaks. Additionally, a Proof of Revocation (PoR) technique helps to provide revocation transparency. The Inter Planetary File System (IPFS), a decentralized storage system, houses the vehicle data in order to lessen the BC storage problem. Hashes of the data recorded in IPFS are also uploaded to the immutable BC ledger to prevent disputes. Moreover, IPFS and Cuckoo Filters (CFs) are used to enhance the efficiency of the system. In terms of execution time, data size and storage overhead, the performance evaluation is carried out to assess the proposed model’s efficiency. The simulation results show the execution time for a vast number of messages to be less than 0.6 s. Moreover, K-anonymity ensures storage overhead reduction of almost 35%–40%. Finally, Oyente is used to identify bugs in the smart contract. Overall, it is determined that the proposed approach is effective in establishing mutual authentication, revocation transparency and trust.
全球医疗系统都面临着数据泄露、缺乏互操作性和患者数据管理效率低下等关键问题。这些挑战阻碍了医疗质量和患者疗效的提高。智能医疗系统 (SHS) 越来越多地采用电动汽车 (EV),这带来了新的安全和隐私挑战。包括电动救护车在内的电动汽车依靠通信网络交换重要信息和进行能源交易。然而,这些网络的开放性使其容易受到各种攻击,如虚假信息传播和串通攻击。近年来,区块链(BC)技术已成为包括医疗保健在内的各行各业的变革性解决方案。将区块链技术整合到医疗保健系统中,可提高患者数据和其他关键信息管理的安全性、透明度和效率。本文介绍了一种以数据为导向的信任范式,该范式通过撤销透明化来实现。为了让目前在社会医疗系统中运行的电动汽车充分发挥潜力,该模型旨在成功管理安全、隐私、存储和其他问题。电动救护车是社会服务系统的一个组成部分,是研究中考虑的一种特殊类型的电动汽车。所提出的方法采用了密码验证密钥交换机制(J-PAKE),以提供社会安全系统内部不同实体之间的相互验证。此外,实时信息内容验证(RMCV)方法通过执行信息可信度检查来防止串通攻击。接下来,通过 K-anonymity 算法对信誉数据进行匿名化处理。对识别信誉数据中的一致模式进行限制,以避免隐私泄露。此外,撤销证明(PoR)技术有助于提供撤销透明度。星际文件系统(IPFS)是一个分散存储系统,用于存储车辆数据,以减少 BC 存储问题。IPFS 中记录的数据的哈希值也会上载到不可变 BC 总账中,以防止出现争议。此外,IPFS 和布谷鸟过滤器(CFs)也用于提高系统效率。在执行时间、数据大小和存储开销方面,我们进行了性能评估,以评估所提出模型的效率。仿真结果表明,大量信息的执行时间小于 0.6 秒。此外,K 匿名性可确保存储开销减少近 35%-40%。最后,Oyente 被用来识别智能合约中的错误。总之,可以确定所提出的方法在建立相互认证、撤销透明度和信任方面是有效的。
{"title":"Mutual authentication enabled trust model for vehicular energy networks using Blockchain in Smart Healthcare Systems","authors":"Muhammad Umar Javed , Nadeem Javaid , Nabil Alrajeh , Muhammad Shafiq , Jin-Ghoo Choi","doi":"10.1016/j.simpat.2024.103006","DOIUrl":"10.1016/j.simpat.2024.103006","url":null,"abstract":"<div><p>Healthcare systems face critical issues worldwide such as data breaches, lack of interoperability and inefficiencies in patient data management. These challenges hinder the quality of care and patient outcomes. The increasing adoption of Electric Vehicles (EVs) in Smart Healthcare Systems (SHSs) has brought about new security and privacy challenges. EVs, including electric ambulances, rely on communication networks to exchange critical information and perform energy trading. However, the open nature of these networks makes them vulnerable to various attacks, such as false information dissemination and collusion attacks. In the recent years, Blockchain (BC) technology has emerged as a transformative solution for various industries, including healthcare. The integration of BC in healthcare systems offers enhanced security, transparency and efficiency in managing patient data and other critical information. The paper introduces a data-oriented trust paradigm that is facilitated by revocation transparency. In order to enable the present EVs operating in a SHS to realize their full potential, the model aims to successfully manage security, privacy, storage and other issues. The electric ambulance, an integral part of an SHS, is a special type of EV, which is considered in the study. The proposed approach employs the Password Authenticated Key Exchange by Juggling (J-PAKE) mechanism to provide mutual authentication across distinct entities inside a SHS. Moreover, the Real-time Message Content Validation (RMCV) approach precludes collusion attacks by performing a message credibility check. Moving ahead, anonymization of reputation data is performed via K-anonymity algorithm. Restrictions on the identification of the consistent patterns seen in the reputation data serve to avoid privacy leaks. Additionally, a Proof of Revocation (PoR) technique helps to provide revocation transparency. The Inter Planetary File System (IPFS), a decentralized storage system, houses the vehicle data in order to lessen the BC storage problem. Hashes of the data recorded in IPFS are also uploaded to the immutable BC ledger to prevent disputes. Moreover, IPFS and Cuckoo Filters (CFs) are used to enhance the efficiency of the system. In terms of execution time, data size and storage overhead, the performance evaluation is carried out to assess the proposed model’s efficiency. The simulation results show the execution time for a vast number of messages to be less than 0.6 s. Moreover, K-anonymity ensures storage overhead reduction of almost 35%–40%. Finally, Oyente is used to identify bugs in the smart contract. Overall, it is determined that the proposed approach is effective in establishing mutual authentication, revocation transparency and trust.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103006"},"PeriodicalIF":3.5,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1016/j.simpat.2024.103005
Don Nalin Dharshana Jayaratne , Suraj Harsha Kamtam , Siraj Ahmed Shaikh , Muhamad Azfar Ramli , Qian Lu , Rakhi Manohar Mepparambath , Hoang Nga Nguyen , Abdur Rakib
Human-initiated disruptions such as cyberattacks on connected vehicles have the potential to cause cascading failures in transport systems, leading to systemic risks. ‘ISO/SAE 21434:2021 Road vehicles - Cybersecurity engineering’ is the current standard for risk management of road vehicles. However, the threat analysis and risk assessment framework given in the standard focuses on asset-level analysis and assessment. Hence, this study develops a novel simulation-based framework to perform threat analysis and risk assessment on connected vehicles from a transport network perspective. The proposed framework is developed based on the ISO/SAE 21434 threat analysis and risk assessment methodology. We demonstrate the applicability and usefulness of the framework through a remote attack via the cellular network on the in-vehicle communication bus system of a connected vehicle to show the potential impacts on the transport network. Based on the findings of our case studies, we exemplify how cyberattacks on individual system components of a connected vehicle have the potential to cause systemic failures.
{"title":"A simulation framework for automotive cybersecurity risk assessment","authors":"Don Nalin Dharshana Jayaratne , Suraj Harsha Kamtam , Siraj Ahmed Shaikh , Muhamad Azfar Ramli , Qian Lu , Rakhi Manohar Mepparambath , Hoang Nga Nguyen , Abdur Rakib","doi":"10.1016/j.simpat.2024.103005","DOIUrl":"10.1016/j.simpat.2024.103005","url":null,"abstract":"<div><p>Human-initiated disruptions such as cyberattacks on connected vehicles have the potential to cause cascading failures in transport systems, leading to systemic risks. ‘ISO/SAE 21434:2021 Road vehicles - Cybersecurity engineering’ is the current standard for risk management of road vehicles. However, the threat analysis and risk assessment framework given in the standard focuses on asset-level analysis and assessment. Hence, this study develops a novel simulation-based framework to perform threat analysis and risk assessment on connected vehicles from a transport network perspective. The proposed framework is developed based on the ISO/SAE 21434 threat analysis and risk assessment methodology. We demonstrate the applicability and usefulness of the framework through a remote attack via the cellular network on the in-vehicle communication bus system of a connected vehicle to show the potential impacts on the transport network. Based on the findings of our case studies, we exemplify how cyberattacks on individual system components of a connected vehicle have the potential to cause systemic failures.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103005"},"PeriodicalIF":3.5,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X24001199/pdfft?md5=8fc9b5419afcd3b7fa0b3826ddccdaf9&pid=1-s2.0-S1569190X24001199-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The rise of shared bicycles has increased the demand for group riding, integrating bicycles into social groups. Additionally, retrograde riding, where cyclists travel against the designated direction, is a common behavior observed in bicycle flows. The interaction and self-organization phenomenon of group and retrograde behaviors are complex, significantly impacting traffic efficiency. This paper develops a two-dimensional Extended Moore Neighborhood and constructs state-updating rules for regular riding, group riding and retrograde riding. Each rule comprises a psychological decision layer and a physical execution layer, forming a cellular automaton model for group and retrograde bicycles. Field experiments are conducted to calibrate the model parameters and verify the behavioral characteristics. Finally, we execute numerical simulations at a signalized intersection to explore the coupling effects of group and retrograde behaviors on self-organization within the bicycle flow and the traffic capacity. The results indicate that group behavior increases queue length while reducing start wave speed and expansion degree. Retrograde behavior intensifies the negative effects on bicycle flow. These findings provide insights for managing both forward and retrograde bicycle flows.
{"title":"An extended cellular automation model for bicycles with group and retrograde behaviors at signalized intersections","authors":"Ying-Xu Rui , Jun-Qing Shi , Peng Liao , Jian Zhang , Tianli Tang","doi":"10.1016/j.simpat.2024.103004","DOIUrl":"10.1016/j.simpat.2024.103004","url":null,"abstract":"<div><p>The rise of shared bicycles has increased the demand for group riding, integrating bicycles into social groups. Additionally, retrograde riding, where cyclists travel against the designated direction, is a common behavior observed in bicycle flows. The interaction and self-organization phenomenon of group and retrograde behaviors are complex, significantly impacting traffic efficiency. This paper develops a two-dimensional Extended Moore Neighborhood and constructs state-updating rules for regular riding, group riding and retrograde riding. Each rule comprises a psychological decision layer and a physical execution layer, forming a cellular automaton model for group and retrograde bicycles. Field experiments are conducted to calibrate the model parameters and verify the behavioral characteristics. Finally, we execute numerical simulations at a signalized intersection to explore the coupling effects of group and retrograde behaviors on self-organization within the bicycle flow and the traffic capacity. The results indicate that group behavior increases queue length while reducing start wave speed and expansion degree. Retrograde behavior intensifies the negative effects on bicycle flow. These findings provide insights for managing both forward and retrograde bicycle flows.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103004"},"PeriodicalIF":3.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}