Pub Date : 2024-01-23DOI: 10.1016/j.jspi.2024.106148
Samir Ben Hariz , Alexandre Brouste , Chunhao Cai , Marius Soltane
This paper considers the joint estimation of the parameters of a first-order fractional autoregressive model. A one-step procedure is considered in order to obtain an asymptotically-efficient estimator with an initial guess estimator with convergence speed lower than and singular asymptotic joint distribution. This estimator is computed faster than the maximum likelihood estimator or the Whittle estimator and therefore allows for faster inference on large samples. The paper also illustrates the performance of this method on finite-size samples via Monte Carlo simulations.
本文考虑了一阶分数自回归模型参数的联合估计。为了得到一个渐近有效的估计器,本文考虑了一个一步程序,该程序具有收敛速度小于 n 的初始猜测估计器和奇异的渐近联合分布。该估计器的计算速度比最大似然估计器或惠特尔估计器更快,因此可以更快地进行大样本推断。论文还通过蒙特卡罗模拟说明了这种方法在有限大小样本上的性能。
{"title":"Fast and asymptotically-efficient estimation in an autoregressive process with fractional type noise","authors":"Samir Ben Hariz , Alexandre Brouste , Chunhao Cai , Marius Soltane","doi":"10.1016/j.jspi.2024.106148","DOIUrl":"10.1016/j.jspi.2024.106148","url":null,"abstract":"<div><p>This paper considers the joint estimation of the parameters of a first-order fractional autoregressive model. A one-step procedure is considered in order to obtain an asymptotically-efficient estimator with an initial guess estimator with convergence speed lower than <span><math><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span> and singular asymptotic joint distribution. This estimator is computed faster than the maximum likelihood estimator or the Whittle estimator and therefore allows for faster inference on large samples. The paper also illustrates the performance of this method on finite-size samples via Monte Carlo simulations.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"232 ","pages":"Article 106148"},"PeriodicalIF":0.9,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139588396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-18DOI: 10.1016/j.jspi.2024.106144
Yue Wang , Hongmei Lin , Zengyan Fan , Heng Lian
High-dimensional additive quantile regression model via penalization provides a powerful tool for analyzing complex data in many contemporary applications. Despite the fast developments, how to combine the strengths of additive quantile regression with total variation penalty with theoretical guarantees still remains unexplored. In this paper, we propose a new methodology for sparse additive quantile regression model over bounded variation function classes via the empirical norm penalty and the total variation penalty for local adaptivity. Theoretically, we prove that the proposed method achieves the optimal convergence rate under mild assumptions. Moreover, an alternating direction method of multipliers (ADMM) based algorithm is developed. Both simulation results and real data analysis confirm the effectiveness of our method.
{"title":"Locally adaptive sparse additive quantile regression model with TV penalty","authors":"Yue Wang , Hongmei Lin , Zengyan Fan , Heng Lian","doi":"10.1016/j.jspi.2024.106144","DOIUrl":"10.1016/j.jspi.2024.106144","url":null,"abstract":"<div><p><span>High-dimensional additive quantile regression<span> model via penalization provides a powerful tool for analyzing complex data in many contemporary applications. Despite the fast developments, how to combine the strengths of additive quantile regression with total variation penalty with theoretical guarantees still remains unexplored. In this paper, we propose a new methodology for sparse additive quantile regression model over bounded variation function classes via the empirical norm penalty and the total variation penalty for local adaptivity. Theoretically, we prove that the proposed method achieves the optimal convergence rate under mild assumptions. Moreover, an </span></span>alternating direction method of multipliers (ADMM) based algorithm is developed. Both simulation results and real data analysis confirm the effectiveness of our method.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"232 ","pages":"Article 106144"},"PeriodicalIF":0.9,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-18DOI: 10.1016/j.jspi.2024.106145
Daniela De Canditiis, Giovanni Luca Torrisi
We investigate the consistency and the rate of convergence of the adaptive Lasso estimator for the parameters of linear AR(p) time series with a white noise which is a strictly stationary and ergodic martingale difference. Roughly speaking, we prove that If the white noise has a finite second moment, then the adaptive Lasso estimator is almost sure consistent If the white noise has a finite fourth moment, then the error estimate converges to zero with the same rate as the regularizing parameters of the adaptive Lasso estimator. Such theoretical findings are applied to estimate the parameters of INAR(p) time series and to estimate the fertility function of Hawkes processes. The results are validated by some numerical simulations, which show that the adaptive Lasso estimator allows for a better balancing between bias and variance with respect to the Conditional Least Square estimator and the classical Lasso estimator.
{"title":"On the adaptive Lasso estimator of AR(p) time series with applications to INAR(p) and Hawkes processes","authors":"Daniela De Canditiis, Giovanni Luca Torrisi","doi":"10.1016/j.jspi.2024.106145","DOIUrl":"10.1016/j.jspi.2024.106145","url":null,"abstract":"<div><p>We investigate the consistency and the rate of convergence of the adaptive Lasso estimator for the parameters of linear AR(p) time series with a white noise which is a strictly stationary and ergodic martingale difference. Roughly speaking, we prove that <span><math><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></math></span> If the white noise has a finite second moment, then the adaptive Lasso estimator is almost sure consistent <span><math><mrow><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></mrow></math></span><span> If the white noise has a finite fourth moment, then the error estimate converges to zero with the same rate as the regularizing parameters of the adaptive Lasso estimator. Such theoretical findings are applied to estimate the parameters of INAR(p) time series and to estimate the fertility function of Hawkes processes. The results are validated by some numerical simulations, which show that the adaptive Lasso estimator allows for a better balancing between bias and variance with respect to the Conditional Least Square estimator and the classical Lasso estimator.</span></p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106145"},"PeriodicalIF":0.9,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-09DOI: 10.1016/j.jspi.2023.106140
Daniel Rademacher , Johannes Krebs , Rainer von Sachs
In this paper we treat statistical inference for a wavelet estimator of curves of symmetric positive definite (SPD) using the log-Euclidean distance. This estimator preserves positive-definiteness and enjoys permutation-equivariance, which is particularly relevant for covariance matrices. Our second-generation wavelet estimator is based on average-interpolation (AI) and allows the same powerful properties, including fast algorithms, known from nonparametric curve estimation with wavelets in standard Euclidean set-ups. The core of our work is the proposition of confidence sets for our AI wavelet estimator in a non-Euclidean geometry. We derive asymptotic normality of this estimator, including explicit expressions of its asymptotic variance. This opens the door for constructing asymptotic confidence regions which we compare with our proposed bootstrap scheme for inference. Detailed numerical simulations confirm the appropriateness of our suggested inference schemes.
本文利用对数欧氏距离对对称正定(SPD)曲线的小波估计器进行统计推断。该估计器保留了正定性并具有包换方差性,这与协方差矩阵尤其相关。我们的第二代小波估计器基于平均插值(AI),具有与标准欧几里得设置中的小波非参数曲线估计器相同的强大特性,包括快速算法。我们工作的核心是为非欧几里得几何中的 AI 小波估计器提出置信集。我们推导出该估计器的渐近正态性,包括其渐近方差的明确表达式。这为我们构建渐近置信区域打开了大门,我们将这些置信区域与我们提出的引导推理方案进行比较。详细的数值模拟证实了我们建议的推理方案的适当性。
{"title":"Statistical inference for wavelet curve estimators of symmetric positive definite matrices","authors":"Daniel Rademacher , Johannes Krebs , Rainer von Sachs","doi":"10.1016/j.jspi.2023.106140","DOIUrl":"https://doi.org/10.1016/j.jspi.2023.106140","url":null,"abstract":"<div><p><span>In this paper we treat statistical inference<span> for a wavelet estimator of curves of symmetric positive definite (SPD) using the log-Euclidean distance. This estimator preserves positive-definiteness and enjoys permutation-equivariance, which is particularly relevant for covariance matrices. Our second-generation wavelet estimator is based on average-interpolation (AI) and allows the same powerful properties, including fast algorithms, known from nonparametric curve estimation with wavelets in standard Euclidean set-ups. The core of our work is the </span></span>proposition<span> of confidence sets for our AI wavelet estimator in a non-Euclidean geometry. We derive asymptotic normality<span> of this estimator, including explicit expressions of its asymptotic variance<span>. This opens the door for constructing asymptotic confidence regions which we compare with our proposed bootstrap scheme for inference. Detailed numerical simulations confirm the appropriateness of our suggested inference schemes.</span></span></span></p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106140"},"PeriodicalIF":0.9,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139433656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-27DOI: 10.1016/j.jspi.2023.106141
Yining Wang , Gang Li
A class of tests that are uniformly more powerful than the likelihood ratio test is derived for testing the hypothesis about the means of a subset of the components of a multivariate normal distribution with unknown covariance matrix, when the means of the other subset of the components are known.
{"title":"Uniformly more powerful tests for a subset of the components of a Normal Mean Vector","authors":"Yining Wang , Gang Li","doi":"10.1016/j.jspi.2023.106141","DOIUrl":"10.1016/j.jspi.2023.106141","url":null,"abstract":"<div><p>A class of tests that are uniformly more powerful than the likelihood ratio test<span> is derived for testing the hypothesis about the means of a subset of the components of a multivariate normal distribution<span> with unknown covariance matrix, when the means of the other subset of the components are known.</span></span></p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106141"},"PeriodicalIF":0.9,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139070464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-27DOI: 10.1016/j.jspi.2023.106142
Wenqi Lu , Zhongyi Zhu , Rui Li , Heng Lian
In kernel-based learning, the random projection method, also called random sketching, has been successfully used in kernel ridge regression to reduce the computational burden in the big data setting, and at the same time retain the minimax convergence rate. In this work, we consider its use in sparse multiple kernel learning problems where a closed-form optimizer is not available, which poses significant technical challenges, for which the existing results do not carry over directly. Even when random projection is not used, our risk bound improves on the existing results in several aspects. We also illustrate the use of random projection via some numerical examples.
{"title":"Sparse multiple kernel learning: Minimax rates with random projection","authors":"Wenqi Lu , Zhongyi Zhu , Rui Li , Heng Lian","doi":"10.1016/j.jspi.2023.106142","DOIUrl":"10.1016/j.jspi.2023.106142","url":null,"abstract":"<div><p>In kernel-based learning, the random projection method, also called random sketching, has been successfully used in kernel ridge regression to reduce the computational burden in the big data setting, and at the same time retain the minimax convergence rate. In this work, we consider its use in sparse multiple kernel learning problems where a closed-form optimizer is not available, which poses significant technical challenges, for which the existing results do not carry over directly. Even when random projection is not used, our risk bound improves on the existing results in several aspects. We also illustrate the use of random projection via some numerical examples.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106142"},"PeriodicalIF":0.9,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139070664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-26DOI: 10.1016/j.jspi.2023.106143
Danshu Sheng , Dehui Wang , Liuquan Sun
In this paper, we introduce a new first-order mixture integer-valued threshold autoregressive process, based on the binomial and negative binomial thinning operators. Basic probabilistic and statistical properties of this model are discussed. Conditional least squares (CLS) and conditional maximum likelihood (CML) estimators are derived and the asymptotic properties of the estimators are established. The inference for the threshold parameter is obtained based on the CLS and CML score functions. Moreover, the Wald test is applied to detect the existence of the piecewise structure. Simulation studies are considered, along with an application: the number of criminal mischief incidents in the Pittsburgh dataset
{"title":"A new First-Order mixture integer-valued threshold autoregressive process based on binomial thinning and negative binomial thinning","authors":"Danshu Sheng , Dehui Wang , Liuquan Sun","doi":"10.1016/j.jspi.2023.106143","DOIUrl":"10.1016/j.jspi.2023.106143","url":null,"abstract":"<div><p><span><span>In this paper, we introduce a new first-order mixture integer-valued threshold autoregressive process, based on the binomial and </span>negative binomial thinning operators. Basic probabilistic and statistical properties of this model are discussed. Conditional least squares (CLS) and conditional maximum likelihood (CML) estimators are derived and the </span>asymptotic properties<span> of the estimators are established. The inference for the threshold parameter is obtained based on the CLS and CML score functions<span>. Moreover, the Wald test is applied to detect the existence of the piecewise structure. Simulation studies are considered, along with an application: the number of criminal mischief incidents in the Pittsburgh dataset</span></span></p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106143"},"PeriodicalIF":0.9,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139070374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.1016/j.jspi.2023.106139
R.A. Bailey, Peter J. Cameron, Dário Ferreira, Sandra S. Ferreira, Célia Nunes
In some experiments, the experimental units are all pairs of individuals who have to undertake a given task together. The set of such pairs forms a triangular association scheme. Appropriate randomization then gives two non-trivial strata. The design is said to have commutative orthogonal block structure (COBS) if the best linear unbiased estimators of treatment contrasts do not depend on the stratum variances. There are precisely three ways in which such a design can have COBS. We give a complete description of designs for which all treatment contrasts are in the same stratum. Then we give a very general construction for designs with COBS which have some treatment contrasts in each stratum.
{"title":"Designs for half-diallel experiments with commutative orthogonal block structure","authors":"R.A. Bailey, Peter J. Cameron, Dário Ferreira, Sandra S. Ferreira, Célia Nunes","doi":"10.1016/j.jspi.2023.106139","DOIUrl":"https://doi.org/10.1016/j.jspi.2023.106139","url":null,"abstract":"<p>In some experiments, the experimental units are all pairs of individuals who have to undertake a given task together. The set of such pairs forms a triangular association scheme. Appropriate randomization then gives two non-trivial strata. The design is said to have commutative orthogonal block structure (COBS) if the best linear unbiased estimators of treatment contrasts do not depend on the stratum variances. There are precisely three ways in which such a design can have COBS. We give a complete description of designs for which all treatment contrasts are in the same stratum. Then we give a very general construction for designs with COBS which have some treatment contrasts in each stratum.</p>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"16 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139027909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.1016/j.jspi.2023.106139
R.A. Bailey , Peter J. Cameron , Dário Ferreira , Sandra S. Ferreira , Célia Nunes
In some experiments, the experimental units are all pairs of individuals who have to undertake a given task together. The set of such pairs forms a triangular association scheme. Appropriate randomization then gives two non-trivial strata. The design is said to have commutative orthogonal block structure (COBS) if the best linear unbiased estimators of treatment contrasts do not depend on the stratum variances. There are precisely three ways in which such a design can have COBS. We give a complete description of designs for which all treatment contrasts are in the same stratum. Then we give a very general construction for designs with COBS which have some treatment contrasts in each stratum.
{"title":"Designs for half-diallel experiments with commutative orthogonal block structure","authors":"R.A. Bailey , Peter J. Cameron , Dário Ferreira , Sandra S. Ferreira , Célia Nunes","doi":"10.1016/j.jspi.2023.106139","DOIUrl":"10.1016/j.jspi.2023.106139","url":null,"abstract":"<div><p>In some experiments, the experimental units are all pairs of individuals who have to undertake a given task together. The set of such pairs forms a triangular association scheme. Appropriate randomization then gives two non-trivial strata. The design is said to have commutative orthogonal block structure (COBS) if the best linear unbiased estimators of treatment contrasts do not depend on the stratum variances. There are precisely three ways in which such a design can have COBS. We give a complete description of designs for which all treatment contrasts are in the same stratum. Then we give a very general construction for designs with COBS which have some treatment contrasts in each stratum.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106139"},"PeriodicalIF":0.9,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378375823001088/pdfft?md5=d9967380e48aaefeeec7c0b3f9545df6&pid=1-s2.0-S0378375823001088-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139016804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-20DOI: 10.1016/j.jspi.2023.106138
S. Valère Bitseki Penda
We study the kernel estimators of the transition density of bifurcating Markov chains. Under some ergodic and regularity properties, we prove that these estimators are consistent and asymptotically normal. Next, in the numerical studies, we propose two data-driven methods to choose the bandwidth parameters. These methods, based on the so-called two bandwidths approach, are adaptation for bifurcating Markov chains of the least squares Cross-Validation and the rule of thumb method. Finally, we provide an example with real data.
{"title":"Kernel estimation of the transition density in bifurcating Markov chains","authors":"S. Valère Bitseki Penda","doi":"10.1016/j.jspi.2023.106138","DOIUrl":"10.1016/j.jspi.2023.106138","url":null,"abstract":"<div><p><span>We study the kernel estimators<span><span> of the transition density of bifurcating Markov chains. Under some ergodic and </span>regularity properties, we prove that these estimators are consistent and asymptotically normal. Next, in the </span></span>numerical studies, we propose two data-driven methods to choose the bandwidth parameters. These methods, based on the so-called two bandwidths approach, are adaptation for bifurcating Markov chains of the least squares Cross-Validation and the rule of thumb method. Finally, we provide an example with real data.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106138"},"PeriodicalIF":0.9,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139028106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}