Light has an undeniable impact on the human body, as it can to some extent affect hormone secretion and emotional changes. Spectral power distribution (SPD) is the main indicator for evaluating the quality of light sources, but traditional spectral measurement equipment is bulky and expensive, and cannot be widely used in our daily life. In order to fill this gap, this article designs a low-cost and small lighting measurement device for measuring the circadian lighting, which obtains spectral data from 8 channels in the visible light range through multi-channel spectral sensors. Machine learning methods are used to reconstruct the SPD of 81 wavelength data points, thereby improving the accuracy of designed measurement device. This device can simultaneously achieve real-time measurement of SPD and real-time monitoring of circadian related parameters, and return circadian related parameters (such as circadian action factor, melanopic efficacy of luminous radiation, equivalent melanopic lux, etc.). Results have found that the error of circadian parameters measured by this equipment is less than 5%.
光对人体的影响毋庸置疑,因为它能在一定程度上影响荷尔蒙分泌和情绪变化。光谱功率分布(SPD)是评价光源质量的主要指标,但传统的光谱测量设备体积庞大、价格昂贵,无法在日常生活中广泛使用。为了填补这一空白,本文设计了一种用于测量昼夜节律照明的低成本小型照明测量设备,通过多通道光谱传感器获取可见光范围内 8 个通道的光谱数据。利用机器学习方法重建了 81 个波长数据点的 SPD,从而提高了所设计测量设备的精度。该装置可同时实现 SPD 的实时测量和昼夜节律相关参数的实时监测,并返回昼夜节律相关参数(如昼夜节律作用因子、光辐射的黑色素效应、等效黑色素勒克斯等)。结果发现,该设备测量的昼夜节律参数误差小于 5%。
{"title":"A machine-learning assisted measurement device for circadian lighting based on spectral sensors","authors":"Jianling Huang , Cheng Zeng , Meicong Huang , Yaling Chai , Shanrong Ke , Da Xu , Lili Zheng , Xinqin Liao , Yijun Lu , Zhong Chen , Lihong Zhu , Ziquan Guo","doi":"10.1016/j.optlaseng.2024.108702","DOIUrl":"10.1016/j.optlaseng.2024.108702","url":null,"abstract":"<div><div>Light has an undeniable impact on the human body, as it can to some extent affect hormone secretion and emotional changes. Spectral power distribution (SPD) is the main indicator for evaluating the quality of light sources, but traditional spectral measurement equipment is bulky and expensive, and cannot be widely used in our daily life. In order to fill this gap, this article designs a low-cost and small lighting measurement device for measuring the circadian lighting, which obtains spectral data from 8 channels in the visible light range through multi-channel spectral sensors. Machine learning methods are used to reconstruct the SPD of 81 wavelength data points, thereby improving the accuracy of designed measurement device. This device can simultaneously achieve real-time measurement of SPD and real-time monitoring of circadian related parameters, and return circadian related parameters (such as circadian action factor, melanopic efficacy of luminous radiation, equivalent melanopic lux, etc.). Results have found that the error of circadian parameters measured by this equipment is less than 5%.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108702"},"PeriodicalIF":3.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1016/j.optlaseng.2024.108697
Z. Huang , X. Su , J. Deng , Y. Zhang , J. Zhou , X. Zhang
Thermomagnetic instability typically occurs before the quench of high temperature superconductors. Magnetic perturbation and thermal agitation are known to be the main driving force of thermomagnetic instability. However, the interaction between mechanical deformation and the thermomagnetic instability is still unclear. To investigate the phenomenon and inner principle of the thermomagnetic instability induced by mechanical deformation, an experimental method is proposed for the in-situ, real-time, and synchronous test of mechanical deformation and magnetic flux based on digital imaging correlation (DIC) and magneto-optical imaging (MOI). Under the current-carrying and external magnetic field conditions, uniaxial tensile tests of YBa2Cu3O7-δ (YBCO) coated conductors (CCs) are carried out, in which the evolution and distribution magnetic flux induced by strain are studied. At the same time, chemical etching is adopted to explore the damage caused by mechanical deformation in YBCO layer. It is found through the experiment that the mechanical deformation can induce thermomagnetic instability, and threshold of strain for inducing flux motions is obtained. Meanwhile, magnetic flux avalanche occurs in front end of the flux penetration area in the case of current carrying. In addition, plenty of various-sizes transverse cracks are discovered in the superconducting layer whose distribution area basically coincides with the flux penetration area. The experiment results reveal the intrinsic correlation between the mechanical deformation and thermomagnetic instability of high temperature superconducting wires, which provides a direct experimental approach for the study of unpredicted quench behaviors of superconducting magnets.
{"title":"The synchronous measurement of mechanical and magnetic characteristics of superconducting materials in extreme environments","authors":"Z. Huang , X. Su , J. Deng , Y. Zhang , J. Zhou , X. Zhang","doi":"10.1016/j.optlaseng.2024.108697","DOIUrl":"10.1016/j.optlaseng.2024.108697","url":null,"abstract":"<div><div>Thermomagnetic instability typically occurs before the quench of high temperature superconductors. Magnetic perturbation and thermal agitation are known to be the main driving force of thermomagnetic instability. However, the interaction between mechanical deformation and the thermomagnetic instability is still unclear. To investigate the phenomenon and inner principle of the thermomagnetic instability induced by mechanical deformation, an experimental method is proposed for the in-situ, real-time, and synchronous test of mechanical deformation and magnetic flux based on digital imaging correlation (DIC) and magneto-optical imaging (MOI). Under the current-carrying and external magnetic field conditions, uniaxial tensile tests of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-δ</sub> (YBCO) coated conductors (CCs) are carried out, in which the evolution and distribution magnetic flux induced by strain are studied. At the same time, chemical etching is adopted to explore the damage caused by mechanical deformation in YBCO layer. It is found through the experiment that the mechanical deformation can induce thermomagnetic instability, and threshold of strain for inducing flux motions is obtained. Meanwhile, magnetic flux avalanche occurs in front end of the flux penetration area in the case of current carrying. In addition, plenty of various-sizes transverse cracks are discovered in the superconducting layer whose distribution area basically coincides with the flux penetration area. The experiment results reveal the intrinsic correlation between the mechanical deformation and thermomagnetic instability of high temperature superconducting wires, which provides a direct experimental approach for the study of unpredicted quench behaviors of superconducting magnets.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108697"},"PeriodicalIF":3.5,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1016/j.optlaseng.2024.108703
Yuanyuan Xu, Fan Yang, Gubing Cai, Yiru Fan, Wanxiang Wang
Traditional dual-wavelength interference techniques often require collecting multiple frames of intensity maps, followed by phase shifting and unwrapping to derive phase information. This method is not only time-consuming but also complex. To address these shortcomings, a high-precision and fast phase recovery method is proposed based on deep learning techniques. This approach leverages a large dataset of interferograms for training, testing based on U-Net. Remarkably, our method predicts phase information from a single frame interferogram. It significantly simplifies the computational steps and enhances a certain degree of generalization ability, as various types of fringe interferograms can be processed through separate training. Simulation tests reveal root mean square errors (RMSEs) of 0.0108 rad, 0.0232 rad, and 0.0465 rad for three different types of interferograms, indicating excellent phase recovery accuracy. Further robustness testing with Gaussian white noise shows minimal changes in RMSE, underscoring the method's stability. Real experimental results confirm the method's feasibility and better computational efficiency, achieving phase information retrieval in just 0.5 s.
{"title":"Dual-wavelength efficient phase imaging method based on convolutional neural networks","authors":"Yuanyuan Xu, Fan Yang, Gubing Cai, Yiru Fan, Wanxiang Wang","doi":"10.1016/j.optlaseng.2024.108703","DOIUrl":"10.1016/j.optlaseng.2024.108703","url":null,"abstract":"<div><div>Traditional dual-wavelength interference techniques often require collecting multiple frames of intensity maps, followed by phase shifting and unwrapping to derive phase information. This method is not only time-consuming but also complex. To address these shortcomings, a high-precision and fast phase recovery method is proposed based on deep learning techniques. This approach leverages a large dataset of interferograms for training, testing based on U-Net. Remarkably, our method predicts phase information from a single frame interferogram. It significantly simplifies the computational steps and enhances a certain degree of generalization ability, as various types of fringe interferograms can be processed through separate training. Simulation tests reveal root mean square errors (RMSEs) of 0.0108 rad, 0.0232 rad, and 0.0465 rad for three different types of interferograms, indicating excellent phase recovery accuracy. Further robustness testing with Gaussian white noise shows minimal changes in RMSE, underscoring the method's stability. Real experimental results confirm the method's feasibility and better computational efficiency, achieving phase information retrieval in just 0.5 s.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108703"},"PeriodicalIF":3.5,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1016/j.optlaseng.2024.108704
Lei Yang , Shengyuan Xu , Chunzheng Yang , Chenliang Chang , Qichao Hou , Qiang Song
Deep learning, especially through model-driven unsupervised networks, offers a novel approach for efficient computer-generated hologram (CGH) generation. However, current model-driven CGH generation models are primarily built on the convolutional neural networks (CNNs), which struggle to achieve high-quality hologram reconstruction due to limited receptive fields. Although Vision Transformers (ViTs) excel at processing more distant visual information, they are burdened with huge computational load. The recent emergence of Vision Mamba (ViM) presents a promising avenue to address these challenges. In this study, we introduce the CVMNet, a lightweight model that combines the precision of convolutional layers for local feature extraction and the long-range modeling abilities of state-space models (SSMs) to enhance the quality of CGHs. By employing parallel computation for the ViM to handle feature channels, the CVMNet effectively reduces the number of model parameters. Numerical reconstruction and optical experiments demonstrate that the CVMNet can generate 1080P high-quality holograms in just 16 ms, boosting an average PSNR of over 30 dB and effectively suppressing speckle noise in reconstructed images. Additionally, the CVMNet showcases robust generalization capabilities.
{"title":"High-quality computer-generated holography based on Vision Mamba","authors":"Lei Yang , Shengyuan Xu , Chunzheng Yang , Chenliang Chang , Qichao Hou , Qiang Song","doi":"10.1016/j.optlaseng.2024.108704","DOIUrl":"10.1016/j.optlaseng.2024.108704","url":null,"abstract":"<div><div>Deep learning, especially through model-driven unsupervised networks, offers a novel approach for efficient computer-generated hologram (CGH) generation. However, current model-driven CGH generation models are primarily built on the convolutional neural networks (CNNs), which struggle to achieve high-quality hologram reconstruction due to limited receptive fields. Although Vision Transformers (ViTs) excel at processing more distant visual information, they are burdened with huge computational load. The recent emergence of Vision Mamba (ViM) presents a promising avenue to address these challenges. In this study, we introduce the CVMNet, a lightweight model that combines the precision of convolutional layers for local feature extraction and the long-range modeling abilities of state-space models (SSMs) to enhance the quality of CGHs. By employing parallel computation for the ViM to handle feature channels, the CVMNet effectively reduces the number of model parameters. Numerical reconstruction and optical experiments demonstrate that the CVMNet can generate 1080P high-quality holograms in just 16 ms, boosting an average PSNR of over 30 dB and effectively suppressing speckle noise in reconstructed images. Additionally, the CVMNet showcases robust generalization capabilities.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108704"},"PeriodicalIF":3.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1016/j.optlaseng.2024.108688
Qingyi He , Juntong Zhan , Xuanwei Liu , Chao Dong , Dapeng Tian , Qiang Fu
Vegetation monitoring has been widely applied in various fields such as forest coverage and vegetation growth status. By measuring and analyzing the polarization of plant canopies, it is possible to infer the growth status of plants, thereby assessing their growth rate and providing effective technical means for areas such as crop yield estimation and ecological environment monitoring. To investigate the relationship between the properties of plant canopies and their polarization, a multispectral polarized light imaging system was constructed based on the BRDF (Bidirectional Reflectance Distribution Function) device. Through experiments and analysis on Christmas blue cabbage and hibiscus, the polarization characteristics of sparse and dense vegetation were detected. The results indicate that the polarization of denser vegetation canopies is significantly greater than that of sparser vegetation, with polarization degrees reaching 0.29 and 0.43 in the red waveband, exceeding the polarization in the blue and green wavebands. This advantage surpasses the influence of leaf roughness on polarization. Furthermore, a pBRDF model of plant canopies was established, and fitted images of polarization degree variation with zenith angle were obtained. Data inversion was conducted on the canopies of Christmas blue cabbage and hibiscus, resulting in root mean square errors of 2.3% and 1.1%, respectively.
{"title":"Multispectral polarimetric bidirectional reflectance research of plant canopy","authors":"Qingyi He , Juntong Zhan , Xuanwei Liu , Chao Dong , Dapeng Tian , Qiang Fu","doi":"10.1016/j.optlaseng.2024.108688","DOIUrl":"10.1016/j.optlaseng.2024.108688","url":null,"abstract":"<div><div>Vegetation monitoring has been widely applied in various fields such as forest coverage and vegetation growth status. By measuring and analyzing the polarization of plant canopies, it is possible to infer the growth status of plants, thereby assessing their growth rate and providing effective technical means for areas such as crop yield estimation and ecological environment monitoring. To investigate the relationship between the properties of plant canopies and their polarization, a multispectral polarized light imaging system was constructed based on the BRDF (Bidirectional Reflectance Distribution Function) device. Through experiments and analysis on Christmas blue cabbage and hibiscus, the polarization characteristics of sparse and dense vegetation were detected. The results indicate that the polarization of denser vegetation canopies is significantly greater than that of sparser vegetation, with polarization degrees reaching 0.29 and 0.43 in the red waveband, exceeding the polarization in the blue and green wavebands. This advantage surpasses the influence of leaf roughness on polarization. Furthermore, a pBRDF model of plant canopies was established, and fitted images of polarization degree variation with zenith angle were obtained. Data inversion was conducted on the canopies of Christmas blue cabbage and hibiscus, resulting in root mean square errors of 2.3% and 1.1%, respectively.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108688"},"PeriodicalIF":3.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.optlaseng.2024.108694
J. Lobera , A.M. López Torres , N. Andrés , F.J. Torcal-Milla , E.M. Roche , V. Palero
The application of digital in-line holography in fluid velocimetry is mainly limited by the twin image that hinders the particle position and velocity measurements. In this work, we propose the use of two spiral phase filters in a digital in-line holography configuration to discriminate the real and virtual images. The first filter is a physical plate that modifies the object spectrum prior the recording. The second filter is a numerical frequency filter, applied in the reconstruction process, which reshape one of the particle images into a point-like image while blurs its twin image. In this way, particle tracking algorithms, based on the detection of intensity peaks, can easily locate and track particles. The good performance of double spiral phase filter in-line holography for particle field recording and particle tracking has been demonstrated experimentally in the present work.
{"title":"Double spiral phase filter digital in-line holography for particle field recording and tracking","authors":"J. Lobera , A.M. López Torres , N. Andrés , F.J. Torcal-Milla , E.M. Roche , V. Palero","doi":"10.1016/j.optlaseng.2024.108694","DOIUrl":"10.1016/j.optlaseng.2024.108694","url":null,"abstract":"<div><div>The application of digital in-line holography in fluid velocimetry is mainly limited by the twin image that hinders the particle position and velocity measurements. In this work, we propose the use of two spiral phase filters in a digital in-line holography configuration to discriminate the real and virtual images. The first filter is a physical plate that modifies the object spectrum prior the recording. The second filter is a numerical frequency filter, applied in the reconstruction process, which reshape one of the particle images into a point-like image while blurs its twin image. In this way, particle tracking algorithms, based on the detection of intensity peaks, can easily locate and track particles. The good performance of double spiral phase filter in-line holography for particle field recording and particle tracking has been demonstrated experimentally in the present work.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108694"},"PeriodicalIF":3.5,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.optlaseng.2024.108693
Xiangyu Wang , Lei Zhu , Qi Zhang , Liang Yang , Min Tang , Fei Xiao , Xiaodong Wang , Shiyang Shen , Lanqiang Zhang , Youming Guo
Optical aberrations are critical for high-precision and large-depth fabrication of femtosecond lasers in transparent media. Some approaches have been demonstrated to correct these aberrations, such as calculated formulas, iterative algorithms for phase retrieval, and neural networks. However, these approaches have a few drawbacks, such as insufficient aberration correction and a lack of real-time operation, limiting the processing depth and performance of the device. Thus, this study demonstrated an aberration correction scheme with direct wavefront sensing. The aberrations during processing at different depths, from 100 to 600 μm, were measured using a Shack-Hartmann wavefront sensor. As a guide star, this sensor used the supercontinuum emitted by the plasma, which is generated by multiphoton absorption and avalanche effects in the focal region. A liquid-crystal spatial light modulator (SLM) effectively compensated the aberrations. Voxels with a constant aspect ratio of 2.82–2.91 were fabricated in different depths, significantly lower than the aspect ratio of 4.46–19.5 with uncorrected aberrations. This technology allows the precise fabrication of three-dimensional photonic devices consisting of curved waveguides at continuously different depths and improves the throughput of laser processing.
{"title":"Femtosecond laser processing with aberration correction based on Shack-Hartmann wavefront sensor","authors":"Xiangyu Wang , Lei Zhu , Qi Zhang , Liang Yang , Min Tang , Fei Xiao , Xiaodong Wang , Shiyang Shen , Lanqiang Zhang , Youming Guo","doi":"10.1016/j.optlaseng.2024.108693","DOIUrl":"10.1016/j.optlaseng.2024.108693","url":null,"abstract":"<div><div>Optical aberrations are critical for high-precision and large-depth fabrication of femtosecond lasers in transparent media. Some approaches have been demonstrated to correct these aberrations, such as calculated formulas, iterative algorithms for phase retrieval, and neural networks. However, these approaches have a few drawbacks, such as insufficient aberration correction and a lack of real-time operation, limiting the processing depth and performance of the device. Thus, this study demonstrated an aberration correction scheme with direct wavefront sensing. The aberrations during processing at different depths, from 100 to 600 μm, were measured using a Shack-Hartmann wavefront sensor. As a guide star, this sensor used the supercontinuum emitted by the plasma, which is generated by multiphoton absorption and avalanche effects in the focal region. A liquid-crystal spatial light modulator (SLM) effectively compensated the aberrations. Voxels with a constant aspect ratio of 2.82–2.91 were fabricated in different depths, significantly lower than the aspect ratio of 4.46–19.5 with uncorrected aberrations. This technology allows the precise fabrication of three-dimensional photonic devices consisting of curved waveguides at continuously different depths and improves the throughput of laser processing.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108693"},"PeriodicalIF":3.5,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.optlaseng.2024.108691
Rui Xia, Haodong Zhu, Ruiqi Yin, Ming Zhao, Zhenyu Yang
In many optical applications, vortex beam is widely used in optical communications, quantum information processing and other fields due to its unique properties. And in the field of imaging, it is crucial to obtain high quality and clear images. Current strategies mainly observe the interference fringes of the vortex beam and the Gaussian beam or use external optics to measure the topological charges (TCs), and apply machine learning in the back-end processing to denoise the image. The emerging diffractive deep neural network (D2NN) proposes a novel solution. Here, we introduce a multifunctional processor based on cascaded switchable polarization-multiplexed metasurface. It realizes the TC measurement and image denoising by exploiting the polarization-sensitive properties of anisotropic meta-atoms, which generate different phase responses under varying polarization states of incident light. Different types of noisy images, noise models, and noise ratios can be denoised by switching the metasurface. This study highlights the potential applications of integrating metasurfaces with D2NN through numerical simulation validation, expanding possibilities by transforming metasurfaces into multifunctional processors.
{"title":"Multifunctional processor based on cascaded switchable polarization-multiplexed metasurface","authors":"Rui Xia, Haodong Zhu, Ruiqi Yin, Ming Zhao, Zhenyu Yang","doi":"10.1016/j.optlaseng.2024.108691","DOIUrl":"10.1016/j.optlaseng.2024.108691","url":null,"abstract":"<div><div>In many optical applications, vortex beam is widely used in optical communications, quantum information processing and other fields due to its unique properties. And in the field of imaging, it is crucial to obtain high quality and clear images. Current strategies mainly observe the interference fringes of the vortex beam and the Gaussian beam or use external optics to measure the topological charges (TCs), and apply machine learning in the back-end processing to denoise the image. The emerging diffractive deep neural network (D<sup>2</sup>NN) proposes a novel solution. Here, we introduce a multifunctional processor based on cascaded switchable polarization-multiplexed metasurface. It realizes the TC measurement and image denoising by exploiting the polarization-sensitive properties of anisotropic meta-atoms, which generate different phase responses under varying polarization states of incident light. Different types of noisy images, noise models, and noise ratios can be denoised by switching the metasurface. This study highlights the potential applications of integrating metasurfaces with D<sup>2</sup>NN through numerical simulation validation, expanding possibilities by transforming metasurfaces into multifunctional processors.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108691"},"PeriodicalIF":3.5,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.optlaseng.2024.108678
Juan Martinez-Carranza , Jose Martinez-Carranza , Tomasz Kozacki
Holographic Near Eye Displays (HNEDs) are meant to be the next generation of electronic devices that enable projecting three-dimensional images directly to the eyes. This is possible because computer-generated holograms (CGHs), the backbone of HNEDs, encode accurate wavefront information from virtual objects. An immersive experience requires that these CGHs can reproduce large and highly detailed objects. Moreover, an occlusion culling algorithm is necessary to remove back surfaces that do not contribute to the scene, which provides a better sense of reality. Although there is a vast family of occlusion culling methods, none of these, to the best of our knowledge, consider occlusion when calculating CGHs for field of views (FoV) larger than 90° This work proposes a point cloud occlusion culling method for CGHs that projects images with angles larger than 90° Our approach is based on the geometry of the non-pupil Near Eye Display configuration. It is shown that this configuration provides the proper geometrical conditions that can be used for setting fast occlusion culling of unwanted back points. Occlusion culling with our method is carried out with clouds larger than 7-million-point sources and CGHs resolution of 4 K and 8K. It is demonstrated that our method is at least 5 times faster than current solutions. Furthermore, occluded clouds are used for calculating CGHs that are numerically and optically reconstructed. The obtained results confirm that our method provides high-quality occluded clouds, enabling high-quality production of CGHs with large FoV.
{"title":"Efficient point cloud occlusion method for ultra wide-angle computer-generated holograms","authors":"Juan Martinez-Carranza , Jose Martinez-Carranza , Tomasz Kozacki","doi":"10.1016/j.optlaseng.2024.108678","DOIUrl":"10.1016/j.optlaseng.2024.108678","url":null,"abstract":"<div><div>Holographic Near Eye Displays (HNEDs) are meant to be the next generation of electronic devices that enable projecting three-dimensional images directly to the eyes. This is possible because computer-generated holograms (CGHs), the backbone of HNEDs, encode accurate wavefront information from virtual objects. An immersive experience requires that these CGHs can reproduce large and highly detailed objects. Moreover, an occlusion culling algorithm is necessary to remove back surfaces that do not contribute to the scene, which provides a better sense of reality. Although there is a vast family of occlusion culling methods, none of these, to the best of our knowledge, consider occlusion when calculating CGHs for field of views (FoV) larger than 90° This work proposes a point cloud occlusion culling method for CGHs that projects images with angles larger than 90° Our approach is based on the geometry of the non-pupil Near Eye Display configuration. It is shown that this configuration provides the proper geometrical conditions that can be used for setting fast occlusion culling of unwanted back points. Occlusion culling with our method is carried out with clouds larger than 7-million-point sources and CGHs resolution of 4 K and 8K. It is demonstrated that our method is at least 5 times faster than current solutions. Furthermore, occluded clouds are used for calculating CGHs that are numerically and optically reconstructed. The obtained results confirm that our method provides high-quality occluded clouds, enabling high-quality production of CGHs with large FoV.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108678"},"PeriodicalIF":3.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.optlaseng.2024.108692
Jack B.P. Atkinson, Jonathan R. Howse
This work presents a novel optical setup to provide scalable in-situ metrology during spin coating. Stroboscopic white light imaging provides high resolution color videos of the process, at a temporal resolution matching the spin speed, where thin film interference colors are observed. Monochromatic specular reflection intensity data from the center of rotation provides a thickness profile at this point. By developing a color to thickness relationship in-situ with the combination of these techniques and leveraging the large-area data provided by color imaging, the thickness at any point on the wafer is reconstructed via a mapping procedure with minimal a-priori information. Experiments are carried out on full 3″ diameter wafers spun with pure xylene or pure butyl acetate, and the thickness profile at all points on the wafer can be determined. Differences in the topology of these solvents whilst drying are linked back to the solvent properties. The color to thickness mapping procedure is shown to have less than 5 % error in determined thickness values between 2μm and 100nm. The possible length scale resolved by the imaging is fully discussed as a function of radius, spin speed, strobe pulse duration and hardware used. The studies in this work achieved a minimum lateral resolution of 315μm when observing a full wafer, which is sufficiently detailed to properly reconstruct thickness variations caused by common spin-coating defects such as comets. The large area and scalable nature of this metrology technique lends itself to applications in semiconductor manufacturing where substrates of 300 mm are standard.
{"title":"In-situ full-wafer metrology via coupled white light and monochromatic stroboscopic illumination","authors":"Jack B.P. Atkinson, Jonathan R. Howse","doi":"10.1016/j.optlaseng.2024.108692","DOIUrl":"10.1016/j.optlaseng.2024.108692","url":null,"abstract":"<div><div>This work presents a novel optical setup to provide scalable <em>in-situ</em> metrology during spin coating. Stroboscopic white light imaging provides high resolution color videos of the process, at a temporal resolution matching the spin speed, where thin film interference colors are observed. Monochromatic specular reflection intensity data from the center of rotation provides a thickness profile at this point. By developing a color to thickness relationship <em>in-situ</em> with the combination of these techniques and leveraging the large-area data provided by color imaging, the thickness at any point on the wafer is reconstructed via a mapping procedure with minimal a-priori information. Experiments are carried out on full 3″ diameter wafers spun with pure xylene or pure butyl acetate, and the thickness profile at all points on the wafer can be determined. Differences in the topology of these solvents whilst drying are linked back to the solvent properties. The color to thickness mapping procedure is shown to have less than 5 % error in determined thickness values between 2μm and 100nm. The possible length scale resolved by the imaging is fully discussed as a function of radius, spin speed, strobe pulse duration and hardware used. The studies in this work achieved a minimum lateral resolution of 315μm when observing a full wafer, which is sufficiently detailed to properly reconstruct thickness variations caused by common spin-coating defects such as comets. The large area and scalable nature of this metrology technique lends itself to applications in semiconductor manufacturing where substrates of 300 mm are standard.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108692"},"PeriodicalIF":3.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}