Perceiving verticality is crucial for accurate spatial orientation. Previous research has revealed that tilted scenes can bias verticality perception. Verticality perception bias can be represented as the sum of multiple periodic functions that play a role in the perception of visual orientation, where the specific factors affecting each periodicity remain uncertain. This study investigated the influence of the width and depth of an indoor scene on each periodic component of the bias. The participants were presented with an indoor scene showing a rectangular checkerboard room (Experiment 1), a rectangular aperture on the wall (Experiment 2), or a rectangular dotted room (Experiment 3), with various aspect ratios. The stimuli were presented with roll orientations ranging from 90° clockwise to 90° counterclockwise. The participants were asked to report their subjective visual vertical (SVV) perceptions. The contributions of 45°, 90°, and 180° periodicities to the SVV error were assessed by the weighted vector sum model. In Experiment 1, the periodic components of the SVV error increased with the aspect ratio. In Experiments 2 and 3, only the 90° component increased with the aspect ratio. These findings suggest that extended transverse surfaces may modulate the periodic components of verticality perception.
{"title":"Influence of scene aspect ratio and depth cues on verticality perception bias.","authors":"Kanon Fujimoto, Hiroshi Ashida","doi":"10.1167/jov.24.7.12","DOIUrl":"10.1167/jov.24.7.12","url":null,"abstract":"<p><p>Perceiving verticality is crucial for accurate spatial orientation. Previous research has revealed that tilted scenes can bias verticality perception. Verticality perception bias can be represented as the sum of multiple periodic functions that play a role in the perception of visual orientation, where the specific factors affecting each periodicity remain uncertain. This study investigated the influence of the width and depth of an indoor scene on each periodic component of the bias. The participants were presented with an indoor scene showing a rectangular checkerboard room (Experiment 1), a rectangular aperture on the wall (Experiment 2), or a rectangular dotted room (Experiment 3), with various aspect ratios. The stimuli were presented with roll orientations ranging from 90° clockwise to 90° counterclockwise. The participants were asked to report their subjective visual vertical (SVV) perceptions. The contributions of 45°, 90°, and 180° periodicities to the SVV error were assessed by the weighted vector sum model. In Experiment 1, the periodic components of the SVV error increased with the aspect ratio. In Experiments 2 and 3, only the 90° component increased with the aspect ratio. These findings suggest that extended transverse surfaces may modulate the periodic components of verticality perception.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282478/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Decisions about where to move occur throughout the day and are essential to life. Different movements may present different challenges and affect the likelihood of achieving a goal. Certain choices may have unintended consequences, some of which may cause harm and bias the decision. Movement decisions rely on a person gathering necessary visual information via shifts in gaze. Here we sought to understand what influences this information-seeking gaze behavior. Participants chose between walking across one of two paths that consisted of terrain images found in either hiking or urban environments. We manipulated the number and type of terrain of each path, which altered the amount of available visual information. We recorded gaze behavior during the approach to the paths and had participants rate the confidence in their ability to walk across each terrain type (i.e., self-efficacy) as though it was real. Participants did not direct gaze more to the path with greater visual information, regardless of how we quantified information. Rather, we show that a person's perception of their motor abilities predicts how they visually explore the environment with their eyes as well as their choice of action. The greater the self-efficacy in walking across one path, the more they directed gaze to it and the more likely they chose to walk across it.
{"title":"Fork in the road: How self-efficacy related to walking across terrain influences gaze behavior and path choice.","authors":"Vinicius da Eira Silva, Daniel S Marigold","doi":"10.1167/jov.24.7.7","DOIUrl":"10.1167/jov.24.7.7","url":null,"abstract":"<p><p>Decisions about where to move occur throughout the day and are essential to life. Different movements may present different challenges and affect the likelihood of achieving a goal. Certain choices may have unintended consequences, some of which may cause harm and bias the decision. Movement decisions rely on a person gathering necessary visual information via shifts in gaze. Here we sought to understand what influences this information-seeking gaze behavior. Participants chose between walking across one of two paths that consisted of terrain images found in either hiking or urban environments. We manipulated the number and type of terrain of each path, which altered the amount of available visual information. We recorded gaze behavior during the approach to the paths and had participants rate the confidence in their ability to walk across each terrain type (i.e., self-efficacy) as though it was real. Participants did not direct gaze more to the path with greater visual information, regardless of how we quantified information. Rather, we show that a person's perception of their motor abilities predicts how they visually explore the environment with their eyes as well as their choice of action. The greater the self-efficacy in walking across one path, the more they directed gaze to it and the more likely they chose to walk across it.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141564950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leonard Gerharz, Eli Brenner, Jutta Billino, Dimitris Voudouris
When interacting with the environment, humans typically shift their gaze to where information is to be found that is useful for the upcoming action. With increasing age, people become slower both in processing sensory information and in performing their movements. One way to compensate for this slowing down could be to rely more on predictive strategies. To examine whether we could find evidence for this, we asked younger (19-29 years) and older (55-72 years) healthy adults to perform a reaching task wherein they hit a visual target that appeared at one of two possible locations. In separate blocks of trials, the target could appear always at the same location (predictable), mainly at one of the locations (biased), or at either location randomly (unpredictable). As one might expect, saccades toward predictable targets had shorter latencies than those toward less predictable targets, irrespective of age. Older adults took longer to initiate saccades toward the target location than younger adults, even when the likely target location could be deduced. Thus we found no evidence of them relying more on predictive gaze. Moreover, both younger and older participants performed more saccades when the target location was less predictable, but again no age-related differences were found. Thus we found no tendency for older adults to rely more on prediction.
{"title":"Age effects on predictive eye movements for action.","authors":"Leonard Gerharz, Eli Brenner, Jutta Billino, Dimitris Voudouris","doi":"10.1167/jov.24.6.8","DOIUrl":"10.1167/jov.24.6.8","url":null,"abstract":"<p><p>When interacting with the environment, humans typically shift their gaze to where information is to be found that is useful for the upcoming action. With increasing age, people become slower both in processing sensory information and in performing their movements. One way to compensate for this slowing down could be to rely more on predictive strategies. To examine whether we could find evidence for this, we asked younger (19-29 years) and older (55-72 years) healthy adults to perform a reaching task wherein they hit a visual target that appeared at one of two possible locations. In separate blocks of trials, the target could appear always at the same location (predictable), mainly at one of the locations (biased), or at either location randomly (unpredictable). As one might expect, saccades toward predictable targets had shorter latencies than those toward less predictable targets, irrespective of age. Older adults took longer to initiate saccades toward the target location than younger adults, even when the likely target location could be deduced. Thus we found no evidence of them relying more on predictive gaze. Moreover, both younger and older participants performed more saccades when the target location was less predictable, but again no age-related differences were found. Thus we found no tendency for older adults to rely more on prediction.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141297190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ensemble processing allows the visual system to condense visual information into useful summary statistics (e.g., average size), thereby overcoming capacity limitations to visual working memory and attention. To examine the role of attention in ensemble processing, we conducted three experiments using a novel paradigm that merged the action effect (a manipulation of attention) and ensemble processing. Participants were instructed to make a simple action if the feature of a cue word corresponded to a subsequent shape. Immediately after, they were shown an ensemble display of eight ovals of varying sizes and were asked to report either the average size of all ovals or the size of a single oval from the set. In Experiments 1 and 2, participants were cued with a task-relevant feature, and in Experiment 3, participants were cued with a task-irrelevant feature. Overall, the task-relevant cues that elicited an action influenced reports of average size in the ensemble phase more than the cues that were passively viewed, whereas task-irrelevant cues did not bias the reports of average size. The results of this study suggest that attention influences ensemble processing only when it is directed toward a task-relevant feature.
{"title":"Examining the role of action-driven attention in ensemble processing.","authors":"Kristina Knox, Jay Pratt, Jonathan S Cant","doi":"10.1167/jov.24.6.5","DOIUrl":"10.1167/jov.24.6.5","url":null,"abstract":"<p><p>Ensemble processing allows the visual system to condense visual information into useful summary statistics (e.g., average size), thereby overcoming capacity limitations to visual working memory and attention. To examine the role of attention in ensemble processing, we conducted three experiments using a novel paradigm that merged the action effect (a manipulation of attention) and ensemble processing. Participants were instructed to make a simple action if the feature of a cue word corresponded to a subsequent shape. Immediately after, they were shown an ensemble display of eight ovals of varying sizes and were asked to report either the average size of all ovals or the size of a single oval from the set. In Experiments 1 and 2, participants were cued with a task-relevant feature, and in Experiment 3, participants were cued with a task-irrelevant feature. Overall, the task-relevant cues that elicited an action influenced reports of average size in the ensemble phase more than the cues that were passively viewed, whereas task-irrelevant cues did not bias the reports of average size. The results of this study suggest that attention influences ensemble processing only when it is directed toward a task-relevant feature.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160948/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Binocular double vision in strabismus is marked by diplopia (seeing the same object in two different directions) and visual confusion (seeing two different objects in the same direction). In strabismus with full visual field, the diplopia coexists with visual confusion across most of the binocular field. With visual field loss, or with use of partial prism segments for field expansion, the two phenomena may be separable. This separability is the focus of this review and offers new insights into binocular function. We show that confusion is necessary but is not sufficient for field expansion. Diplopia plays no role in field expansion but is necessary for clinical testing of strabismus, making such testing difficult in field loss conditions with confusion without diplopia. The roles of the three-dimensional structure of the real world and the dynamic of eye movements within that structure are considered as well. Suppression of one eye's partial view under binocular vision that develops in early-onset (childhood) strabismus is assumed to be a sensory adaption to diplopia. This assumption can be tested using the separation of diplopia and confusion.
{"title":"Review: Binocular double vision in the presence of visual field loss.","authors":"Eli Peli, Jae-Hyun Jung","doi":"10.1167/jov.24.6.13","DOIUrl":"10.1167/jov.24.6.13","url":null,"abstract":"<p><p>Binocular double vision in strabismus is marked by diplopia (seeing the same object in two different directions) and visual confusion (seeing two different objects in the same direction). In strabismus with full visual field, the diplopia coexists with visual confusion across most of the binocular field. With visual field loss, or with use of partial prism segments for field expansion, the two phenomena may be separable. This separability is the focus of this review and offers new insights into binocular function. We show that confusion is necessary but is not sufficient for field expansion. Diplopia plays no role in field expansion but is necessary for clinical testing of strabismus, making such testing difficult in field loss conditions with confusion without diplopia. The roles of the three-dimensional structure of the real world and the dynamic of eye movements within that structure are considered as well. Suppression of one eye's partial view under binocular vision that develops in early-onset (childhood) strabismus is assumed to be a sensory adaption to diplopia. This assumption can be tested using the separation of diplopia and confusion.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microsaccades-tiny fixational eye movements-improve discriminability in high-acuity tasks in the foveola. To investigate whether they help compensate for low discriminability at the perifovea, we examined microsaccade characteristics relative to the adult visual performance field, which is characterized by two perceptual asymmetries: horizontal-vertical anisotropy (better discrimination along the horizontal than vertical meridian) and vertical meridian asymmetry (better discrimination along the lower than upper vertical meridian). We investigated whether and to what extent microsaccade directionality varies when stimuli are at isoeccentric locations along the cardinals under conditions of heterogeneous discriminability (Experiment 1) and homogeneous discriminability, equated by adjusting stimulus contrast (Experiment 2). Participants performed a two-alternative forced-choice orientation discrimination task. In both experiments, performance was better on trials without microsaccades between ready signal onset and stimulus offset than on trials with microsaccades. Across the trial sequence, the microsaccade rate and directional pattern were similar across locations. Our results indicate that microsaccades were similar regardless of stimulus discriminability and target location, except during the response period-once the stimuli were no longer present and target location no longer uncertain-when microsaccades were biased toward the target location. Thus, this study reveals that microsaccades do not flexibly adapt as a function of varying discriminability in a basic visual task around the visual field.
{"title":"Do microsaccades vary with discriminability around the visual field?","authors":"Simran Purokayastha, Mariel Roberts, Marisa Carrasco","doi":"10.1167/jov.24.6.11","DOIUrl":"10.1167/jov.24.6.11","url":null,"abstract":"<p><p>Microsaccades-tiny fixational eye movements-improve discriminability in high-acuity tasks in the foveola. To investigate whether they help compensate for low discriminability at the perifovea, we examined microsaccade characteristics relative to the adult visual performance field, which is characterized by two perceptual asymmetries: horizontal-vertical anisotropy (better discrimination along the horizontal than vertical meridian) and vertical meridian asymmetry (better discrimination along the lower than upper vertical meridian). We investigated whether and to what extent microsaccade directionality varies when stimuli are at isoeccentric locations along the cardinals under conditions of heterogeneous discriminability (Experiment 1) and homogeneous discriminability, equated by adjusting stimulus contrast (Experiment 2). Participants performed a two-alternative forced-choice orientation discrimination task. In both experiments, performance was better on trials without microsaccades between ready signal onset and stimulus offset than on trials with microsaccades. Across the trial sequence, the microsaccade rate and directional pattern were similar across locations. Our results indicate that microsaccades were similar regardless of stimulus discriminability and target location, except during the response period-once the stimuli were no longer present and target location no longer uncertain-when microsaccades were biased toward the target location. Thus, this study reveals that microsaccades do not flexibly adapt as a function of varying discriminability in a basic visual task around the visual field.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The watercolor effect (WCE) is a striking visual illusion elicited by a bichromatic double contour, such as a light orange and a dark purple, hugging each other on a white background. Color assimilation, emanating from the lighter contour, spreads onto the enclosed surface area, thereby tinting it with a chromatic veil, not unlike a weak but real color. Map makers in the 17th century utilized the WCE to better demarcate the shape of adjoining states, while 20th-century artist Bridget Riley created illusory watercolor as part of her op-art. Today's visual scientists study the WCE for its filling-in properties and strong figure-ground segregation. This review emphasizes the superior strength of the WCE for grouping and figure-ground organization vis-à-vis the classical Gestalt factors of Max Wertheimer (1923), thereby inspiring a notion of form from induced color. It also demonstrates that a thin chromatic line, flanking the inside of a black Mondrian-type pattern, induces the WCE across a large white surface area. Phenomenological, psychophysical, and neurophysiological approaches are reviewed.
{"title":"Watercolor spreading in Bridget Riley's and Piet Mondrian's op-art placed in the context of recent watercolor studies.","authors":"Lothar Spillmann","doi":"10.1167/jov.24.6.15","DOIUrl":"10.1167/jov.24.6.15","url":null,"abstract":"<p><p>The watercolor effect (WCE) is a striking visual illusion elicited by a bichromatic double contour, such as a light orange and a dark purple, hugging each other on a white background. Color assimilation, emanating from the lighter contour, spreads onto the enclosed surface area, thereby tinting it with a chromatic veil, not unlike a weak but real color. Map makers in the 17th century utilized the WCE to better demarcate the shape of adjoining states, while 20th-century artist Bridget Riley created illusory watercolor as part of her op-art. Today's visual scientists study the WCE for its filling-in properties and strong figure-ground segregation. This review emphasizes the superior strength of the WCE for grouping and figure-ground organization vis-à-vis the classical Gestalt factors of Max Wertheimer (1923), thereby inspiring a notion of form from induced color. It also demonstrates that a thin chromatic line, flanking the inside of a black Mondrian-type pattern, induces the WCE across a large white surface area. Phenomenological, psychophysical, and neurophysiological approaches are reviewed.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A large body of literature has examined specificity and transfer of perceptual learning, suggesting a complex picture. Here, we distinguish between transfer over variations in a "task-relevant" feature (e.g., transfer of a learned orientation task to a different reference orientation) and transfer over a "task-irrelevant" feature (e.g., transfer of a learned orientation task to a different retinal location or different spatial frequency), and we focus on the mechanism for the latter. Experimentally, we assessed whether learning a judgment of one feature (such as orientation) using one value of an irrelevant feature (e.g., spatial frequency) transfers to another value of the irrelevant feature. Experiment 1 examined whether learning in eight-alternative orientation identification with one or multiple spatial frequencies transfers to stimuli at five different spatial frequencies. Experiment 2 paralleled Experiment 1, examining whether learning in eight-alternative spatial-frequency identification at one or multiple orientations transfers to stimuli with five different orientations. Training the orientation task with a single spatial frequency transferred widely to all other spatial frequencies, with a tendency to specificity when training with the highest spatial frequency. Training the spatial frequency task fully transferred across all orientations. Computationally, we extended the identification integrated reweighting theory (I-IRT) to account for the transfer data (Dosher, Liu, & Lu, 2023; Liu, Dosher, & Lu, 2023). Just as location-invariant representations in the original IRT explain transfer over retinal locations, incorporating feature-invariant representations effectively accounted for the observed transfer. Taken together, we suggest that feature-invariant representations can account for transfer of learning over a "task-irrelevant" feature.
{"title":"Transfer of visual perceptual learning over a task-irrelevant feature through feature-invariant representations: Behavioral experiments and model simulations.","authors":"Jiajuan Liu, Zhong-Lin Lu, Barbara Dosher","doi":"10.1167/jov.24.6.17","DOIUrl":"10.1167/jov.24.6.17","url":null,"abstract":"<p><p>A large body of literature has examined specificity and transfer of perceptual learning, suggesting a complex picture. Here, we distinguish between transfer over variations in a \"task-relevant\" feature (e.g., transfer of a learned orientation task to a different reference orientation) and transfer over a \"task-irrelevant\" feature (e.g., transfer of a learned orientation task to a different retinal location or different spatial frequency), and we focus on the mechanism for the latter. Experimentally, we assessed whether learning a judgment of one feature (such as orientation) using one value of an irrelevant feature (e.g., spatial frequency) transfers to another value of the irrelevant feature. Experiment 1 examined whether learning in eight-alternative orientation identification with one or multiple spatial frequencies transfers to stimuli at five different spatial frequencies. Experiment 2 paralleled Experiment 1, examining whether learning in eight-alternative spatial-frequency identification at one or multiple orientations transfers to stimuli with five different orientations. Training the orientation task with a single spatial frequency transferred widely to all other spatial frequencies, with a tendency to specificity when training with the highest spatial frequency. Training the spatial frequency task fully transferred across all orientations. Computationally, we extended the identification integrated reweighting theory (I-IRT) to account for the transfer data (Dosher, Liu, & Lu, 2023; Liu, Dosher, & Lu, 2023). Just as location-invariant representations in the original IRT explain transfer over retinal locations, incorporating feature-invariant representations effectively accounted for the observed transfer. Taken together, we suggest that feature-invariant representations can account for transfer of learning over a \"task-irrelevant\" feature.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11205231/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pamela Villavicencio, Cristina de la Malla, Joan López-Moliner
Accurately estimating time to contact (TTC) is crucial for successful interactions with moving objects, yet it is challenging under conditions of sensory and contextual uncertainty, such as occlusion. In this study, participants engaged in a prediction motion task, monitoring a target that moved rightward and an occluder. The participants' task was to press a key when they predicted the target would be aligned with the occluder's right edge. We manipulated sensory uncertainty by varying the visible and occluded periods of the target, thereby modulating the time available to integrate sensory information and the duration over which motion must be extrapolated. Additionally, contextual uncertainty was manipulated by having a predictable and unpredictable condition, meaning the occluder either reliably indicated where the moving target would disappear or provided no such indication. Results showed differences in accuracy between the predictable and unpredictable occluder conditions, with different eye movement patterns in each case. Importantly, the ratio of the time the target was visible, which allows for the integration of sensory information, to the occlusion time, which determines perceptual uncertainty, was a key factor in determining performance. This ratio is central to our proposed model, which provides a robust framework for understanding and predicting human performance in dynamic environments with varying degrees of uncertainty.
{"title":"Prediction of time to contact under perceptual and contextual uncertainties.","authors":"Pamela Villavicencio, Cristina de la Malla, Joan López-Moliner","doi":"10.1167/jov.24.6.14","DOIUrl":"10.1167/jov.24.6.14","url":null,"abstract":"<p><p>Accurately estimating time to contact (TTC) is crucial for successful interactions with moving objects, yet it is challenging under conditions of sensory and contextual uncertainty, such as occlusion. In this study, participants engaged in a prediction motion task, monitoring a target that moved rightward and an occluder. The participants' task was to press a key when they predicted the target would be aligned with the occluder's right edge. We manipulated sensory uncertainty by varying the visible and occluded periods of the target, thereby modulating the time available to integrate sensory information and the duration over which motion must be extrapolated. Additionally, contextual uncertainty was manipulated by having a predictable and unpredictable condition, meaning the occluder either reliably indicated where the moving target would disappear or provided no such indication. Results showed differences in accuracy between the predictable and unpredictable occluder conditions, with different eye movement patterns in each case. Importantly, the ratio of the time the target was visible, which allows for the integration of sensory information, to the occlusion time, which determines perceptual uncertainty, was a key factor in determining performance. This ratio is central to our proposed model, which provides a robust framework for understanding and predicting human performance in dynamic environments with varying degrees of uncertainty.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204063/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141433199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoe M Boundy-Singer, Corey M Ziemba, Olivier J Hénaff, Robbe L T Goris
Neural population activity in sensory cortex informs our perceptual interpretation of the environment. Oftentimes, this population activity will support multiple alternative interpretations. The larger the spread of probability over different alternatives, the more uncertain the selected perceptual interpretation. We test the hypothesis that the reliability of perceptual interpretations can be revealed through simple transformations of sensory population activity. We recorded V1 population activity in fixating macaques while presenting oriented stimuli under different levels of nuisance variability and signal strength. We developed a decoding procedure to infer from V1 activity the most likely stimulus orientation as well as the certainty of this estimate. Our analysis shows that response magnitude, response dispersion, and variability in response gain all offer useful proxies for orientation certainty. Of these three metrics, the last one has the strongest association with the decoder's uncertainty estimates. These results clarify that the nature of neural population activity in sensory cortex provides downstream circuits with multiple options to assess the reliability of perceptual interpretations.
{"title":"How does V1 population activity inform perceptual certainty?","authors":"Zoe M Boundy-Singer, Corey M Ziemba, Olivier J Hénaff, Robbe L T Goris","doi":"10.1167/jov.24.6.12","DOIUrl":"10.1167/jov.24.6.12","url":null,"abstract":"<p><p>Neural population activity in sensory cortex informs our perceptual interpretation of the environment. Oftentimes, this population activity will support multiple alternative interpretations. The larger the spread of probability over different alternatives, the more uncertain the selected perceptual interpretation. We test the hypothesis that the reliability of perceptual interpretations can be revealed through simple transformations of sensory population activity. We recorded V1 population activity in fixating macaques while presenting oriented stimuli under different levels of nuisance variability and signal strength. We developed a decoding procedure to infer from V1 activity the most likely stimulus orientation as well as the certainty of this estimate. Our analysis shows that response magnitude, response dispersion, and variability in response gain all offer useful proxies for orientation certainty. Of these three metrics, the last one has the strongest association with the decoder's uncertainty estimates. These results clarify that the nature of neural population activity in sensory cortex provides downstream circuits with multiple options to assess the reliability of perceptual interpretations.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185272/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141332372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}