Pub Date : 2024-05-14DOI: 10.23919/jsee.2024.000046
Ying Zhang, Gang Xiao
In the context of big data, many large-scale knowledge graphs have emerged to effectively organize the explosive growth of web data on the Internet. To select suitable knowledge graphs for use from many knowledge graphs, quality assessment is particularly important. As an important thing of quality assessment, completeness assessment generally refers to the ratio of the current data volume to the total data volume. When evaluating the completeness of a knowledge graph, it is often necessary to refine the completeness dimension by setting different completeness metrics to produce more complete and understandable evaluation results for the knowledge graph. However, lack of awareness of requirements is the most problematic quality issue. In the actual evaluation process, the existing completeness metrics need to consider the actual application. Therefore, to accurately recommend suitable knowledge graphs to many users, it is particularly important to develop relevant measurement metrics and formulate measurement schemes for completeness. In this paper, we will first clarify the concept of completeness, establish each metric of completeness, and finally design a measurement proposal for the completeness of knowledge graphs.
{"title":"How to Implement a Knowledge Graph Completeness Assessment with the Guidance of User Requirements","authors":"Ying Zhang, Gang Xiao","doi":"10.23919/jsee.2024.000046","DOIUrl":"https://doi.org/10.23919/jsee.2024.000046","url":null,"abstract":"In the context of big data, many large-scale knowledge graphs have emerged to effectively organize the explosive growth of web data on the Internet. To select suitable knowledge graphs for use from many knowledge graphs, quality assessment is particularly important. As an important thing of quality assessment, completeness assessment generally refers to the ratio of the current data volume to the total data volume. When evaluating the completeness of a knowledge graph, it is often necessary to refine the completeness dimension by setting different completeness metrics to produce more complete and understandable evaluation results for the knowledge graph. However, lack of awareness of requirements is the most problematic quality issue. In the actual evaluation process, the existing completeness metrics need to consider the actual application. Therefore, to accurately recommend suitable knowledge graphs to many users, it is particularly important to develop relevant measurement metrics and formulate measurement schemes for completeness. In this paper, we will first clarify the concept of completeness, establish each metric of completeness, and finally design a measurement proposal for the completeness of knowledge graphs.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"27 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evolutionary algorithms (EAs) have been used in high utility itemset mining (HUIM) to address the problem of discovering high utility itemsets (HUIs) in the exponential search space. EAs have good running and mining performance, but they still require huge computational resource and may miss many HUIs. Due to the good combination of EA and graphics processing unit (GPU), we propose a parallel genetic algorithm (GA) based on the platform of GPU for mining HUIM (PHUI-GA). The evolution steps with improvements are performed in central processing unit (CPU) and the CPU intensive steps are sent to GPU to evaluate with multi-threaded processors. Experiments show that the mining performance of PHUI-GA outperforms the existing EAs. When mining 90% HUIs, the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach.
进化算法(EA)已被用于高效用项集挖掘(HUIM),以解决在指数搜索空间中发现高效用项集(HUI)的问题。EA 具有良好的运行和挖掘性能,但仍需要巨大的计算资源,而且可能会遗漏许多 HUI。由于 EA 与图形处理器(GPU)的良好结合,我们提出了一种基于 GPU 平台的并行遗传算法(GA),用于挖掘 HUIM(PHUI-GA)。改进的进化步骤在中央处理器(CPU)中执行,CPU 密集型步骤则发送到 GPU,由多线程处理器进行评估。实验表明,PHUI-GA 的挖掘性能优于现有的 EA。在挖掘 90% 的 HUI 时,PHUI-GA 比现有的 EA 高出 188 倍,比 CPU 并行方法高出 36 倍。
{"title":"PHUI-GA: GPU-Based Efficiency Evolutionary Algorithm for Mining High Utility Itemsets","authors":"Haipeng Jiang, Guoqing Wu, Mengdan Sun, Feng Li, Yunfei Sun, Wei Fang","doi":"10.23919/jsee.2024.000020","DOIUrl":"https://doi.org/10.23919/jsee.2024.000020","url":null,"abstract":"Evolutionary algorithms (EAs) have been used in high utility itemset mining (HUIM) to address the problem of discovering high utility itemsets (HUIs) in the exponential search space. EAs have good running and mining performance, but they still require huge computational resource and may miss many HUIs. Due to the good combination of EA and graphics processing unit (GPU), we propose a parallel genetic algorithm (GA) based on the platform of GPU for mining HUIM (PHUI-GA). The evolution steps with improvements are performed in central processing unit (CPU) and the CPU intensive steps are sent to GPU to evaluate with multi-threaded processors. Experiments show that the mining performance of PHUI-GA outperforms the existing EAs. When mining 90% HUIs, the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"14 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23DOI: 10.23919/jsee.2024.000042
Jun Tang, Wanting Qin, Qingtao Pan, Songyang Lao
Natural events have had a significant impact on overall flight activity, and the aviation industry plays a vital role in helping society cope with the impact of these events. As one of the most impactful weather typhoon seasons appears and continues, airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms. This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation. The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules, and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction. With more dependable data accuracy, problems can be analysed rapidly and more efficiently, enabling better decision-making with a proactive versus reactive posture. When multiple modalities coexist, features can be extracted from them simultaneously to supplement each other's information. An actual case study, the typhoon Lichma that swept China in 2019, has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather.
{"title":"A Deep Multimodal Fusion and Multitasking Trajectory Prediction Model for Typhoon Trajectory Prediction to Reduce Flight Scheduling Cancellation","authors":"Jun Tang, Wanting Qin, Qingtao Pan, Songyang Lao","doi":"10.23919/jsee.2024.000042","DOIUrl":"https://doi.org/10.23919/jsee.2024.000042","url":null,"abstract":"Natural events have had a significant impact on overall flight activity, and the aviation industry plays a vital role in helping society cope with the impact of these events. As one of the most impactful weather typhoon seasons appears and continues, airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms. This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation. The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules, and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction. With more dependable data accuracy, problems can be analysed rapidly and more efficiently, enabling better decision-making with a proactive versus reactive posture. When multiple modalities coexist, features can be extracted from them simultaneously to supplement each other's information. An actual case study, the typhoon Lichma that swept China in 2019, has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"2 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23DOI: 10.23919/jsee.2024.000031
Changxiao Zhao, Hao Li, Wei Zhang, Jun Dai, Lei Dong
To solve the problem of risk identification and quantitative assessment for human-computer interaction (HCI) in complex avionics systems, an HCI safety analysis framework based on system-theoretical process analysis (STPA) and cognitive reliability and error analysis method (CREAM) is proposed. STPA-CREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically. The common performance conditions (CPC) of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out. Taking the head-up display (HUD) system interaction process as an example, a case analysis is carried out, the layered safety control structure and formal model of the HUD interaction process are established. For the interactive behavior “Pilots approaching with HUD”, four unsafe control actions and 35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed. The results show that HUD's HCI level gradually improves as the scores of CPC increase, and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI. Through case analysis, it is shown that STPA-CREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.
{"title":"Risk Identification and Safety Assessment of Human-Computer Interaction in Integrated Avionics Based on STAMP","authors":"Changxiao Zhao, Hao Li, Wei Zhang, Jun Dai, Lei Dong","doi":"10.23919/jsee.2024.000031","DOIUrl":"https://doi.org/10.23919/jsee.2024.000031","url":null,"abstract":"To solve the problem of risk identification and quantitative assessment for human-computer interaction (HCI) in complex avionics systems, an HCI safety analysis framework based on system-theoretical process analysis (STPA) and cognitive reliability and error analysis method (CREAM) is proposed. STPA-CREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically. The common performance conditions (CPC) of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out. Taking the head-up display (HUD) system interaction process as an example, a case analysis is carried out, the layered safety control structure and formal model of the HUD interaction process are established. For the interactive behavior “Pilots approaching with HUD”, four unsafe control actions and 35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed. The results show that HUD's HCI level gradually improves as the scores of CPC increase, and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI. Through case analysis, it is shown that STPA-CREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"16 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
By deploying the ubiquitous and reliable coverage of low Earth orbit (LEO) satellite networks using optical inter satellite link (OISL), computation offloading services can be provided for any users without proximal servers, while the resource limitation of both computation and storage on satellites is the important factor affecting the maximum task completion time. In this paper, we study a delay-optimal multi-satellite collaborative computation offloading scheme that allows satellites to actively migrate tasks among themselves by employing the high-speed OISLs, such that tasks with long queuing delay will be served as quickly as possible by utilizing idle computation resources in the neighborhood. To satisfy the delay requirement of delay-sensitive task, we first propose a deadline-aware task scheduling scheme in which a priority model is constructed to sort the order of tasks being served based on its deadline, and then a delay-optimal collaborative offloading scheme is derived such that the tasks which cannot be completed locally can be migrated to other idle satellites. Simulation results demonstrate the effectiveness of our multi-satellite collaborative computation offloading strategy in reducing task complement time and improving resource utilization of the LEO satellite network.
{"title":"Delay-Optimal Multi-Satellite Collaborative Computation Offloading Supported by OISL in LEO Satellite Network","authors":"Tingting Zhang, Zijian Guo, Bin Li, Yuan Feng, Qi Fu, Mingyu Hu, Yunbo Qu","doi":"10.23919/jsee.2024.000037","DOIUrl":"https://doi.org/10.23919/jsee.2024.000037","url":null,"abstract":"By deploying the ubiquitous and reliable coverage of low Earth orbit (LEO) satellite networks using optical inter satellite link (OISL), computation offloading services can be provided for any users without proximal servers, while the resource limitation of both computation and storage on satellites is the important factor affecting the maximum task completion time. In this paper, we study a delay-optimal multi-satellite collaborative computation offloading scheme that allows satellites to actively migrate tasks among themselves by employing the high-speed OISLs, such that tasks with long queuing delay will be served as quickly as possible by utilizing idle computation resources in the neighborhood. To satisfy the delay requirement of delay-sensitive task, we first propose a deadline-aware task scheduling scheme in which a priority model is constructed to sort the order of tasks being served based on its deadline, and then a delay-optimal collaborative offloading scheme is derived such that the tasks which cannot be completed locally can be migrated to other idle satellites. Simulation results demonstrate the effectiveness of our multi-satellite collaborative computation offloading strategy in reducing task complement time and improving resource utilization of the LEO satellite network.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"30 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23DOI: 10.23919/jsee.2023.000169
Haibin Wang, Xin Guan, Xiao Yi, Guidong Sun
To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion, but the expert knowledge is not fully utilized, a heterogeneous information fusion recognition method based on belief rule structure is proposed. By defining the continuous probabilistic hesitation fuzzy linguistic term sets (CPHFLTS) and establishing CPHFLTS distance measure, the belief rule base of the relationship between feature space and category space is constructed through information integration, and the evidence reasoning of the input samples is carried out. The experimental results show that the proposed method can make full use of sensor data and expert knowledge for recognition. Compared with the other methods, the proposed method has a higher correct recognition rate under different noise levels.
{"title":"Heterogeneous Information Fusion Recognition Method Based on Belief Rule Structure","authors":"Haibin Wang, Xin Guan, Xiao Yi, Guidong Sun","doi":"10.23919/jsee.2023.000169","DOIUrl":"https://doi.org/10.23919/jsee.2023.000169","url":null,"abstract":"To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion, but the expert knowledge is not fully utilized, a heterogeneous information fusion recognition method based on belief rule structure is proposed. By defining the continuous probabilistic hesitation fuzzy linguistic term sets (CPHFLTS) and establishing CPHFLTS distance measure, the belief rule base of the relationship between feature space and category space is constructed through information integration, and the evidence reasoning of the input samples is carried out. The experimental results show that the proposed method can make full use of sensor data and expert knowledge for recognition. Compared with the other methods, the proposed method has a higher correct recognition rate under different noise levels.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"2018 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23DOI: 10.23919/jsee.2024.000022
Guang Zhan, Kun Zhang, Ke Li, Haiyin Piao
Autonomous umanned aerial vehicle (UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battle-field. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decision-making policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods. Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes (MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy.
{"title":"UAV Maneuvering Decision-Making Algorithm Based on Deep Reinforcement Learning Under the Guidance of Expert Experience","authors":"Guang Zhan, Kun Zhang, Ke Li, Haiyin Piao","doi":"10.23919/jsee.2024.000022","DOIUrl":"https://doi.org/10.23919/jsee.2024.000022","url":null,"abstract":"Autonomous umanned aerial vehicle (UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battle-field. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decision-making policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods. Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes (MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"51 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-22DOI: 10.23919/jsee.2024.000030
Rongzheng Zhang, Yong Wang, Jian Mao
The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target's motion state and size. A three-dimensional reconstruction method for the precession warhead via the micro-Doppler analysis and inverse Radon transform (IRT) is proposed in this paper. The precession parameters are extracted by the micro-Doppler analysis from three radars, and the IRT is used to estimate the size of targe. The scatterers of the target can be reconstructed based on the above parameters. Simulation experimental results illustrate the effectiveness of the proposed method in this paper.
{"title":"Three-Dimensional Reconstruction of Precession Warhead Based on Multi-View Micro-Doppler Analysis","authors":"Rongzheng Zhang, Yong Wang, Jian Mao","doi":"10.23919/jsee.2024.000030","DOIUrl":"https://doi.org/10.23919/jsee.2024.000030","url":null,"abstract":"The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target's motion state and size. A three-dimensional reconstruction method for the precession warhead via the micro-Doppler analysis and inverse Radon transform (IRT) is proposed in this paper. The precession parameters are extracted by the micro-Doppler analysis from three radars, and the IRT is used to estimate the size of targe. The scatterers of the target can be reconstructed based on the above parameters. Simulation experimental results illustrate the effectiveness of the proposed method in this paper.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"21 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mainlobe jamming (MLJ) brings a big challenge for radar target detection, tracking, and identification. The suppression of MLJ is a hard task and an open problem in the electronic counter-counter measures (ECCM) field. Target parameters and target direction estimation is difficult in radar MLJ. A target parameter estimation method via atom-reconstruction in radar MLJ is proposed in this paper. The proposed method can suppress the MLJ and simultaneously provide high estimation accuracy of target range and angle. Precisely, the eigen-projection matrix processing (EMP) algorithm is adopted to suppress the MLJ, and the target range is estimated effectively through the beamforming and pulse compression. Then the target angle can be effectively estimated by the atom-reconstruction method. Without any prior knowledge, the MLJ can be canceled, and the angle estimation accuracy is well preserved. Furthermore, the proposed method does not have strict requirement for radar array construction, and it can be applied for linear array and planar array. Moreover, the proposed method can effectively estimate the target azimuth and elevation simultaneously when the target azimuth (or elevation) equals to the jamming azimuth (or elevation), because the MLJ is suppressed in spatial plane dimension.
{"title":"A Target Parameter Estimation Method via Atom-Reconstruction in Radar Mainlobe Jamming","authors":"Bilei Zhou, Weijian Liu, Rongfeng Li, Hui Chen, Liang Zhang, Qinglei Du, Binbin Li, Hao Chen","doi":"10.23919/jsee.2024.000001","DOIUrl":"https://doi.org/10.23919/jsee.2024.000001","url":null,"abstract":"Mainlobe jamming (MLJ) brings a big challenge for radar target detection, tracking, and identification. The suppression of MLJ is a hard task and an open problem in the electronic counter-counter measures (ECCM) field. Target parameters and target direction estimation is difficult in radar MLJ. A target parameter estimation method via atom-reconstruction in radar MLJ is proposed in this paper. The proposed method can suppress the MLJ and simultaneously provide high estimation accuracy of target range and angle. Precisely, the eigen-projection matrix processing (EMP) algorithm is adopted to suppress the MLJ, and the target range is estimated effectively through the beamforming and pulse compression. Then the target angle can be effectively estimated by the atom-reconstruction method. Without any prior knowledge, the MLJ can be canceled, and the angle estimation accuracy is well preserved. Furthermore, the proposed method does not have strict requirement for radar array construction, and it can be applied for linear array and planar array. Moreover, the proposed method can effectively estimate the target azimuth and elevation simultaneously when the target azimuth (or elevation) equals to the jamming azimuth (or elevation), because the MLJ is suppressed in spatial plane dimension.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"67 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-22DOI: 10.23919/jsee.2024.000002
Menghan Chen, Hongyuan Gao, Yanan Du, Jianhua Cheng, Yuze Zhang
For bistatic multiple-input multiple-output (MIMO) radar, this paper presents a robust and direction finding method in strong impulse noise environment. By means of a new lower order covariance, the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood (ML) estimation method. A quantum equilibrium optimizer algorithm (QEOA) is devised to resolve the corresponding objective function for efficient and accurate direction finding. The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations, e.g., locating coherent signal sources with very few snapshots in strong impulse noise. Other than that, the Cramér-Rao bound (CRB) under impulse noise environment has been drawn to test the capability of the presented method.
{"title":"Direction Finding of Bistatic MIMO Radar in Strong Impulse Noise","authors":"Menghan Chen, Hongyuan Gao, Yanan Du, Jianhua Cheng, Yuze Zhang","doi":"10.23919/jsee.2024.000002","DOIUrl":"https://doi.org/10.23919/jsee.2024.000002","url":null,"abstract":"For bistatic multiple-input multiple-output (MIMO) radar, this paper presents a robust and direction finding method in strong impulse noise environment. By means of a new lower order covariance, the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood (ML) estimation method. A quantum equilibrium optimizer algorithm (QEOA) is devised to resolve the corresponding objective function for efficient and accurate direction finding. The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations, e.g., locating coherent signal sources with very few snapshots in strong impulse noise. Other than that, the Cramér-Rao bound (CRB) under impulse noise environment has been drawn to test the capability of the presented method.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"18 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}