Pub Date : 2023-12-20DOI: 10.1016/j.jspi.2023.106138
S. Valère Bitseki Penda
We study the kernel estimators of the transition density of bifurcating Markov chains. Under some ergodic and regularity properties, we prove that these estimators are consistent and asymptotically normal. Next, in the numerical studies, we propose two data-driven methods to choose the bandwidth parameters. These methods, based on the so-called two bandwidths approach, are adaptation for bifurcating Markov chains of the least squares Cross-Validation and the rule of thumb method. Finally, we provide an example with real data.
{"title":"Kernel estimation of the transition density in bifurcating Markov chains","authors":"S. Valère Bitseki Penda","doi":"10.1016/j.jspi.2023.106138","DOIUrl":"10.1016/j.jspi.2023.106138","url":null,"abstract":"<div><p><span>We study the kernel estimators<span><span> of the transition density of bifurcating Markov chains. Under some ergodic and </span>regularity properties, we prove that these estimators are consistent and asymptotically normal. Next, in the </span></span>numerical studies, we propose two data-driven methods to choose the bandwidth parameters. These methods, based on the so-called two bandwidths approach, are adaptation for bifurcating Markov chains of the least squares Cross-Validation and the rule of thumb method. Finally, we provide an example with real data.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106138"},"PeriodicalIF":0.9,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139028106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-20DOI: 10.1016/j.jspi.2023.106137
Yinzhi Wang , Yingqiu Zhu , Qiang Sun , Lei Qin
The explosion of data volume and the expansion in data dimensionality have led to a critical challenge in analyzing high-dimensional matrix time series for big data-related applications. In this regard, factor models for matrix-valued high-dimensional time series provide a powerful tool, that reduces the dimensionality of the variables with low-rank structures. However, existing high-dimensional matrix factor models suffer from two limitations in complex scenarios. One is that it is difficult to make robust inferences for datasets with heavy-tailed distributions. The other is that existing models require additional parameters for fine-tuning to guarantee performance. We propose an adaptively robust high-dimensional matrix factor model based on a specified Huber loss function to tackle the challenges mentioned above. An efficient iterative algorithm is provided to consistently determine the additional parameters of our model for robust estimation. The robustness of the model estimation is greatly improved by incorporating the Huber loss. Furthermore, we theoretically investigate the proposed method and derive the convergence rates of the robust estimators to examine its performance. Simulations show that the proposed method outperforms previous models in the estimation of heavy-tailed data. A real-world data analysis on a financial portfolio dataset illustrates that the method can be used to extract useful knowledge from high-dimensional matrix time series.
{"title":"Adaptively robust high-dimensional matrix factor analysis under Huber loss function","authors":"Yinzhi Wang , Yingqiu Zhu , Qiang Sun , Lei Qin","doi":"10.1016/j.jspi.2023.106137","DOIUrl":"10.1016/j.jspi.2023.106137","url":null,"abstract":"<div><p>The explosion of data volume and the expansion in data dimensionality have led to a critical challenge in analyzing high-dimensional matrix time series for big data-related applications. In this regard, factor models for matrix-valued high-dimensional time series provide a powerful tool, that reduces the dimensionality of the variables with low-rank structures. However, existing high-dimensional matrix factor models suffer from two limitations in complex scenarios. One is that it is difficult to make robust inferences for datasets with heavy-tailed distributions. The other is that existing models require additional parameters for fine-tuning to guarantee performance. We propose an adaptively robust high-dimensional matrix factor model based on a specified Huber loss function to tackle the challenges mentioned above. An efficient iterative algorithm is provided to consistently determine the additional parameters of our model for robust estimation. The robustness of the model estimation is greatly improved by incorporating the Huber loss. Furthermore, we theoretically investigate the proposed method and derive the convergence rates of the robust estimators to examine its performance. Simulations show that the proposed method outperforms previous models in the estimation of heavy-tailed data. A real-world data analysis on a financial portfolio dataset illustrates that the method can be used to extract useful knowledge from high-dimensional matrix time series.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106137"},"PeriodicalIF":0.9,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138817793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-19DOI: 10.1016/j.jspi.2023.106136
Nan Qiao , Wangcheng Li , Feng Xiao , Cunjie Lin
Massive survival data has become common in survival analysis. In this study, a subsampling algorithm is proposed for Cox proportional hazards model with time-dependent covariates when the sample size is extraordinarily large but the computing resources are relatively limited. A subsample estimator is developed by maximizing a weighted partial likelihood, and shown to have consistency and asymptotic normality. By minimizing the asymptotic mean squared error of the subsample estimator, the optimal subsampling probabilities are formulated with explicit expression. Simulation studies show that the proposed method has satisfactory performances in approximating the full data estimator. The proposed method is applied to the corporate loan data and breast cancer data, with different censoring rates, and the outcome also confirms the practical advantages.
{"title":"Optimal subsampling for the Cox proportional hazards model with massive survival data","authors":"Nan Qiao , Wangcheng Li , Feng Xiao , Cunjie Lin","doi":"10.1016/j.jspi.2023.106136","DOIUrl":"10.1016/j.jspi.2023.106136","url":null,"abstract":"<div><p><span><span>Massive survival data has become common in survival analysis. In this study, a subsampling algorithm is proposed for </span>Cox proportional hazards model with time-dependent </span>covariates<span> when the sample size is extraordinarily large but the computing resources are relatively limited. A subsample estimator is developed by maximizing a weighted partial likelihood, and shown to have consistency and asymptotic normality<span>. By minimizing the asymptotic mean squared error of the subsample estimator, the optimal subsampling probabilities are formulated with explicit expression. Simulation studies show that the proposed method has satisfactory performances in approximating the full data estimator. The proposed method is applied to the corporate loan data and breast cancer data, with different censoring rates, and the outcome also confirms the practical advantages.</span></span></p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106136"},"PeriodicalIF":0.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138817749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-09DOI: 10.1016/j.jspi.2023.106135
Zhuowei Sun , Hongyuan Cao , Li Chen , Jason P. Fine
In linear models, omitting a covariate that is orthogonal to covariates in the model does not result in biased coefficient estimation. This generally does not hold for longitudinal data, where additional assumptions are needed to get an unbiased coefficient estimation in addition to the orthogonality between omitted longitudinal covariates and longitudinal covariates in the model. We propose methods to mitigate the omitted variable bias under weaker assumptions. A two-step estimation procedure is proposed to infer the asynchronous longitudinal covariates when such covariates are observed. For mixed synchronous and asynchronous longitudinal covariates, we get a parametric convergence rate for the coefficient estimation of the synchronous longitudinal covariates by the two-step method. Extensive simulation studies provide numerical support for the theoretical findings. We illustrate the performance of our method on a dataset from the Alzheimer’s Disease Neuroimaging Initiative study.
{"title":"Regression analysis of longitudinal data with mixed synchronous and asynchronous longitudinal covariates","authors":"Zhuowei Sun , Hongyuan Cao , Li Chen , Jason P. Fine","doi":"10.1016/j.jspi.2023.106135","DOIUrl":"https://doi.org/10.1016/j.jspi.2023.106135","url":null,"abstract":"<div><p><span>In linear models, omitting a covariate<span><span> that is orthogonal to covariates in the model does not result in biased coefficient estimation. This generally does not hold for longitudinal data, where additional assumptions are needed to get an unbiased coefficient estimation in addition to the </span>orthogonality<span> between omitted longitudinal covariates and longitudinal covariates in the model. We propose methods to mitigate the omitted variable bias under weaker assumptions. A two-step estimation procedure is proposed to infer the asynchronous longitudinal covariates when such covariates are observed. For mixed synchronous and asynchronous longitudinal covariates, we get a </span></span></span>parametric convergence rate for the coefficient estimation of the synchronous longitudinal covariates by the two-step method. Extensive simulation studies provide numerical support for the theoretical findings. We illustrate the performance of our method on a dataset from the Alzheimer’s Disease Neuroimaging Initiative study.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106135"},"PeriodicalIF":0.9,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138564584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-09DOI: 10.1016/j.jspi.2023.106134
Lianqiang Yang , Ying Jing , Teng Li
Maximum correntropy criterion regression (MCCR) models have been well studied within the theoretical framework of statistical learning when the scale parameters take fixed values or go to infinity. This paper studies MCCR models with tending-to-zero scale parameters. It is revealed that the optimal learning rate of MCCR models is in the asymptotic sense when the sample size goes to infinity. In the case of finite samples, the performance and robustness of MCCR, Huber and the least square regression models are compared. The applications of these three methods to real data are also demonstrated.
最大熵准则回归(MCCR)模型在尺度参数取固定值或无穷大时的统计学习理论框架内得到了很好的研究。本文研究了尺度参数趋于零的 MCCR 模型。研究发现,当样本量 n 变为无穷大时,MCCR 模型的最优学习率在渐近意义上为 O(n-1)。在有限样本的情况下,比较了 MCCR、Huber 和最小平方回归模型的性能和鲁棒性。同时还展示了这三种方法在实际数据中的应用。
{"title":"Maximum correntropy criterion regression models with tending-to-zero scale parameters","authors":"Lianqiang Yang , Ying Jing , Teng Li","doi":"10.1016/j.jspi.2023.106134","DOIUrl":"https://doi.org/10.1016/j.jspi.2023.106134","url":null,"abstract":"<div><p>Maximum correntropy criterion regression (MCCR) models have been well studied within the theoretical framework of statistical learning when the scale parameters take fixed values or go to infinity. This paper studies MCCR models with tending-to-zero scale parameters. It is revealed that the optimal learning rate of MCCR models is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> in the asymptotic sense when the sample size <span><math><mi>n</mi></math></span> goes to infinity. In the case of finite samples, the performance and robustness of MCCR, Huber and the least square regression models are compared. The applications of these three methods to real data are also demonstrated.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106134"},"PeriodicalIF":0.9,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138564583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-07DOI: 10.1016/j.jspi.2023.106132
Ivan Kojadinovic , Bingqing Yi
We investigate the validity of two resampling techniques when carrying out inference on the underlying unknown copula using a recently proposed class of smooth, possibly data-adaptive nonparametric estimators that contains empirical Bernstein copulas (and thus the empirical beta copula). Following Kiriliouk et al. (2021), the first resampling technique is based on drawing samples from the smooth estimator and can only can be used in the case of independent observations. The second technique is a smooth extension of the so-called sequential dependent multiplier bootstrap and can thus be used in a time series setting and, possibly, for change-point analysis. The two studied resampling schemes are applied to confidence interval construction and the offline detection of changes in the cross-sectional dependence of multivariate time series, respectively. Monte Carlo experiments confirm the possible advantages of such smooth inference procedures over their non-smooth counterparts. A by-product of this work is the study of the weak consistency and finite-sample performance of two classes of smooth estimators of the first-order partial derivatives of a copula which can have applications in mean and quantile regression.
{"title":"Resampling techniques for a class of smooth, possibly data-adaptive empirical copulas","authors":"Ivan Kojadinovic , Bingqing Yi","doi":"10.1016/j.jspi.2023.106132","DOIUrl":"10.1016/j.jspi.2023.106132","url":null,"abstract":"<div><p>We investigate the validity of two resampling techniques when carrying out inference on the underlying unknown copula<span> using a recently proposed class of smooth, possibly data-adaptive nonparametric estimators that contains empirical Bernstein copulas (and thus the empirical beta copula). Following Kiriliouk et al. (2021), the first resampling technique is based on drawing samples from the smooth estimator and can only can be used in the case of independent observations. The second technique is a smooth extension of the so-called sequential dependent multiplier bootstrap<span> and can thus be used in a time series setting and, possibly, for change-point analysis. The two studied resampling schemes are applied to confidence interval construction and the offline detection of changes in the cross-sectional dependence of multivariate time series, respectively. Monte Carlo experiments confirm the possible advantages of such smooth inference procedures over their non-smooth counterparts. A by-product of this work is the study of the weak consistency and finite-sample performance of two classes of smooth estimators of the first-order partial derivatives of a copula which can have applications in mean and quantile regression.</span></span></p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106132"},"PeriodicalIF":0.9,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138554564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-05DOI: 10.1016/j.jspi.2023.106133
Tianming Zhu , Jin-Ting Zhang , Ming-Yen Cheng
Multivariate functional data are prevalent in various fields such as biology, climatology, and finance. Motivated by the World Health Data applications, in this study, we propose and examine a global test for assessing the equality of multiple mean functions in multivariate functional data. This test addresses the one-way Functional Multivariate Analysis of Variance (FMANOVA) problem, which is a fundamental issue in the analysis of multivariate functional data. While numerous analysis of variance tests have been proposed and studied for univariate functional data, only a limited number of methods have been developed for the one-way FMANOVA problem. Furthermore, our global test has the ability to handle heteroscedasticity in the unknown covariance function matrices that underlie the multivariate functional data, which is not possible with existing methods. We establish the asymptotic null distribution of the test statistic as a chi-squared-type mixture, which depends on the eigenvalues of the covariance function matrices. To approximate the null distribution, we introduce a Welch–Satterthwaite type chi-squared-approximation with consistent parameter estimation. The proposed test exhibits root- consistency, meaning it possesses nontrivial power against a local alternative. Additionally, it offers superior computational efficiency compared to several permutation-based tests. Through simulation studies and applications to the World Health Data, we highlight the advantages of our global test.
多元函数数据普遍存在于生物学、气候学和金融学等多个领域。受世界卫生数据应用的启发,在本研究中,我们提出并研究了一种用于评估多元函数数据中多个均值函数相等性的全局检验。该检验解决了单向函数多元方差分析(FMANOVA)问题,这是多元函数数据分析中的一个基本问题。虽然针对单变量函数数据提出并研究了许多方差分析检验方法,但针对单向 FMANOVA 问题开发的方法数量有限。此外,我们的全局检验能够处理多元函数数据未知协方差函数矩阵中的异方差,这是现有方法无法做到的。我们将检验统计量的渐近零分布确定为一个奇平方型混合物,它取决于协方差函数矩阵的特征值。为了近似 null 分布,我们引入了具有一致参数估计的 Welch-Satterthwaite 型奇平方近似。所提出的检验具有根 n 一致性,这意味着它对局部替代方案具有非同一般的威力。此外,与几种基于置换的检验相比,它还具有更高的计算效率。通过模拟研究和在世界健康数据中的应用,我们强调了全局检验的优势。
{"title":"A global test for heteroscedastic one-way FMANOVA with applications","authors":"Tianming Zhu , Jin-Ting Zhang , Ming-Yen Cheng","doi":"10.1016/j.jspi.2023.106133","DOIUrl":"https://doi.org/10.1016/j.jspi.2023.106133","url":null,"abstract":"<div><p><span><span>Multivariate functional data are prevalent in various fields such as biology, climatology, and finance. Motivated by the World Health Data applications, in this study, we propose and examine a global test for assessing the equality of multiple mean functions in multivariate functional data. This test addresses the one-way Functional Multivariate Analysis of Variance<span> (FMANOVA) problem, which is a fundamental issue in the analysis of multivariate functional data. While numerous analysis of variance tests have been proposed and studied for univariate functional data, only a limited number of methods have been developed for the one-way FMANOVA problem. Furthermore, our global test has the ability to handle heteroscedasticity<span> in the unknown covariance function matrices that underlie the multivariate functional data, which is not possible with existing methods. We establish the asymptotic </span></span></span>null distribution of the test statistic as a chi-squared-type mixture, which depends on the eigenvalues of the covariance function matrices. To approximate the null distribution, we introduce a Welch–Satterthwaite type chi-squared-approximation with consistent parameter estimation. The proposed test exhibits root-</span><span><math><mi>n</mi></math></span> consistency, meaning it possesses nontrivial power against a local alternative. Additionally, it offers superior computational efficiency compared to several permutation-based tests. Through simulation studies and applications to the World Health Data, we highlight the advantages of our global test.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106133"},"PeriodicalIF":0.9,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138490271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Misclassification of binary responses, if ignored, may severely bias the maximum likelihood estimators (MLEs) of regression parameters. For such data, a binary regression model incorporating non-differential classification errors is extensively used by researchers in different application contexts. We strongly caution against indiscriminate use of this model considering the fact that it suffers from a serious estimation problem due to confounding of the unknown misclassification probabilities with the regression parameters, and thus, may lead to a highly biased estimate. To overcome this problem, we propose here the use of an internal validation sample in addition to the main sample. Assuming differential classification errors, we consider MLEs of the regression parameters based on the joint likelihood of the main sample and the internal validation sample. We then develop a rigorous asymptotic theory for the joint MLEs under standard assumptions. To facilitate its easy implementation for inference, we propose a bootstrap approximation to the asymptotic distribution and prove its consistency. The results of the simulation studies suggest that even an extremely small validation sample may lead to a vastly improved inference. Finally, the methodology is illustrated with a real-life survey data.
{"title":"Inference on regression model with misclassified binary response","authors":"Arindam Chatterjee , Tathagata Bandyopadhyay , Ayoushman Bhattacharya","doi":"10.1016/j.jspi.2023.106121","DOIUrl":"https://doi.org/10.1016/j.jspi.2023.106121","url":null,"abstract":"<div><p><span>Misclassification of binary responses, if ignored, may severely bias the </span>maximum likelihood estimators<span><span> (MLEs) of regression parameters<span>. For such data, a binary regression model incorporating non-differential classification errors is extensively used by researchers in different application contexts. We strongly caution against indiscriminate use of this model considering the fact that it suffers from a serious estimation problem due to confounding of the unknown misclassification </span></span>probabilities<span><span> with the regression parameters, and thus, may lead to a highly biased estimate. To overcome this problem, we propose here the use of an internal validation sample in addition to the main sample. Assuming differential classification errors, we consider MLEs of the regression parameters based on the joint likelihood of the main sample and the internal validation sample. We then develop a rigorous asymptotic theory for the joint MLEs under standard assumptions. To facilitate its easy implementation for inference, we propose a bootstrap approximation to the </span>asymptotic distribution and prove its consistency. The results of the simulation studies suggest that even an extremely small validation sample may lead to a vastly improved inference. Finally, the methodology is illustrated with a real-life survey data.</span></span></p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106121"},"PeriodicalIF":0.9,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138465636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-23DOI: 10.1016/j.jspi.2023.106131
Bo Hu , Dongying Wang , Fasheng Sun
Modern experiments typically involve a very large number of variables. Screening designs allow experimenters to identify active factors in a minimum number of trials. To save costs, only low-level factorial designs are considered for screening experiments, especially two- and three-level designs. In this article, we provide a systematic method to construct screening designs that contain both two- and three-level factors based on Hadamard matrices with the fold-over structure. The proposed designs have good performance in terms of D-optimal and A-optimal criteria, and the estimates of the main effects are unbiased by the second-order effects, making them very suitable for screening experiments. Besides, some theoretical results on D- and A-optimality are obtained as a by-product.
{"title":"Construction of mixed-level screening designs using Hadamard matrices","authors":"Bo Hu , Dongying Wang , Fasheng Sun","doi":"10.1016/j.jspi.2023.106131","DOIUrl":"https://doi.org/10.1016/j.jspi.2023.106131","url":null,"abstract":"<div><p>Modern experiments typically involve a very large number of variables. Screening designs allow experimenters to identify active factors in a minimum number of trials. To save costs, only low-level factorial designs are considered for screening experiments, especially two- and three-level designs. In this article, we provide a systematic method to construct screening designs that contain both two- and three-level factors based on Hadamard matrices with the fold-over structure. The proposed designs have good performance in terms of D-optimal and A-optimal criteria, and the estimates of the main effects are unbiased by the second-order effects, making them very suitable for screening experiments. Besides, some theoretical results on D- and A-optimality are obtained as a by-product.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106131"},"PeriodicalIF":0.9,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138448366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-22DOI: 10.1016/j.jspi.2023.106130
Hengkun Zhu, Guohua Zou
Missing data is a common problem in real data analysis. In this paper, a Mallows model averaging method based on kernel regression imputation is proposed for the linear regression models with responses missing at random. We prove that our method asymptotically achieves the lowest possible squared error. Compared with the existing model averaging methods, the new method does not require the use of a parameter model to characterize the missing generation mechanism. The Monte Carlo simulation and a practical application demonstrate the usefulness of the proposed method.
{"title":"Mallows model averaging based on kernel regression imputation with responses missing at random","authors":"Hengkun Zhu, Guohua Zou","doi":"10.1016/j.jspi.2023.106130","DOIUrl":"10.1016/j.jspi.2023.106130","url":null,"abstract":"<div><p>Missing data is a common problem in real data analysis. In this paper, a Mallows model averaging method based on kernel regression imputation is proposed for the linear regression models with responses missing at random. We prove that our method asymptotically achieves the lowest possible squared error. Compared with the existing model averaging methods, the new method does not require the use of a parameter model to characterize the missing generation mechanism. The Monte Carlo simulation and a practical application demonstrate the usefulness of the proposed method.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106130"},"PeriodicalIF":0.9,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138506779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}