首页 > 最新文献

Journal of Statistical Planning and Inference最新文献

英文 中文
Non-asymptotic model selection for models of network data with parameter vectors of increasing dimension 参数向量维度不断增加的网络数据模型的非渐近模型选择
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-04-05 DOI: 10.1016/j.jspi.2024.106173
Sean Eli , Michael Schweinberger

Model selection for network data is an open area of research. Using the β-model as a convenient starting point, we propose a simple and non-asymptotic approach to model selection of β-models with and without constraints. Simulations indicate that the proposed model selection approach selects the data-generating model with high probability, in contrast to classical and extended Bayesian Information Criteria. We conclude with an application to the Enron email network, which has 181,831 connections among 36,692 employees.

网络数据的模型选择是一个开放的研究领域。我们将 β 模型作为一个方便的起点,提出了一种简单、非渐进的方法来选择有约束和无约束的 β 模型。模拟结果表明,与经典贝叶斯信息标准和扩展贝叶斯信息标准相比,所提出的模型选择方法能高概率地选择数据生成模型。最后,我们将应用于安然公司的电子邮件网络,该网络在 36,692 名员工中拥有 181,831 个连接。
{"title":"Non-asymptotic model selection for models of network data with parameter vectors of increasing dimension","authors":"Sean Eli ,&nbsp;Michael Schweinberger","doi":"10.1016/j.jspi.2024.106173","DOIUrl":"https://doi.org/10.1016/j.jspi.2024.106173","url":null,"abstract":"<div><p>Model selection for network data is an open area of research. Using the <span><math><mi>β</mi></math></span>-model as a convenient starting point, we propose a simple and non-asymptotic approach to model selection of <span><math><mi>β</mi></math></span>-models with and without constraints. Simulations indicate that the proposed model selection approach selects the data-generating model with high probability, in contrast to classical and extended Bayesian Information Criteria. We conclude with an application to the Enron email network, which has 181,831 connections among 36,692 employees.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"233 ","pages":"Article 106173"},"PeriodicalIF":0.9,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140536570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hermite regression estimation in noisy convolution model 噪声卷积模型中的赫米特回归估计
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-03-26 DOI: 10.1016/j.jspi.2024.106168
Ousmane Sacko

In this paper, we consider the following regression model: y(kT/n)=fg(kT/n)+ɛk,k=n,,n1, T fixed, where g is known and f is the unknown function to be estimated. The errors (ɛk)nkn1 are independent and identically distributed centered with finite known variance. Two adaptive estimation methods for f are considered by exploiting the properties of the Hermite basis. We study the quadratic risk of each estimator. If f belongs to Sobolev regularity spaces, we derive rates of convergence. Adaptive procedures to select the relevant parameter inspired by the Goldenshluger and Lepski method are proposed and we prove that the resulting estimators satisfy oracle inequalities for sub-Gaussian ɛ’s. Finally, we illustrate numerically these approaches.

本文考虑以下回归模型:y(kT/n)=f⋆g(kT/n)+ɛk,k=-n,...,n-1, T 固定,其中 g 为已知函数,f 为待估计的未知函数。误差 (ɛk)-n≤k≤n-1 是独立且同分布的中心误差,具有有限的已知方差。利用赫米特基的特性,我们考虑了 f 的两种自适应估计方法。我们研究了每种估计方法的二次风险。如果 f 属于 Sobolev 正则空间,我们将得出收敛率。受 Goldenshluger 和 Lepski 方法的启发,我们提出了选择相关参数的自适应程序,并证明所得到的估计器满足亚高斯ɛ的oracle 不等式。最后,我们用数字说明了这些方法。
{"title":"Hermite regression estimation in noisy convolution model","authors":"Ousmane Sacko","doi":"10.1016/j.jspi.2024.106168","DOIUrl":"https://doi.org/10.1016/j.jspi.2024.106168","url":null,"abstract":"<div><p>In this paper, we consider the following regression model: <span><math><mrow><mi>y</mi><mrow><mo>(</mo><mi>k</mi><mi>T</mi><mo>/</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mo>⋆</mo><mi>g</mi><mrow><mo>(</mo><mi>k</mi><mi>T</mi><mo>/</mo><mi>n</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><mi>k</mi><mo>=</mo><mo>−</mo><mi>n</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>, <span><math><mi>T</mi></math></span> fixed, where <span><math><mi>g</mi></math></span> is known and <span><math><mi>f</mi></math></span> is the unknown function to be estimated. The errors <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mi>n</mi><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> are independent and identically distributed centered with finite known variance. Two adaptive estimation methods for <span><math><mi>f</mi></math></span> are considered by exploiting the properties of the Hermite basis. We study the quadratic risk of each estimator. If <span><math><mi>f</mi></math></span> belongs to Sobolev regularity spaces, we derive rates of convergence. Adaptive procedures to select the relevant parameter inspired by the Goldenshluger and Lepski method are proposed and we prove that the resulting estimators satisfy oracle inequalities for sub-Gaussian <span><math><mi>ɛ</mi></math></span>’s. Finally, we illustrate numerically these approaches.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"233 ","pages":"Article 106168"},"PeriodicalIF":0.9,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140350068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How many neurons do we need? A refined analysis for shallow networks trained with gradient descent 我们需要多少神经元?使用梯度下降训练的浅层网络的精细分析
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-03-26 DOI: 10.1016/j.jspi.2024.106169
Mike Nguyen, Nicole Mücke

We analyze the generalization properties of two-layer neural networks in the neural tangent kernel (NTK) regime, trained with gradient descent (GD). For early stopped GD we derive fast rates of convergence that are known to be minimax optimal in the framework of non-parametric regression in reproducing kernel Hilbert spaces. On our way, we precisely keep track of the number of hidden neurons required for generalization and improve over existing results. We further show that the weights during training remain in a vicinity around initialization, the radius being dependent on structural assumptions such as degree of smoothness of the regression function and eigenvalue decay of the integral operator associated to the NTK.

我们分析了采用梯度下降(GD)训练的双层神经网络在神经切核(NTK)机制下的泛化特性。对于早期停止的 GD,我们推导出了快速收敛率,已知该收敛率在再现核希尔伯特空间的非参数回归框架中是最小最优的。在此过程中,我们精确跟踪了泛化所需的隐藏神经元数量,并改进了现有结果。我们进一步证明,训练期间的权重保持在初始化附近,半径取决于结构假设,如回归函数的平滑度和与 NTK 相关的积分算子的特征值衰减。
{"title":"How many neurons do we need? A refined analysis for shallow networks trained with gradient descent","authors":"Mike Nguyen,&nbsp;Nicole Mücke","doi":"10.1016/j.jspi.2024.106169","DOIUrl":"https://doi.org/10.1016/j.jspi.2024.106169","url":null,"abstract":"<div><p>We analyze the generalization properties of two-layer neural networks in the neural tangent kernel (NTK) regime, trained with gradient descent (GD). For early stopped GD we derive fast rates of convergence that are known to be minimax optimal in the framework of non-parametric regression in reproducing kernel Hilbert spaces. On our way, we precisely keep track of the number of hidden neurons required for generalization and improve over existing results. We further show that the weights during training remain in a vicinity around initialization, the radius being dependent on structural assumptions such as degree of smoothness of the regression function and eigenvalue decay of the integral operator associated to the NTK.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"233 ","pages":"Article 106169"},"PeriodicalIF":0.9,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378375824000260/pdfft?md5=7d38fc782951295689c7e96160824723&pid=1-s2.0-S0378375824000260-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140308610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A class of mixed-level uniform designs generated by code mapping 通过代码映射生成的一类混合级统一设计
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-03-24 DOI: 10.1016/j.jspi.2024.106166
Liuping Hu , Zujun Ou , Hong Qin

Literature reviews reveal that there is a very close connection between experimental design and coding theory. Based on a code mapping transformation, this paper provides a new method to construct a class of mixed designs with two- and four-level. A general construction method is described and some theoretical results of obtained designs are given. Analytic connections are established between the generated and the initial designs in terms of aberration criteria and discrepancies. Sharp lower bounds of the wrap-around L2- and Lee discrepancies are obtained and used as the benchmarks to measure the uniformity of the generated designs. Examples are provided to illustrate the effectiveness of the construction and lend our results further support.

文献综述显示,实验设计与编码理论之间有着非常密切的联系。本文以编码映射变换为基础,提供了一种构建两水平和四水平混合设计的新方法。本文描述了一般构建方法,并给出了所获设计的一些理论结果。从像差标准和差异的角度,在生成的设计和初始设计之间建立了分析联系。获得了环绕 L2- 和 Lee 差异的尖锐下限,并将其作为衡量生成设计均匀性的基准。我们还举例说明了这种构造的有效性,并为我们的结果提供了进一步的支持。
{"title":"A class of mixed-level uniform designs generated by code mapping","authors":"Liuping Hu ,&nbsp;Zujun Ou ,&nbsp;Hong Qin","doi":"10.1016/j.jspi.2024.106166","DOIUrl":"https://doi.org/10.1016/j.jspi.2024.106166","url":null,"abstract":"<div><p>Literature reviews reveal that there is a very close connection between experimental design and coding theory. Based on a code mapping transformation, this paper provides a new method to construct a class of mixed designs with two- and four-level. A general construction method is described and some theoretical results of obtained designs are given. Analytic connections are established between the generated and the initial designs in terms of aberration criteria and discrepancies. Sharp lower bounds of the wrap-around <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>- and Lee discrepancies are obtained and used as the benchmarks to measure the uniformity of the generated designs. Examples are provided to illustrate the effectiveness of the construction and lend our results further support.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"233 ","pages":"Article 106166"},"PeriodicalIF":0.9,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140341497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust estimation of a regression function in exponential families 指数族回归函数的稳健估计
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-03-24 DOI: 10.1016/j.jspi.2024.106167
Yannick Baraud, Juntong Chen
<div><p>We observe <span><math><mi>n</mi></math></span> pairs of independent (but not necessarily i.i.d.) random variables <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and tackle the problem of estimating the conditional distributions <span><math><mrow><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⋆</mo></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> of <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> given <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span> for all <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></mrow></math></span>. Even though these might not be true, we base our estimator on the assumptions that the data are i.i.d. and the conditional distributions of <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> given <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span> belong to a one parameter exponential family <span><math><mover><mrow><mi>Q</mi></mrow><mo>¯</mo></mover></math></span> with parameter space given by an interval <span><math><mi>I</mi></math></span>. More precisely, we pretend that these conditional distributions take the form <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>θ</mi><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></msub><mo>∈</mo><mover><mrow><mi>Q</mi></mrow><mo>¯</mo></mover></mrow></math></span> for some <span><math><mi>θ</mi></math></span> that belongs to a VC-class <span><math><mover><mrow><mi>Θ</mi></mrow><mo>¯</mo></mover></math></span> of functions with values in <span><math><mi>I</mi></math></span>. For each <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></mrow></math></span>, we estimate <span><math><mrow><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⋆</mo></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> by a distribution of the same form, i.e. <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mover><mrow><mi>θ</mi></
我们观察到 n 对独立(但不一定是 i.i.d.)的随机变量 X1=(W1,Y1),......,Xn=(Wn,Yn),要解决的问题是估计所有 i∈{1,...,n}中 Wi=wi 给定 Yi 的条件分布 Qi⋆(wi)。尽管这些可能都不是真的,但我们的估计基于以下假设:数据为 i.i.d.,给定 Wi=wi 的 Yi 的条件分布属于单参数指数族 Q¯,参数空间由区间 I 给出。更确切地说,我们假定这些条件分布的形式为 Qθ(wi)∈Q¯,其中某个 θ 属于 VC 类 Θ¯ 的函数,其值在 I 中。对于每个 i∈{1,...,n},我们用相同形式的分布来估计 Qi⋆(wi),即 Qθ̂(wi)∈Q¯,其中 θ̂=θ̂(X1,...,Xn)是一个值在Θ¯中的精心选择的估计值。我们根据指数族 Q¯ 和我们选择的函数 Θ¯ 类,建立了数据真实条件分布与估计值之间海灵格型距离上偏差的非渐近指数不等式。我们的研究表明,我们的估计策略对模型错误、污染和异常值的存在都很稳健。此外,当数据是真正的 i.i.d.,指数族 Q¯ 被适当地参数化,并且条件分布 Qi⋆(wi)的形式为 Qθ⋆(wi)∈Q¯ 对于某个未知的霍尔德函数 θ⋆,其值在 I 中时,我们证明了 θ⋆ 的估计器 θ ̂ 是最小的(达到对数因子)。最后,我们提供了一种算法,用于在 Θ¯ 是低维或中维函数的 VC 类时计算 θ ̂,并进行了模拟研究,将其性能与 MLE 和基于中值的估计器进行了比较。我们主要结果的证明依赖于对 VC 子图类上经验过程的上确界期望的上界,并带有明确的数值常数。这个上界可以引起独立的兴趣。
{"title":"Robust estimation of a regression function in exponential families","authors":"Yannick Baraud,&nbsp;Juntong Chen","doi":"10.1016/j.jspi.2024.106167","DOIUrl":"https://doi.org/10.1016/j.jspi.2024.106167","url":null,"abstract":"&lt;div&gt;&lt;p&gt;We observe &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; pairs of independent (but not necessarily i.i.d.) random variables &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and tackle the problem of estimating the conditional distributions &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⋆&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; given &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Even though these might not be true, we base our estimator on the assumptions that the data are i.i.d. and the conditional distributions of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; given &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; belong to a one parameter exponential family &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; with parameter space given by an interval &lt;span&gt;&lt;math&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. More precisely, we pretend that these conditional distributions take the form &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for some &lt;span&gt;&lt;math&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; that belongs to a VC-class &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;Θ&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; of functions with values in &lt;span&gt;&lt;math&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. For each &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, we estimate &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⋆&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; by a distribution of the same form, i.e. &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"233 ","pages":"Article 106167"},"PeriodicalIF":0.9,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140308611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measures of conditional dependence for nonlinearity, asymmetry and beyond 非线性、不对称及其他条件依赖性的测量方法
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-03-16 DOI: 10.1016/j.jspi.2024.106165
Lianyan Fu , Luyang Zhang

Detecting the correlation between two random variables is widely used in many empirical problems in economics. Among them, Pearson’s correlation can be used to quantify the degree of dependence between variables. However, it cannot handle asymmetric correlations. To deal with this situation, we proposed a pair of widely applicable measures of conditional dependence (MCDs), which can not only account for the asymmetry but also the linear or nonlinear conditional dependencies in the presence of multiple variables. We give instances: when the paired measures are the same, resulting in symmetric correlation measures that are equivalent to the square of the Pearson coefficient; when no condition variables are given, MCDs are used to assess the relationship between two variables. Consequently, Pearson’s correlation is a particular instance of MCDs. Theoretical attributes of MCDs show that they have wide applicability. In statistical inference, we develop the joint asymptotics of kernel-based estimators for MCDs, which can be applied to determine whether two randomly generated variables exhibit symmetric conditional dependence in the presence of confounding variables. In the simulation, we verify the efficacy of the proposed MCDs. Then we use real data to analyze the asymmetric impact of MCDs on stock market movements.

检测两个随机变量之间的相关性被广泛应用于经济学中的许多实证问题。其中,皮尔逊相关性可用于量化变量之间的依赖程度。然而,它无法处理非对称相关性。针对这种情况,我们提出了一对广泛适用的条件依赖性度量(MCDs),它们不仅能解释非对称性,还能解释存在多个变量时的线性或非线性条件依赖性。我们举例说明:当成对测量值相同时,会产生对称相关测量值,相当于皮尔逊系数的平方;当没有给出条件变量时,则使用 MCD 来评估两个变量之间的关系。因此,皮尔逊相关性是多变量相关性的一个特殊实例。多变量相关系数的理论属性表明,它具有广泛的适用性。在统计推断中,我们开发了基于核的 MCD 估计器的联合渐近学,可用于确定两个随机产生的变量在存在混杂变量的情况下是否表现出对称的条件依赖性。在模拟中,我们验证了所提出的 MCD 的有效性。然后,我们利用真实数据分析 MCD 对股市走势的非对称影响。
{"title":"Measures of conditional dependence for nonlinearity, asymmetry and beyond","authors":"Lianyan Fu ,&nbsp;Luyang Zhang","doi":"10.1016/j.jspi.2024.106165","DOIUrl":"https://doi.org/10.1016/j.jspi.2024.106165","url":null,"abstract":"<div><p>Detecting the correlation between two random variables is widely used in many empirical problems in economics. Among them, Pearson’s correlation can be used to quantify the degree of dependence between variables. However, it cannot handle asymmetric correlations. To deal with this situation, we proposed a pair of widely applicable measures of conditional dependence (<span><math><mrow><mi>M</mi><mi>C</mi><mi>D</mi><mi>s</mi></mrow></math></span>), which can not only account for the asymmetry but also the linear or nonlinear conditional dependencies in the presence of multiple variables. We give instances: when the paired measures are the same, resulting in symmetric correlation measures that are equivalent to the square of the Pearson coefficient; when no condition variables are given, <span><math><mrow><mi>M</mi><mi>C</mi><mi>D</mi><mi>s</mi></mrow></math></span> are used to assess the relationship between two variables. Consequently, Pearson’s correlation is a particular instance of <span><math><mrow><mi>M</mi><mi>C</mi><mi>D</mi><mi>s</mi></mrow></math></span>. Theoretical attributes of <span><math><mrow><mi>M</mi><mi>C</mi><mi>D</mi><mi>s</mi></mrow></math></span> show that they have wide applicability. In statistical inference, we develop the joint asymptotics of kernel-based estimators for <span><math><mrow><mi>M</mi><mi>C</mi><mi>D</mi><mi>s</mi></mrow></math></span>, which can be applied to determine whether two randomly generated variables exhibit symmetric conditional dependence in the presence of confounding variables. In the simulation, we verify the efficacy of the proposed <span><math><mrow><mi>M</mi><mi>C</mi><mi>D</mi><mi>s</mi></mrow></math></span>. Then we use real data to analyze the asymmetric impact of <span><math><mrow><mi>M</mi><mi>C</mi><mi>D</mi><mi>s</mi></mrow></math></span> on stock market movements.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"232 ","pages":"Article 106165"},"PeriodicalIF":0.9,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140163834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple testing in genome-wide association studies via hierarchical hidden Markov models 通过分层隐马尔可夫模型在全基因组关联研究中进行多重测试
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-02-29 DOI: 10.1016/j.jspi.2024.106161
Pengfei Wang, Zhaofeng Tian

Problems of large-scale multiple testing are often encountered in modern scientific research. Conventional multiple testing procedures usually suffer considerable loss of testing efficiency when correlations among tests are ignored. In fact, appropriate use of correlation information not only enhances the efficacy of the testing procedure, but also improves the interpretability of the results. Since the disease- or trait-related single nucleotide polymorphisms (SNPs) tend to be clustered and exhibit serial correlations, hidden Markov model (HMM) based multiple testing procedures have been successfully applied in genome-wide association studies (GWAS). However, modeling the entire chromosome using a single HMM is somewhat rough. To overcome this issue, this paper employs the hierarchical hidden Markov model (HHMM) to describe local correlations among tests, and develops a multiple testing procedure that can automatically divide different class of chromosome regions, while taking into account local correlations among tests. We first propose an oracle procedure that is shown theoretically to be valid, and in fact optimal in some sense. We then develop a date-driven procedure to mimic the oracle version. Extensive simulations and a real data example show that the novel multiple testing procedure outperforms its competitors.

在现代科学研究中,经常会遇到大规模多重测试的问题。传统的多重检验程序通常会因忽略检验之间的相关性而大大降低检验效率。事实上,适当利用相关信息不仅能提高测试程序的效率,还能改善结果的可解释性。由于与疾病或性状相关的单核苷酸多态性(SNPs)往往是聚集在一起的,并表现出序列相关性,因此基于隐马尔可夫模型(HMM)的多重测试程序已成功应用于全基因组关联研究(GWAS)。然而,使用单个 HMM 对整个染色体建模有些粗糙。为了克服这个问题,本文采用分层隐马尔可夫模型(HHMM)来描述测试间的局部相关性,并开发了一种多重测试程序,它能自动划分不同类别的染色体区域,同时考虑到测试间的局部相关性。我们首先提出了一个甲骨文程序,该程序在理论上证明是有效的,事实上在某种意义上是最优的。然后,我们开发了一种日期驱动程序来模仿神谕版本。大量的模拟和真实数据实例表明,新颖的多重测试程序优于其竞争对手。
{"title":"Multiple testing in genome-wide association studies via hierarchical hidden Markov models","authors":"Pengfei Wang,&nbsp;Zhaofeng Tian","doi":"10.1016/j.jspi.2024.106161","DOIUrl":"https://doi.org/10.1016/j.jspi.2024.106161","url":null,"abstract":"<div><p>Problems of large-scale multiple testing are often encountered in modern scientific research. Conventional multiple testing procedures usually suffer considerable loss of testing efficiency when correlations among tests are ignored. In fact, appropriate use of correlation information not only enhances the efficacy of the testing procedure, but also improves the interpretability of the results. Since the disease- or trait-related single nucleotide polymorphisms (SNPs) tend to be clustered and exhibit serial correlations, hidden Markov model (HMM) based multiple testing procedures have been successfully applied in genome-wide association studies (GWAS). However, modeling the entire chromosome using a single HMM is somewhat rough. To overcome this issue, this paper employs the hierarchical hidden Markov model (HHMM) to describe local correlations among tests, and develops a multiple testing procedure that can automatically divide different class of chromosome regions, while taking into account local correlations among tests. We first propose an oracle procedure that is shown theoretically to be valid, and in fact optimal in some sense. We then develop a date-driven procedure to mimic the oracle version. Extensive simulations and a real data example show that the novel multiple testing procedure outperforms its competitors.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"232 ","pages":"Article 106161"},"PeriodicalIF":0.9,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140041559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new approach for ultrahigh dimensional precision matrix estimation 超高维精确矩阵估算新方法
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-02-28 DOI: 10.1016/j.jspi.2024.106164
Wanfeng Liang , Yuhao Zhang , Jiyang Wang , Yue Wu , Xiaoyan Ma

The modified Cholesky decomposition (MCD) method is commonly used in precision matrix estimation assuming that the random variables have a specified order. In this paper, we develop a permutation-based refitted cross validation (PRCV) estimation procedure for ultrahigh dimensional precision matrix based on the MCD, which does not rely on the order of variables. The consistency of the proposed estimator is established under the Frobenius norm without normal distribution assumption. Simulation studies present satisfactory performance of in various scenarios. The proposed method is also applied to analyze a real data. We provide the complete code at https://github.com/lwfwhunanhero/PRCV.

修正的乔尔斯基分解(MCD)方法通常用于精度矩阵估计,假设随机变量具有特定的阶次。本文以 MCD 为基础,针对超高维精度矩阵开发了一种不依赖变量阶数的基于置换的重新拟合交叉验证(PRCV)估计程序。在无正态分布假设的弗罗贝尼斯规范下,建立了所提出估计器的一致性。仿真研究表明,该方法在各种情况下都有令人满意的表现。提出的方法还被用于分析真实数据。我们在 https://github.com/lwfwhunanhero/PRCV 网站上提供了完整的代码。
{"title":"A new approach for ultrahigh dimensional precision matrix estimation","authors":"Wanfeng Liang ,&nbsp;Yuhao Zhang ,&nbsp;Jiyang Wang ,&nbsp;Yue Wu ,&nbsp;Xiaoyan Ma","doi":"10.1016/j.jspi.2024.106164","DOIUrl":"https://doi.org/10.1016/j.jspi.2024.106164","url":null,"abstract":"<div><p>The modified Cholesky decomposition (MCD) method is commonly used in precision matrix estimation assuming that the random variables have a specified order. In this paper, we develop a permutation-based refitted cross validation (PRCV) estimation procedure for ultrahigh dimensional precision matrix based on the MCD, which does not rely on the order of variables. The consistency of the proposed estimator is established under the Frobenius norm without normal distribution assumption. Simulation studies present satisfactory performance of in various scenarios. The proposed method is also applied to analyze a real data. We provide the complete code at <span>https://github.com/lwfwhunanhero/PRCV</span><svg><path></path></svg>.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"232 ","pages":"Article 106164"},"PeriodicalIF":0.9,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139999247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning for ψ-weakly dependent processes ψ弱依赖过程的深度学习
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-02-28 DOI: 10.1016/j.jspi.2024.106163
William Kengne, Modou Wade

In this paper, we perform deep neural networks for learning stationary ψ-weakly dependent processes. Such weak-dependence property includes a class of weak dependence conditions such as mixing, association and the setting considered here covers many commonly used situations such as: regression estimation, time series prediction, time series classification The consistency of the empirical risk minimization algorithm in the class of deep neural networks predictors is established. We achieve the generalization bound and obtain an asymptotic learning rate, which is less than O(n1/α), for all α>2. A bound of the excess risk, for a wide class of target functions, is also derived. Applications to binary time series classification and prediction in affine causal models with exogenous covariates are carried out. Some simulation results are provided, as well as an application to the US recession data.

在本文中,我们利用深度神经网络学习静态ψ-弱依赖过程。这种弱依赖性质包括一类弱依赖条件,如混合、关联⋯,本文考虑的环境涵盖了许多常用的情况,如回归估计、时间序列预测、时间序列分类⋯建立了经验风险最小化算法在深度神经网络预测器类中的一致性。在所有 α>2 条件下,我们实现了泛化约束并获得了小于 O(n-1/α)的渐近学习率。 此外,我们还推导出了针对各类目标函数的超额风险约束。该方法应用于二元时间序列分类和具有外生协变量的仿射因果模型中的预测。本文还提供了一些模拟结果,以及对美国经济衰退数据的应用。
{"title":"Deep learning for ψ-weakly dependent processes","authors":"William Kengne,&nbsp;Modou Wade","doi":"10.1016/j.jspi.2024.106163","DOIUrl":"https://doi.org/10.1016/j.jspi.2024.106163","url":null,"abstract":"<div><p>In this paper, we perform deep neural networks for learning stationary <span><math><mi>ψ</mi></math></span>-weakly dependent processes. Such weak-dependence property includes a class of weak dependence conditions such as mixing, association<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span> and the setting considered here covers many commonly used situations such as: regression estimation, time series prediction, time series classification<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span> The consistency of the empirical risk minimization algorithm in the class of deep neural networks predictors is established. We achieve the generalization bound and obtain an asymptotic learning rate, which is less than <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>α</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, for all <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span>. A bound of the excess risk, for a wide class of target functions, is also derived. Applications to binary time series classification and prediction in affine causal models with exogenous covariates are carried out. Some simulation results are provided, as well as an application to the US recession data.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"232 ","pages":"Article 106163"},"PeriodicalIF":0.9,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139999248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
D4R: Doubly robust reduced rank regression in high dimension D4R: 高维度下的双稳健缩减秩回归
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-02-27 DOI: 10.1016/j.jspi.2024.106162
Xiaoyan Ma , Lili Wei , Wanfeng Liang

In this paper, we study high-dimensional reduced rank regression and propose a doubly robust procedure, called D4R, meaning concurrent robustness to both outliers in predictors and heavy-tailed random noise. The proposed method uses the composite gradient descent based algorithm to solve the nonconvex optimization problem resulting from combining Tukey’s biweight loss with spectral regularization. Both theoretical and numerical properties of D4R are investigated. We establish non-asymptotic estimation error bounds under both the Frobenius norm and the nuclear norm in the high-dimensional setting. Simulation studies and real example show that the performance of D4R is better than that of several existing estimation methods.

在本文中,我们研究了高维降维秩回归,并提出了一种称为 D4R 的双重鲁棒性程序,即同时对预测因子中的离群值和重尾随机噪声具有鲁棒性。所提出的方法使用基于梯度下降的复合算法来解决 Tukey 双重损失与光谱正则化相结合产生的非凸优化问题。我们研究了 D4R 的理论和数值特性。我们建立了高维环境下 Frobenius 准则和核准则下的非渐近估计误差边界。仿真研究和实际例子表明,D4R 的性能优于现有的几种估计方法。
{"title":"D4R: Doubly robust reduced rank regression in high dimension","authors":"Xiaoyan Ma ,&nbsp;Lili Wei ,&nbsp;Wanfeng Liang","doi":"10.1016/j.jspi.2024.106162","DOIUrl":"https://doi.org/10.1016/j.jspi.2024.106162","url":null,"abstract":"<div><p>In this paper, we study high-dimensional reduced rank regression and propose a doubly robust procedure, called <span><math><mi>D4R</mi></math></span>, meaning concurrent robustness to both outliers in predictors and heavy-tailed random noise. The proposed method uses the composite gradient descent based algorithm to solve the nonconvex optimization problem resulting from combining Tukey’s biweight loss with spectral regularization. Both theoretical and numerical properties of <span><math><mi>D4R</mi></math></span> are investigated. We establish non-asymptotic estimation error bounds under both the Frobenius norm and the nuclear norm in the high-dimensional setting. Simulation studies and real example show that the performance of <span><math><mi>D4R</mi></math></span> is better than that of several existing estimation methods.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"232 ","pages":"Article 106162"},"PeriodicalIF":0.9,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139985505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Statistical Planning and Inference
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1