Purpose: Compare the impact of photon-counting detector computed tomography (PCD-CT) to conventional CT on an interstitial lung disease (ILD) quantitative machine learning (QML) model.
Materials and methods: A QML model analyzed 52 CT exams from patients who underwent same-day conventional and PCD-CT for suspected ILD. Lin's concordance correlation coefficient (CCC) assessed agreement between conventional and PCD-CT QML results. A CCC >0.90 was regarded as excellent, 0.9 to 0.8 as good, and <0.80 as a poor concordance. Spearman rank correlation evaluated the association between pulmonary function test results (PFT) and QML features (reticulation [R], honeycombing [HC], ground glass [GG], interstitial lung disease [ILD], and vessel-related structures [VRS]). Correlations were statistically significant if the 95% CI did not include 0.00 and P value <0.05.
Results: Conventional and PCD-CT QML results had good to excellent concordance (CCC ≥0.8) except for total HC (CCC <0.8), likely related to better PCD-CT honeycombing delineation. Overall, compared with conventional CT, PCD-CT had consistently more statistically significant correlation with PFT for HC (9 PCD vs. 2 conventional of 28 total and regional associations), similar correlation for R (20 PCD vs. 18 conventional of 28 associations) and VRS (19 PCD vs. 23 conventional of 28 associations), and less correlation for GG extent (12 PCD vs. 20 conventional associations).
Conclusions: There is strong agreement between conventional and PCD-CT QML ILD features except for HC. PCD-CT improved HC but decreased GG extent correlation with PFT. Therefore, even though most quantitative features were not impacted by the newer PCD-CT technology, model adjustment is necessary.