首页 > 最新文献

Lifetime Data Analysis最新文献

英文 中文
Evaluating time-to-event surrogates for time-to-event true endpoints: an information-theoretic approach based on causal inference. 评估时间到事件真实终点的时间到事件替代物:基于因果推理的信息论方法。
IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-01-01 Epub Date: 2024-10-13 DOI: 10.1007/s10985-024-09638-7
Florian Stijven, Geert Molenberghs, Ingrid Van Keilegom, Wim Van der Elst, Ariel Alonso

Putative surrogate endpoints must undergo a rigorous statistical evaluation before they can be used in clinical trials. Numerous frameworks have been introduced for this purpose. In this study, we extend the scope of the information-theoretic causal-inference approach to encompass scenarios where both outcomes are time-to-event endpoints, using the flexibility provided by D-vine copulas. We evaluate the quality of the putative surrogate using the individual causal association (ICA)-a measure based on the mutual information between the individual causal treatment effects. However, in spite of its appealing mathematical properties, the ICA may be ill defined for composite endpoints. Therefore, we also propose an alternative rank-based metric for assessing the ICA. Due to the fundamental problem of causal inference, the joint distribution of all potential outcomes is only partially identifiable and, consequently, the ICA cannot be estimated without strong unverifiable assumptions. This is addressed by a formal sensitivity analysis that is summarized by the so-called intervals of ignorance and uncertainty. The frequentist properties of these intervals are discussed in detail. Finally, the proposed methods are illustrated with an analysis of pooled data from two advanced colorectal cancer trials. The newly developed techniques have been implemented in the R package Surrogate.

推定的替代终点在用于临床试验之前必须经过严格的统计评估。为此,人们提出了许多框架。在本研究中,我们扩展了信息论因果推断方法的范围,利用 D-藤协方差提供的灵活性,将两个结果都是时间到事件终点的情况也包括在内。我们使用个体因果关联(ICA)来评估推定代用指标的质量--ICA 是一种基于个体因果治疗效应之间互信息的测量方法。然而,尽管 ICA 具有吸引人的数学特性,但它对复合终点的定义可能并不完善。因此,我们还提出了另一种基于等级的指标来评估 ICA。由于因果推断的基本问题,所有潜在结果的联合分布只能部分识别,因此,如果没有无法验证的有力假设,就无法估计 ICA。为了解决这个问题,我们采用了正式的敏感性分析方法,即所谓的 "无知区间 "和 "不确定性区间"。我们还详细讨论了这些区间的频数特性。最后,通过对两项晚期结直肠癌试验的汇总数据进行分析,对所提出的方法进行了说明。新开发的技术已在 R 软件包 Surrogate 中实现。
{"title":"Evaluating time-to-event surrogates for time-to-event true endpoints: an information-theoretic approach based on causal inference.","authors":"Florian Stijven, Geert Molenberghs, Ingrid Van Keilegom, Wim Van der Elst, Ariel Alonso","doi":"10.1007/s10985-024-09638-7","DOIUrl":"10.1007/s10985-024-09638-7","url":null,"abstract":"<p><p>Putative surrogate endpoints must undergo a rigorous statistical evaluation before they can be used in clinical trials. Numerous frameworks have been introduced for this purpose. In this study, we extend the scope of the information-theoretic causal-inference approach to encompass scenarios where both outcomes are time-to-event endpoints, using the flexibility provided by D-vine copulas. We evaluate the quality of the putative surrogate using the individual causal association (ICA)-a measure based on the mutual information between the individual causal treatment effects. However, in spite of its appealing mathematical properties, the ICA may be ill defined for composite endpoints. Therefore, we also propose an alternative rank-based metric for assessing the ICA. Due to the fundamental problem of causal inference, the joint distribution of all potential outcomes is only partially identifiable and, consequently, the ICA cannot be estimated without strong unverifiable assumptions. This is addressed by a formal sensitivity analysis that is summarized by the so-called intervals of ignorance and uncertainty. The frequentist properties of these intervals are discussed in detail. Finally, the proposed methods are illustrated with an analysis of pooled data from two advanced colorectal cancer trials. The newly developed techniques have been implemented in the R package Surrogate.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":"1-23"},"PeriodicalIF":1.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonparametric estimation of the cumulative incidence function for doubly-truncated and interval-censored competing risks data. 双截断和区间截断竞争风险数据的累积发病率函数的非参数估计。
IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-01-01 Epub Date: 2024-11-17 DOI: 10.1007/s10985-024-09641-y
Pao-Sheng Shen

Interval sampling is widely used for collection of disease registry data, which typically report incident cases during a certain time period. Such sampling scheme induces doubly truncated data if the failure time can be observed exactly and doubly truncated and interval censored (DTIC) data if the failure time is known only to lie within an interval. In this article, we consider nonparametric estimation of the cumulative incidence functions (CIF) using doubly-truncated and interval-censored competing risks (DTIC-C) data obtained from interval sampling scheme. Using the approach of Shen (Stat Methods Med Res 31:1157-1170, 2022b), we first obtain the nonparametric maximum likelihood estimator (NPMLE) of the distribution function of failure time ignoring failure types. Using the NPMLE, we proposed nonparametric estimators of the CIF with DTIC-C data and establish consistency of the proposed estimators. Simulation studies show that the proposed estimator performs well for finite sample size.

区间抽样被广泛应用于疾病登记数据的收集,这些数据通常会报告某一时间段内发生的病例。如果故障时间可以精确观测到,那么这种抽样方案就会产生双截断数据;如果故障时间已知只在一个区间内,那么这种抽样方案就会产生双截断和区间删减(DTIC)数据。在本文中,我们考虑使用从区间抽样方案中获得的双截断和区间删失竞争风险(DTIC-C)数据对累积发生函数(CIF)进行非参数估计。利用 Shen 的方法(Stat Methods Med Res 31:1157-1170, 2022b),我们首先得到了忽略失效类型的失效时间分布函数的非参数最大似然估计值(NPMLE)。利用 NPMLE,我们提出了使用 DTIC-C 数据的 CIF 非参数估计器,并建立了所提估计器的一致性。模拟研究表明,所提出的估计器在有限样本量下表现良好。
{"title":"Nonparametric estimation of the cumulative incidence function for doubly-truncated and interval-censored competing risks data.","authors":"Pao-Sheng Shen","doi":"10.1007/s10985-024-09641-y","DOIUrl":"10.1007/s10985-024-09641-y","url":null,"abstract":"<p><p>Interval sampling is widely used for collection of disease registry data, which typically report incident cases during a certain time period. Such sampling scheme induces doubly truncated data if the failure time can be observed exactly and doubly truncated and interval censored (DTIC) data if the failure time is known only to lie within an interval. In this article, we consider nonparametric estimation of the cumulative incidence functions (CIF) using doubly-truncated and interval-censored competing risks (DTIC-C) data obtained from interval sampling scheme. Using the approach of Shen (Stat Methods Med Res 31:1157-1170, 2022b), we first obtain the nonparametric maximum likelihood estimator (NPMLE) of the distribution function of failure time ignoring failure types. Using the NPMLE, we proposed nonparametric estimators of the CIF with DTIC-C data and establish consistency of the proposed estimators. Simulation studies show that the proposed estimator performs well for finite sample size.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":"76-101"},"PeriodicalIF":1.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A global kernel estimator for partially linear varying coefficient additive hazards models. 部分线性变系数加性危害模型的全局核估计。
IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-01-01 Epub Date: 2025-01-09 DOI: 10.1007/s10985-024-09645-8
Hoi Min Ng, Kin Yau Wong

We study kernel-based estimation methods for partially linear varying coefficient additive hazards models, where the effects of one type of covariates can be modified by another. Existing kernel estimation methods for varying coefficient models often use a "local" approach, where only a small local neighborhood of subjects are used for estimating the varying coefficient functions. Such a local approach, however, is generally inefficient as information about some non-varying nuisance parameter from subjects outside the neighborhood is discarded. In this paper, we develop a "global" kernel estimator that simultaneously estimates the varying coefficients over the entire domains of the functions, leveraging the non-varying nature of the nuisance parameter. We establish the consistency and asymptotic normality of the proposed estimators. The theoretical developments are substantially more challenging than those of the local methods, as the dimension of the global estimator increases with the sample size. We conduct extensive simulation studies to demonstrate the feasibility and superior performance of the proposed methods compared with existing local methods and provide an application to a motivating cancer genomic study.

我们研究了部分线性变系数加性风险模型的核估计方法,其中一种协变量的影响可以被另一种协变量修改。现有的变系数模型核估计方法通常采用“局部”方法,即只使用对象的小局部邻域来估计变系数函数。然而,这种局部方法通常是低效的,因为来自邻域之外的对象的一些不变的干扰参数的信息被丢弃了。在本文中,我们开发了一个“全局”核估计器,它同时估计函数的整个域上的变化系数,利用了干扰参数的非变化性质。我们建立了所提估计量的相合性和渐近正态性。由于全局估计量的维度随着样本量的增加而增加,理论上的发展比局部方法更具挑战性。我们进行了广泛的模拟研究,以证明与现有的本地方法相比,所提出的方法的可行性和优越性能,并为激励癌症基因组研究提供了应用。
{"title":"A global kernel estimator for partially linear varying coefficient additive hazards models.","authors":"Hoi Min Ng, Kin Yau Wong","doi":"10.1007/s10985-024-09645-8","DOIUrl":"10.1007/s10985-024-09645-8","url":null,"abstract":"<p><p>We study kernel-based estimation methods for partially linear varying coefficient additive hazards models, where the effects of one type of covariates can be modified by another. Existing kernel estimation methods for varying coefficient models often use a \"local\" approach, where only a small local neighborhood of subjects are used for estimating the varying coefficient functions. Such a local approach, however, is generally inefficient as information about some non-varying nuisance parameter from subjects outside the neighborhood is discarded. In this paper, we develop a \"global\" kernel estimator that simultaneously estimates the varying coefficients over the entire domains of the functions, leveraging the non-varying nature of the nuisance parameter. We establish the consistency and asymptotic normality of the proposed estimators. The theoretical developments are substantially more challenging than those of the local methods, as the dimension of the global estimator increases with the sample size. We conduct extensive simulation studies to demonstrate the feasibility and superior performance of the proposed methods compared with existing local methods and provide an application to a motivating cancer genomic study.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":"205-232"},"PeriodicalIF":1.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142957993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A class of semiparametric models for bivariate survival data. 二元生存数据的一类半参数模型。
IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-01-01 Epub Date: 2024-12-14 DOI: 10.1007/s10985-024-09642-x
Walmir Dos Reis Miranda Filho, Fábio Nogueira Demarqui

We propose a new class of bivariate survival models based on the family of Archimedean copulas with margins modeled by the Yang and Prentice (YP) model. The Ali-Mikhail-Haq (AMH), Clayton, Frank, Gumbel-Hougaard (GH), and Joe copulas are employed to accommodate the dependency among marginal distributions. Baseline distributions are modeled semiparametrically by the Piecewise Exponential (PE) distribution and the Bernstein polynomials (BP). Inference procedures for the proposed class of models are based on the maximum likelihood (ML) approach. The new class of models possesses some attractive features: i) the ability to take into account survival data with crossing survival curves; ii) the inclusion of the well-known proportional hazards (PH) and proportional odds (PO) models as particular cases; iii) greater flexibility provided by the semiparametric modeling of the marginal baseline distributions; iv) the availability of closed-form expressions for the likelihood functions, leading to more straightforward inferential procedures. The properties of the proposed class are numerically investigated through an extensive simulation study. Finally, we demonstrate the versatility of our new class of models through the analysis of survival data involving patients diagnosed with ovarian cancer.

我们提出了一类新的基于阿基米德copulas族的双变量生存模型,其边缘由Yang和Prentice (YP)模型建模。采用Ali-Mikhail-Haq (AMH)、Clayton、Frank、Gumbel-Hougaard (GH)和Joe copula来适应边际分布之间的依赖关系。基线分布采用分段指数(PE)分布和伯恩斯坦多项式(BP)半参数化建模。所提出的模型类的推理过程基于最大似然(ML)方法。这类新模型具有一些吸引人的特点:1)能够考虑具有交叉生存曲线的生存数据;ii)将众所周知的比例风险(PH)和比例赔率(PO)模型作为特殊案例纳入;Iii)边际基线分布的半参数化建模提供了更大的灵活性;Iv)似然函数的封闭形式表达式的可用性,导致更直接的推理过程。通过广泛的模拟研究,对所提出的类的性质进行了数值研究。最后,我们通过分析诊断为卵巢癌的患者的生存数据,展示了我们新一类模型的多功能性。
{"title":"A class of semiparametric models for bivariate survival data.","authors":"Walmir Dos Reis Miranda Filho, Fábio Nogueira Demarqui","doi":"10.1007/s10985-024-09642-x","DOIUrl":"10.1007/s10985-024-09642-x","url":null,"abstract":"<p><p>We propose a new class of bivariate survival models based on the family of Archimedean copulas with margins modeled by the Yang and Prentice (YP) model. The Ali-Mikhail-Haq (AMH), Clayton, Frank, Gumbel-Hougaard (GH), and Joe copulas are employed to accommodate the dependency among marginal distributions. Baseline distributions are modeled semiparametrically by the Piecewise Exponential (PE) distribution and the Bernstein polynomials (BP). Inference procedures for the proposed class of models are based on the maximum likelihood (ML) approach. The new class of models possesses some attractive features: i) the ability to take into account survival data with crossing survival curves; ii) the inclusion of the well-known proportional hazards (PH) and proportional odds (PO) models as particular cases; iii) greater flexibility provided by the semiparametric modeling of the marginal baseline distributions; iv) the availability of closed-form expressions for the likelihood functions, leading to more straightforward inferential procedures. The properties of the proposed class are numerically investigated through an extensive simulation study. Finally, we demonstrate the versatility of our new class of models through the analysis of survival data involving patients diagnosed with ovarian cancer.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":"102-125"},"PeriodicalIF":1.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal survival analyses with prevalent and incident patients. 流行病患者和事故患者的最佳生存分析。
IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-01-01 Epub Date: 2024-10-12 DOI: 10.1007/s10985-024-09639-6
Nicholas Hartman

Period-prevalent cohorts are often used for their cost-saving potential in epidemiological studies of survival outcomes. Under this design, prevalent patients allow for evaluations of long-term survival outcomes without the need for long follow-up, whereas incident patients allow for evaluations of short-term survival outcomes without the issue of left-truncation. In most period-prevalent survival analyses from the existing literature, patients have been recruited to achieve an overall sample size, with little attention given to the relative frequencies of prevalent and incident patients and their statistical implications. Furthermore, there are no existing methods available to rigorously quantify the impact of these relative frequencies on estimation and inference and incorporate this information into study design strategies. To address these gaps, we develop an approach to identify the optimal mix of prevalent and incident patients that maximizes precision over the entire estimated survival curve, subject to a flexible weighting scheme. In addition, we prove that inference based on the weighted log-rank test or Cox proportional hazards model is most powerful with an entirely prevalent or incident cohort, and we derive theoretical formulas to determine the optimal choice. Simulations confirm the validity of the proposed optimization criteria and show that substantial efficiency gains can be achieved by recruiting the optimal mix of prevalent and incident patients. The proposed methods are applied to assess waitlist outcomes among kidney transplant candidates.

在生存结果的流行病学研究中,周期流行组群因其节省成本的潜力而经常被使用。在这种设计下,流行期患者可用于评估长期生存结果,而无需长期随访,而事件期患者可用于评估短期生存结果,而无需考虑左截断的问题。在现有文献中的大多数时期流行生存分析中,招募患者都是为了达到总体样本量,而很少关注流行患者和事件患者的相对频率及其对统计的影响。此外,也没有现成的方法来严格量化这些相对频率对估计和推断的影响,并将这些信息纳入研究设计策略中。为了弥补这些不足,我们开发了一种方法来确定流行患者和事件患者的最佳组合,从而在灵活的加权方案下最大限度地提高整个估计生存曲线的精确度。此外,我们还证明了基于加权对数秩检验或 Cox 比例危险度模型的推论在完全流行或事件队列的情况下最为有效,并推导出理论公式来确定最佳选择。模拟证实了所提出的优化标准的有效性,并表明通过招募流行病患者和事件患者的最佳组合,可以大大提高效率。建议的方法被应用于评估肾移植候选者的候选结果。
{"title":"Optimal survival analyses with prevalent and incident patients.","authors":"Nicholas Hartman","doi":"10.1007/s10985-024-09639-6","DOIUrl":"10.1007/s10985-024-09639-6","url":null,"abstract":"<p><p>Period-prevalent cohorts are often used for their cost-saving potential in epidemiological studies of survival outcomes. Under this design, prevalent patients allow for evaluations of long-term survival outcomes without the need for long follow-up, whereas incident patients allow for evaluations of short-term survival outcomes without the issue of left-truncation. In most period-prevalent survival analyses from the existing literature, patients have been recruited to achieve an overall sample size, with little attention given to the relative frequencies of prevalent and incident patients and their statistical implications. Furthermore, there are no existing methods available to rigorously quantify the impact of these relative frequencies on estimation and inference and incorporate this information into study design strategies. To address these gaps, we develop an approach to identify the optimal mix of prevalent and incident patients that maximizes precision over the entire estimated survival curve, subject to a flexible weighting scheme. In addition, we prove that inference based on the weighted log-rank test or Cox proportional hazards model is most powerful with an entirely prevalent or incident cohort, and we derive theoretical formulas to determine the optimal choice. Simulations confirm the validity of the proposed optimization criteria and show that substantial efficiency gains can be achieved by recruiting the optimal mix of prevalent and incident patients. The proposed methods are applied to assess waitlist outcomes among kidney transplant candidates.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":"24-51"},"PeriodicalIF":1.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copula-based analysis of dependent current status data with semiparametric linear transformation model. 利用半参数线性变换模型对依赖性时态数据进行基于 Copula 的分析。
IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-01 Epub Date: 2024-08-24 DOI: 10.1007/s10985-024-09632-z
Huazhen Yu, Rui Zhang, Lixin Zhang

This paper discusses regression analysis of current status data with dependent censoring, a problem that often occurs in many areas such as cross-sectional studies, epidemiological investigations and tumorigenicity experiments. Copula model-based methods are commonly employed to tackle this issue. However, these methods often face challenges in terms of model and parameter identification. The primary aim of this paper is to propose a copula-based analysis for dependent current status data, where the association parameter is left unspecified. Our method is based on a general class of semiparametric linear transformation models and parametric copulas. We demonstrate that the proposed semiparametric model is identifiable under certain regularity conditions from the distribution of the observed data. For inference, we develop a sieve maximum likelihood estimation method, using Bernstein polynomials to approximate the nonparametric functions involved. The asymptotic consistency and normality of the proposed estimators are established. Finally, to demonstrate the effectiveness and practical applicability of our method, we conduct an extensive simulation study and apply the proposed method to a real data example.

本文讨论了对有依赖性删减的现状数据进行回归分析的问题,这是横断面研究、流行病学调查和肿瘤致病性实验等许多领域经常出现的问题。通常采用基于 Copula 模型的方法来解决这一问题。然而,这些方法往往在模型和参数识别方面面临挑战。本文的主要目的是针对关联参数未指定的依赖性现状数据提出一种基于 copula 的分析方法。我们的方法基于一般的半参数线性变换模型和参数 copulas。我们证明了所提出的半参数模型在某些规则性条件下可以从观测数据的分布中识别出来。在推理方面,我们开发了一种筛式最大似然估计方法,使用伯恩斯坦多项式来近似相关的非参数函数。我们确定了所提出的估计值的渐近一致性和正态性。最后,为了证明我们的方法的有效性和实际应用性,我们进行了广泛的模拟研究,并将提出的方法应用于一个真实数据实例。
{"title":"Copula-based analysis of dependent current status data with semiparametric linear transformation model.","authors":"Huazhen Yu, Rui Zhang, Lixin Zhang","doi":"10.1007/s10985-024-09632-z","DOIUrl":"10.1007/s10985-024-09632-z","url":null,"abstract":"<p><p>This paper discusses regression analysis of current status data with dependent censoring, a problem that often occurs in many areas such as cross-sectional studies, epidemiological investigations and tumorigenicity experiments. Copula model-based methods are commonly employed to tackle this issue. However, these methods often face challenges in terms of model and parameter identification. The primary aim of this paper is to propose a copula-based analysis for dependent current status data, where the association parameter is left unspecified. Our method is based on a general class of semiparametric linear transformation models and parametric copulas. We demonstrate that the proposed semiparametric model is identifiable under certain regularity conditions from the distribution of the observed data. For inference, we develop a sieve maximum likelihood estimation method, using Bernstein polynomials to approximate the nonparametric functions involved. The asymptotic consistency and normality of the proposed estimators are established. Finally, to demonstrate the effectiveness and practical applicability of our method, we conduct an extensive simulation study and apply the proposed method to a real data example.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":"742-775"},"PeriodicalIF":1.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nested case-control sampling without replacement. 无替换的嵌套病例对照抽样。
IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-01 Epub Date: 2024-09-05 DOI: 10.1007/s10985-024-09633-y
Yei Eun Shin, Takumi Saegusa

Nested case-control design (NCC) is a cost-effective outcome-dependent design in epidemiology that collects all cases and a fixed number of controls at the time of case diagnosis from a large cohort. Due to inefficiency relative to full cohort studies, previous research developed various estimation methodologies but changing designs in the formulation of risk sets was considered only in view of potential bias in the partial likelihood estimation. In this paper, we study a modified design that excludes previously selected controls from risk sets in view of efficiency improvement as well as bias. To this end, we extend the inverse probability weighting method of Samuelsen which was shown to outperform the partial likelihood estimator in the standard setting. We develop its asymptotic theory and a variance estimation of both regression coefficients and the cumulative baseline hazard function that takes account of the complex feature of the modified sampling design. In addition to good finite sample performance of variance estimation, simulation studies show that the modified design with the proposed estimator is more efficient than the standard design. Examples are provided using data from NIH-AARP Diet and Health Cohort Study.

嵌套病例对照设计(NCC)是流行病学中一种具有成本效益的结果依赖型设计,它从一个大型队列中收集病例诊断时的所有病例和固定数量的对照。由于相对于完整队列研究效率较低,以往的研究开发了各种估算方法,但只有在考虑到部分似然估算可能存在偏差的情况下,才会在制定风险集时改变设计。在本文中,我们从提高效率和减少偏差的角度出发,研究了一种将先前选定的对照组排除在风险集中的改进设计。为此,我们扩展了 Samuelsen 的反概率加权法,该方法在标准设置中优于偏似然估计法。我们发展了该方法的渐近理论,并对回归系数和累积基线危险函数进行了方差估计,其中考虑到了修改后抽样设计的复杂特征。除了方差估计的有限样本性能良好外,模拟研究还表明,使用建议估计器的修正设计比标准设计更有效。本文使用美国国立卫生研究院-美国退休人员饮食与健康队列研究的数据进行了举例说明。
{"title":"Nested case-control sampling without replacement.","authors":"Yei Eun Shin, Takumi Saegusa","doi":"10.1007/s10985-024-09633-y","DOIUrl":"10.1007/s10985-024-09633-y","url":null,"abstract":"<p><p>Nested case-control design (NCC) is a cost-effective outcome-dependent design in epidemiology that collects all cases and a fixed number of controls at the time of case diagnosis from a large cohort. Due to inefficiency relative to full cohort studies, previous research developed various estimation methodologies but changing designs in the formulation of risk sets was considered only in view of potential bias in the partial likelihood estimation. In this paper, we study a modified design that excludes previously selected controls from risk sets in view of efficiency improvement as well as bias. To this end, we extend the inverse probability weighting method of Samuelsen which was shown to outperform the partial likelihood estimator in the standard setting. We develop its asymptotic theory and a variance estimation of both regression coefficients and the cumulative baseline hazard function that takes account of the complex feature of the modified sampling design. In addition to good finite sample performance of variance estimation, simulation studies show that the modified design with the proposed estimator is more efficient than the standard design. Examples are provided using data from NIH-AARP Diet and Health Cohort Study.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":"776-799"},"PeriodicalIF":1.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502564/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A flexible time-varying coefficient rate model for panel count data. 面板计数数据的灵活时变系数率模型。
IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-01 Epub Date: 2024-05-28 DOI: 10.1007/s10985-024-09630-1
Dayu Sun, Yuanyuan Guo, Yang Li, Jianguo Sun, Wanzhu Tu

Panel count regression is often required in recurrent event studies, where the interest is to model the event rate. Existing rate models are unable to handle time-varying covariate effects due to theoretical and computational difficulties. Mean models provide a viable alternative but are subject to the constraints of the monotonicity assumption, which tends to be violated when covariates fluctuate over time. In this paper, we present a new semiparametric rate model for panel count data along with related theoretical results. For model fitting, we present an efficient EM algorithm with three different methods for variance estimation. The algorithm allows us to sidestep the challenges of numerical integration and difficulties with the iterative convex minorant algorithm. We showed that the estimators are consistent and asymptotically normally distributed. Simulation studies confirmed an excellent finite sample performance. To illustrate, we analyzed data from a real clinical study of behavioral risk factors for sexually transmitted infections.

在经常性事件研究中经常需要进行面板计数回归,其目的是建立事件发生率模型。由于理论和计算上的困难,现有的比率模型无法处理时变协变量效应。均值模型提供了一个可行的替代方案,但受到单调性假设的限制,当协变量随时间波动时,单调性假设往往会被违反。在本文中,我们针对面板计数数据提出了一种新的半参数率模型以及相关的理论结果。在模型拟合方面,我们提出了一种高效的 EM 算法,其中包含三种不同的方差估计方法。该算法使我们能够避开数值积分的挑战和迭代凸小法算法的困难。我们的研究表明,这些估计值是一致的,并具有渐近正态分布。模拟研究证实了其出色的有限样本性能。为了说明这一点,我们分析了一项关于性传播感染行为风险因素的真实临床研究数据。
{"title":"A flexible time-varying coefficient rate model for panel count data.","authors":"Dayu Sun, Yuanyuan Guo, Yang Li, Jianguo Sun, Wanzhu Tu","doi":"10.1007/s10985-024-09630-1","DOIUrl":"10.1007/s10985-024-09630-1","url":null,"abstract":"<p><p>Panel count regression is often required in recurrent event studies, where the interest is to model the event rate. Existing rate models are unable to handle time-varying covariate effects due to theoretical and computational difficulties. Mean models provide a viable alternative but are subject to the constraints of the monotonicity assumption, which tends to be violated when covariates fluctuate over time. In this paper, we present a new semiparametric rate model for panel count data along with related theoretical results. For model fitting, we present an efficient EM algorithm with three different methods for variance estimation. The algorithm allows us to sidestep the challenges of numerical integration and difficulties with the iterative convex minorant algorithm. We showed that the estimators are consistent and asymptotically normally distributed. Simulation studies confirmed an excellent finite sample performance. To illustrate, we analyzed data from a real clinical study of behavioral risk factors for sexually transmitted infections.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":"721-741"},"PeriodicalIF":1.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Call for papers for a special issue on survival analysis in artificial intelligence. 人工智能生存分析特刊征稿启事。
IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-01 Epub Date: 2024-10-16 DOI: 10.1007/s10985-024-09636-9
Xingqiu Zhao
{"title":"Call for papers for a special issue on survival analysis in artificial intelligence.","authors":"Xingqiu Zhao","doi":"10.1007/s10985-024-09636-9","DOIUrl":"10.1007/s10985-024-09636-9","url":null,"abstract":"","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":"853-854"},"PeriodicalIF":1.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal multilevel joint modeling of longitudinal and survival outcomes in end-stage kidney disease. 对终末期肾病的纵向和生存结果进行时空多层次联合建模。
IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-01 Epub Date: 2024-10-04 DOI: 10.1007/s10985-024-09635-w
Esra Kürüm, Danh V Nguyen, Qi Qian, Sudipto Banerjee, Connie M Rhee, Damla Şentürk

Individuals with end-stage kidney disease (ESKD) on dialysis experience high mortality and excessive burden of hospitalizations over time relative to comparable Medicare patient cohorts without kidney failure. A key interest in this population is to understand the time-dynamic effects of multilevel risk factors that contribute to the correlated outcomes of longitudinal hospitalization and mortality. For this we utilize multilevel data from the United States Renal Data System (USRDS), a national database that includes nearly all patients with ESKD, where repeated measurements/hospitalizations over time are nested in patients and patients are nested within (health service) regions across the contiguous U.S. We develop a novel spatiotemporal multilevel joint model (STM-JM) that accounts for the aforementioned hierarchical structure of the data while considering the spatiotemporal variations in both outcomes across regions. The proposed STM-JM includes time-varying effects of multilevel (patient- and region-level) risk factors on hospitalization trajectories and mortality and incorporates spatial correlations across the spatial regions via a multivariate conditional autoregressive correlation structure. Efficient estimation and inference are performed via a Bayesian framework, where multilevel varying coefficient functions are targeted via thin-plate splines. The finite sample performance of the proposed method is assessed through simulation studies. An application of the proposed method to the USRDS data highlights significant time-varying effects of patient- and region-level risk factors on hospitalization and mortality and identifies specific time periods on dialysis and spatial locations across the U.S. with elevated hospitalization and mortality risks.

与没有肾衰竭的医保患者队列相比,接受透析治疗的终末期肾病(ESKD)患者死亡率高,住院负担过重。该人群的一个主要兴趣点是了解多层次风险因素对纵向住院和死亡率相关结果的时间动态影响。为此,我们利用了来自美国肾脏数据系统(USRDS)的多层次数据,这是一个几乎包括所有 ESKD 患者的全国性数据库,在该数据库中,随着时间推移的重复测量/住院被嵌套在患者身上,而患者则被嵌套在美国毗连地区的(医疗服务)区域内。我们开发了一种新的时空多层次联合模型(STM-JM),该模型考虑到了上述数据的层次结构,同时考虑到了两个结果在不同地区的时空变化。所提出的 STM-JM 包括多层次(患者和地区层次)风险因素对住院轨迹和死亡率的时变效应,并通过多变量条件自回归相关结构纳入跨空间区域的空间相关性。该方法通过贝叶斯框架进行高效估计和推断,其中多层次变化系数函数是通过薄板样条来实现的。通过模拟研究评估了所提方法的有限样本性能。将所提出的方法应用于 USRDS 数据,凸显了患者和地区层面的风险因素对住院率和死亡率的显著时变影响,并确定了美国住院率和死亡率风险较高的特定透析时间段和空间位置。
{"title":"Spatiotemporal multilevel joint modeling of longitudinal and survival outcomes in end-stage kidney disease.","authors":"Esra Kürüm, Danh V Nguyen, Qi Qian, Sudipto Banerjee, Connie M Rhee, Damla Şentürk","doi":"10.1007/s10985-024-09635-w","DOIUrl":"10.1007/s10985-024-09635-w","url":null,"abstract":"<p><p>Individuals with end-stage kidney disease (ESKD) on dialysis experience high mortality and excessive burden of hospitalizations over time relative to comparable Medicare patient cohorts without kidney failure. A key interest in this population is to understand the time-dynamic effects of multilevel risk factors that contribute to the correlated outcomes of longitudinal hospitalization and mortality. For this we utilize multilevel data from the United States Renal Data System (USRDS), a national database that includes nearly all patients with ESKD, where repeated measurements/hospitalizations over time are nested in patients and patients are nested within (health service) regions across the contiguous U.S. We develop a novel spatiotemporal multilevel joint model (STM-JM) that accounts for the aforementioned hierarchical structure of the data while considering the spatiotemporal variations in both outcomes across regions. The proposed STM-JM includes time-varying effects of multilevel (patient- and region-level) risk factors on hospitalization trajectories and mortality and incorporates spatial correlations across the spatial regions via a multivariate conditional autoregressive correlation structure. Efficient estimation and inference are performed via a Bayesian framework, where multilevel varying coefficient functions are targeted via thin-plate splines. The finite sample performance of the proposed method is assessed through simulation studies. An application of the proposed method to the USRDS data highlights significant time-varying effects of patient- and region-level risk factors on hospitalization and mortality and identifies specific time periods on dialysis and spatial locations across the U.S. with elevated hospitalization and mortality risks.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":"827-852"},"PeriodicalIF":1.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502599/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Lifetime Data Analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1