In a 5G radio access network (RAN), network slicing enables dividing a single RAN infrastructure into multiple logical networks, efficiently accommodating services with diverse requirements. Although RAN slicing can help improve resource efficiency and reduce network costs, it is accompanied by various security risks. One of the security threats in RAN slicing is potential eavesdropping, resulting in the leakage of sensitive data within slices. Encryption technologies have been developed to address the eavesdropping problem at different layers in optical networks. We focus on physical layer encryption since it has been demonstrated beneficial in line-speed processing, low latency, and small encryption overhead. The problem of utilizing physical layer encryption technologies to achieve secure RAN slices remains unexplored since physical layer encryption introduces additional hardware costs. In this paper, we study how to realize secure RAN slicing based on physical layer encryption in a metro aggregation network that consists of hybrid-trusted links (i.e., links with different risks for eavesdropping). We propose an integer linear programming (ILP) model and an auxiliary graph-based heuristic for small-scale and large-scale networks, respectively. The objective is to maximize the number of deployed slices and minimize the total cost of secure slice deployment, which includes the costs of servers, line cards (LCs), encryption cards (ECs), and bandwidth resources. To evaluate the benefit of encryption, we compare it with a detour solution, which protects slices by routing through trusted links (i.e., where no additional hardware for encryption is deployed). Simulation results show that the encryption-based solution exhibits a lower cost than the benchmark when the same number of slices are deployed, and it can reduce the blocking ratio by up to 8.5% as slice requests increase. In addition, the average latency of slices is also reduced by up to 14.6%.
在 5G 无线接入网(RAN)中,网络切片可将单个 RAN 基础设施划分为多个逻辑网络,从而有效地满足不同需求的服务。虽然 RAN 分片有助于提高资源效率和降低网络成本,但也伴随着各种安全风险。RAN 切片的安全威胁之一是潜在的窃听,导致敏感数据在切片内泄露。为解决光网络不同层的窃听问题,人们开发了加密技术。我们将重点放在物理层加密上,因为它已被证明有利于线速处理、低延迟和小加密开销。由于物理层加密会带来额外的硬件成本,因此利用物理层加密技术实现安全 RAN 切片的问题仍有待探索。本文研究了如何在由混合信任链路(即具有不同窃听风险的链路)组成的城域汇聚网络中实现基于物理层加密的安全 RAN 切片。我们分别针对小规模和大规模网络提出了整数线性规划(ILP)模型和基于图的辅助启发式。我们的目标是最大化部署切片的数量,最小化安全切片部署的总成本,其中包括服务器、线路卡(LC)、加密卡(EC)和带宽资源的成本。为了评估加密技术的优势,我们将其与迂回解决方案进行了比较,后者通过可信链路路由(即不部署额外的加密硬件)来保护切片。仿真结果表明,在部署相同数量切片的情况下,基于加密的解决方案的成本低于基准方案,而且随着切片请求的增加,它还能将阻塞率降低 8.5%。此外,切片的平均延迟也减少了 14.6%。
{"title":"Physical layer encryption-based secure slicing in 5G RAN with hybrid-trusted links","authors":"Boxin Zhang;Yajie Li;Federico Tonini;Lena Wosinska;Paolo Monti;Jie Zhang","doi":"10.1364/JOCN.522340","DOIUrl":"https://doi.org/10.1364/JOCN.522340","url":null,"abstract":"In a 5G radio access network (RAN), network slicing enables dividing a single RAN infrastructure into multiple logical networks, efficiently accommodating services with diverse requirements. Although RAN slicing can help improve resource efficiency and reduce network costs, it is accompanied by various security risks. One of the security threats in RAN slicing is potential eavesdropping, resulting in the leakage of sensitive data within slices. Encryption technologies have been developed to address the eavesdropping problem at different layers in optical networks. We focus on physical layer encryption since it has been demonstrated beneficial in line-speed processing, low latency, and small encryption overhead. The problem of utilizing physical layer encryption technologies to achieve secure RAN slices remains unexplored since physical layer encryption introduces additional hardware costs. In this paper, we study how to realize secure RAN slicing based on physical layer encryption in a metro aggregation network that consists of hybrid-trusted links (i.e., links with different risks for eavesdropping). We propose an integer linear programming (ILP) model and an auxiliary graph-based heuristic for small-scale and large-scale networks, respectively. The objective is to maximize the number of deployed slices and minimize the total cost of secure slice deployment, which includes the costs of servers, line cards (LCs), encryption cards (ECs), and bandwidth resources. To evaluate the benefit of encryption, we compare it with a detour solution, which protects slices by routing through trusted links (i.e., where no additional hardware for encryption is deployed). Simulation results show that the encryption-based solution exhibits a lower cost than the benchmark when the same number of slices are deployed, and it can reduce the blocking ratio by up to 8.5% as slice requests increase. In addition, the average latency of slices is also reduced by up to 14.6%.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 8","pages":"800-813"},"PeriodicalIF":4.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141583512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Datacenter networks (DCNs) consisting of optical circuit switches (OCSs) have been considered as a promising solution to dramatically improve their transmission capacity, energy efficiency, and communication latency. To scale optical-circuit-switched DCNs (OCS DCNs), hierarchical OCSs with tens of thousands of optical fibers need to be installed, and they should be inspected before starting datacenter operations. Since traditional DCNs consist of electrical-packet switches (EPSs), the condition and cabling of fibers can be inspected easily by probing neighboring EPSs. However, OCS networks cannot be inspected in the same manner because OCSs cannot transmit and receive probe signals. Thus, we have had to attach and detach a light source and power meter (LSPM) to every switch for probing all the fibers, which takes weeks. This paper proposes an efficient method for inspecting and certifying fibers in an entire DCN without repeating LSPM reattachment. Our method is based on (1) theories on quickly estimating the fiber condition on the basis of the intensity of received probe signals, (2) the maximum allowable loss of each fiber derived from the transceiver budget used in operations, and (3) an algorithm that reduces the number of probes needed. The results from an extensive numerical evaluation indicate that our method inspected a DCN with 18,432 fibers in at most a day, whereas a baseline method involving repeated LSPM reattachment would take more than a week. We also confirmed that our method never produced false negatives and false positives under practical network conditions.
{"title":"Efficient fiber-inspection and certification method for optical-circuit-switched datacenter networks","authors":"Kazuya Anazawa;Takeru Inoue;Toru Mano;Hideki Nishizawa;Eiji Oki","doi":"10.1364/JOCN.527794","DOIUrl":"https://doi.org/10.1364/JOCN.527794","url":null,"abstract":"Datacenter networks (DCNs) consisting of optical circuit switches (OCSs) have been considered as a promising solution to dramatically improve their transmission capacity, energy efficiency, and communication latency. To scale optical-circuit-switched DCNs (OCS DCNs), hierarchical OCSs with tens of thousands of optical fibers need to be installed, and they should be inspected before starting datacenter operations. Since traditional DCNs consist of electrical-packet switches (EPSs), the condition and cabling of fibers can be inspected easily by probing neighboring EPSs. However, OCS networks cannot be inspected in the same manner because OCSs cannot transmit and receive probe signals. Thus, we have had to attach and detach a light source and power meter (LSPM) to every switch for probing all the fibers, which takes weeks. This paper proposes an efficient method for inspecting and certifying fibers in an entire DCN without repeating LSPM reattachment. Our method is based on (1) theories on quickly estimating the fiber condition on the basis of the intensity of received probe signals, (2) the maximum allowable loss of each fiber derived from the transceiver budget used in operations, and (3) an algorithm that reduces the number of probes needed. The results from an extensive numerical evaluation indicate that our method inspected a DCN with 18,432 fibers in at most a day, whereas a baseline method involving repeated LSPM reattachment would take more than a week. We also confirmed that our method never produced false negatives and false positives under practical network conditions.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 8","pages":"788-799"},"PeriodicalIF":4.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141583602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Rahmouni;P. S. Kuo;Y. S. Li-Baboud;I. A. Burenkov;Y. Shi;M. V. Jabir;N. Lal;D. Reddy;M. Merzouki;L. Ma;A. Battou;S. V. Polyakov;O. Slattery;T. Gerrits
The development of prototype metropolitan-scale quantum networks is underway and entails transmitting quantum information via single photons through deployed optical fibers spanning several tens of kilometers. The major challenges in building metropolitan-scale quantum networks are compensation for polarization fluctuation, high-precision clock synchronization, and compensation for cumulative transmission time fluctuations. One approach addressing these challenges is to copropagate classical probe signals in the same fiber as the quantum signal. Thus, both signals experience the same conditions, and the changes of the fiber can therefore be monitored and compensated. Here, we demonstrate the distribution of polarization-entangled quantum signals copropagating with the White Rabbit precision time protocol classical signals in the same single-core fiber strand at metropolitan-scale distances. Our results demonstrate the feasibility of this quantum-classical coexistence by achieving high-fidelity entanglement distribution between nodes separated by 100 km of optical fiber. This advancement is a significant step towards the practical implementation of robust and efficient metropolitan-scale quantum networks.
{"title":"100-km entanglement distribution with coexisting quantum and classical signals in a single fiber","authors":"A. Rahmouni;P. S. Kuo;Y. S. Li-Baboud;I. A. Burenkov;Y. Shi;M. V. Jabir;N. Lal;D. Reddy;M. Merzouki;L. Ma;A. Battou;S. V. Polyakov;O. Slattery;T. Gerrits","doi":"10.1364/JOCN.518226","DOIUrl":"https://doi.org/10.1364/JOCN.518226","url":null,"abstract":"The development of prototype metropolitan-scale quantum networks is underway and entails transmitting quantum information via single photons through deployed optical fibers spanning several tens of kilometers. The major challenges in building metropolitan-scale quantum networks are compensation for polarization fluctuation, high-precision clock synchronization, and compensation for cumulative transmission time fluctuations. One approach addressing these challenges is to copropagate classical probe signals in the same fiber as the quantum signal. Thus, both signals experience the same conditions, and the changes of the fiber can therefore be monitored and compensated. Here, we demonstrate the distribution of polarization-entangled quantum signals copropagating with the White Rabbit precision time protocol classical signals in the same single-core fiber strand at metropolitan-scale distances. Our results demonstrate the feasibility of this quantum-classical coexistence by achieving high-fidelity entanglement distribution between nodes separated by 100 km of optical fiber. This advancement is a significant step towards the practical implementation of robust and efficient metropolitan-scale quantum networks.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 8","pages":"781-787"},"PeriodicalIF":4.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141560995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pablo Armingol Robles;Oscar Gonzalez de Dios;Juan Pedro Fernandez-Palacios Gimenez;Luis M. Contreras;Liesbeth Roelens;Alejandro Muniz Da Costa;Javier Velazquez Martinez;David De La Osa Mostazo
The proposed architecture advances the concept of network slicing, crucial for beyond 5G services, by enabling dynamic resource allocation and customized partitioning in managed network infrastructures. This architecture addresses the challenges of provisioning end-to-end (E2E) slices across diverse network domains, which is complicated by technological heterogeneity and the variety of vendor solutions. By introducing a standardized transport network solution, we ensure seamless integration, equitable treatment of service requests, and the ability to meet diverse demands. The architecture is centered around a multi-layer transport network slicing architecture, which allows for the division of transport networks into virtual autonomous segments, each tailored for specific services or applications. This segmentation is essential for providing differentiated and personalized 5G services, optimizing network performance, and maximizing resource application. A key component of this architecture is the transport slice controller (TSC), which controls the provision and life-cycle management of transport slices, ensuring a standardized approach in the industry for the definition and realization of slices.
{"title":"Transport SDN architecture for multi-layer transport slicing","authors":"Pablo Armingol Robles;Oscar Gonzalez de Dios;Juan Pedro Fernandez-Palacios Gimenez;Luis M. Contreras;Liesbeth Roelens;Alejandro Muniz Da Costa;Javier Velazquez Martinez;David De La Osa Mostazo","doi":"10.1364/JOCN.522783","DOIUrl":"https://doi.org/10.1364/JOCN.522783","url":null,"abstract":"The proposed architecture advances the concept of network slicing, crucial for beyond 5G services, by enabling dynamic resource allocation and customized partitioning in managed network infrastructures. This architecture addresses the challenges of provisioning end-to-end (E2E) slices across diverse network domains, which is complicated by technological heterogeneity and the variety of vendor solutions. By introducing a standardized transport network solution, we ensure seamless integration, equitable treatment of service requests, and the ability to meet diverse demands. The architecture is centered around a multi-layer transport network slicing architecture, which allows for the division of transport networks into virtual autonomous segments, each tailored for specific services or applications. This segmentation is essential for providing differentiated and personalized 5G services, optimizing network performance, and maximizing resource application. A key component of this architecture is the transport slice controller (TSC), which controls the provision and life-cycle management of transport slices, ensuring a standardized approach in the industry for the definition and realization of slices.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 8","pages":"D76-D85"},"PeriodicalIF":4.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141560994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In a disaggregated data center (DDC), task execution is reliant on the communication between resources, making performance highly sensitive to network quality. An optimized physical network topology is crucial for a DDC. To enable the simultaneous execution of numerous tasks, a substantial number of communicable resource pairs satisfying performance requirements is necessary. We propose a physical topology evaluation metric called the capability of simultaneous task execution (CSTE) and a corresponding physical topology design leveraging CSTE for a DDC equipped with optical networks. CSTE represents the ratio of resources that could be used as a resource communicating with other resources without violating the performance requirements in a situation where tasks up to the maximum number of executable tasks are executed. In addition, we formulated a physical topology design problem aimed at generating a physical network topology capable of maximizing task execution based on CSTE. By solving this optimization problem, we generated topologies and validated their effectiveness via task allocation simulations. The results showed that an optimal topology based on CSTE reduces task blockages by over 50% compared to conventional topologies. In addition, the results exhibited a positive correlation with the number of executable tasks. Through a physical topology design based on CSTE, we could construct a DDC that could handle a larger volume of tasks.
{"title":"Optical network topology design to execute many tasks simultaneously in a disaggregated data center","authors":"Akishige Ikoma;Yuichi Ohsita;Masayuki Murata","doi":"10.1364/JOCN.524628","DOIUrl":"10.1364/JOCN.524628","url":null,"abstract":"In a disaggregated data center (DDC), task execution is reliant on the communication between resources, making performance highly sensitive to network quality. An optimized physical network topology is crucial for a DDC. To enable the simultaneous execution of numerous tasks, a substantial number of communicable resource pairs satisfying performance requirements is necessary. We propose a physical topology evaluation metric called the capability of simultaneous task execution (CSTE) and a corresponding physical topology design leveraging CSTE for a DDC equipped with optical networks. CSTE represents the ratio of resources that could be used as a resource communicating with other resources without violating the performance requirements in a situation where tasks up to the maximum number of executable tasks are executed. In addition, we formulated a physical topology design problem aimed at generating a physical network topology capable of maximizing task execution based on CSTE. By solving this optimization problem, we generated topologies and validated their effectiveness via task allocation simulations. The results showed that an optimal topology based on CSTE reduces task blockages by over 50% compared to conventional topologies. In addition, the results exhibited a positive correlation with the number of executable tasks. Through a physical topology design based on CSTE, we could construct a DDC that could handle a larger volume of tasks.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 7","pages":"764-780"},"PeriodicalIF":4.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141380351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This special issue includes extensions of optical networking papers that were presented at the European Conference on Optical Communication (ECOC) 2023, held 1–5 October 2023 in Glasgow, Scotland.
{"title":"Introduction to the ECOC 2023 Special Edition","authors":"Andrew Lord","doi":"10.1364/JOCN.533905","DOIUrl":"https://doi.org/10.1364/JOCN.533905","url":null,"abstract":"This special issue includes extensions of optical networking papers that were presented at the European Conference on Optical Communication (ECOC) 2023, held 1–5 October 2023 in Glasgow, Scotland.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 7","pages":"ECOC1-ECOC1"},"PeriodicalIF":4.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10572489","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141453345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tony Dicorato;Peter Landon;Pino G. Dicorato;Swamynathan Balasundaram;Matias Schneeberger;Luca Baragiola;Victor Lopez
IP-optical (Internet protocol and optical) integration, or “IP over DWDM (dense wavelength division multiplexing),” is a concept spanning over two decades since the advent of coherent DSP (digital signal processing). In recent years, coherent DSP technology has progressed to a point where it can be integrated on small pluggable form factors that can be equipped in optical line systems and disaggregated transponders or directly in IP routers to support a range of metro and core applications. The option of equipping pluggable digital coherent optics (DCOs) directly in IP routers has the biggest potential for operational cost savings but hinges on the availability of a unified management environment with a single pane of glass to coordinate and automate IP routing and optical transport functions. This work presents alternative software-defined networking (SDN) architectures and evaluates the challenges associated with the evolution to IP over DWDM network architectures. It demonstrates the first, to our knowledge, implementation of the Transport API supporting colored pluggable interfaces in routers in a real network testbed. This work contributes to the realization of end-to-end network management for IP-optical networks, offering operators comprehensive visibility into multi-layer and multi-domain services and empowering revenue generation.
自相干 DSP(数字信号处理)问世以来,IP-optical(互联网协议与光学)集成或 "IP over DWDM(密集波分复用)"是一个跨越二十多年的概念。近年来,相干 DSP 技术已经发展到可以集成在小型可插拔式设备上的程度,这些设备可以装备在光线路系统和分解转发器中,也可以直接装备在 IP 路由器中,以支持一系列城域和核心应用。直接在 IP 路由器中配备可插拔数字相干光学器件(DCO)的方案最有可能节省运营成本,但这取决于是否有一个统一的管理环境,只需一个玻璃面板即可协调和自动执行 IP 路由和光传输功能。这项工作提出了软件定义网络(SDN)架构的替代方案,并评估了与 DWDM 网络架构向 IP 演进相关的挑战。据我们所知,它首次在真实网络测试平台上演示了路由器中支持彩色可插拔接口的传输应用程序接口(Transport API)的实施。这项工作有助于实现 IP 光网络的端到端网络管理,为运营商提供多层多域服务的全面可视性,并提高创收能力。
{"title":"Enabling IP-optical integration in core and metro networks [Invited]","authors":"Tony Dicorato;Peter Landon;Pino G. Dicorato;Swamynathan Balasundaram;Matias Schneeberger;Luca Baragiola;Victor Lopez","doi":"10.1364/JOCN.516740","DOIUrl":"10.1364/JOCN.516740","url":null,"abstract":"IP-optical (Internet protocol and optical) integration, or “IP over DWDM (dense wavelength division multiplexing),” is a concept spanning over two decades since the advent of coherent DSP (digital signal processing). In recent years, coherent DSP technology has progressed to a point where it can be integrated on small pluggable form factors that can be equipped in optical line systems and disaggregated transponders or directly in IP routers to support a range of metro and core applications. The option of equipping pluggable digital coherent optics (DCOs) directly in IP routers has the biggest potential for operational cost savings but hinges on the availability of a unified management environment with a single pane of glass to coordinate and automate IP routing and optical transport functions. This work presents alternative software-defined networking (SDN) architectures and evaluates the challenges associated with the evolution to IP over DWDM network architectures. It demonstrates the first, to our knowledge, implementation of the Transport API supporting colored pluggable interfaces in routers in a real network testbed. This work contributes to the realization of end-to-end network management for IP-optical networks, offering operators comprehensive visibility into multi-layer and multi-domain services and empowering revenue generation.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 7","pages":"C121-C132"},"PeriodicalIF":4.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141365587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Nadal;R. Martinez;M. Ali;F. J. Vilchez;J. M. Fabrega;M. Svaluto Moreolo;R. Casellas
Innovative transceiver and switching approaches should be explored with special focus on flexibility, energy efficiency, sustainability, and interoperability to be adopted on next-generation 6G optical networks driven by the diverse landscape of emerging applications and services and increasing traffic demand. In this regard, multiband (MB) and spatial division multiplexing (SDM) technologies arise as promising technologies for providing suitable network capacity scaling while fulfilling the stringent requirements of the incoming 6G era. In this paper, innovative MB over SDM (MBoSDM) switching node and sliceable bandwidth/bit rate variable transceiver (S-BVT) architectures with enhanced capabilities and features are proposed and experimentally validated. Different network scenarios have been identified and assessed, enabling up to 180.9 Gb/s S+C+L transmission in back-to-back (B2B) configuration. A MBoSDM scenario including both transceiver and switching solutions is demonstrated, including a 19-core multi-core fiber (MCF) of 25.4 km. Thanks to the transceiver modular and scalable approach, higher capacities can be envisioned by enabling multiple slices working in the different bands beyond the C-band. A power efficiency analysis of the proposed transceiver is also presented, including a pathway towards the integration with a software defined networking (SDN) control plane assisted by energy-aware artificial intelligence (AI)/machine learning (ML) trained models.
{"title":"Advanced optical transceiver and switching solutions for next-generation optical networks","authors":"L. Nadal;R. Martinez;M. Ali;F. J. Vilchez;J. M. Fabrega;M. Svaluto Moreolo;R. Casellas","doi":"10.1364/JOCN.522102","DOIUrl":"10.1364/JOCN.522102","url":null,"abstract":"Innovative transceiver and switching approaches should be explored with special focus on flexibility, energy efficiency, sustainability, and interoperability to be adopted on next-generation 6G optical networks driven by the diverse landscape of emerging applications and services and increasing traffic demand. In this regard, multiband (MB) and spatial division multiplexing (SDM) technologies arise as promising technologies for providing suitable network capacity scaling while fulfilling the stringent requirements of the incoming 6G era. In this paper, innovative MB over SDM (MBoSDM) switching node and sliceable bandwidth/bit rate variable transceiver (S-BVT) architectures with enhanced capabilities and features are proposed and experimentally validated. Different network scenarios have been identified and assessed, enabling up to 180.9 Gb/s S+C+L transmission in back-to-back (B2B) configuration. A MBoSDM scenario including both transceiver and switching solutions is demonstrated, including a 19-core multi-core fiber (MCF) of 25.4 km. Thanks to the transceiver modular and scalable approach, higher capacities can be envisioned by enabling multiple slices working in the different bands beyond the C-band. A power efficiency analysis of the proposed transceiver is also presented, including a pathway towards the integration with a software defined networking (SDN) control plane assisted by energy-aware artificial intelligence (AI)/machine learning (ML) trained models.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 8","pages":"D64-D75"},"PeriodicalIF":4.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141379205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geonho Han;Hyuckjin Choi;Ryeong Myeong Kim;Ki Tae Nam;Junil Choi;Theodoros A. Tsiftsis
Visible light is a proper spectrum for secure wireless communications because of its high directivity and impermeability in indoor scenarios. However, if an eavesdropper is located very close to a legitimate receiver, secure communications become highly risky. In this paper, to further increase the level of security of visible light communication (VLC) and increase its resilience to malicious attacks, we propose to capitalize on the recently synthesized gold nanoparticles (GNPs) with chiroptical properties for circularly polarized light resulting in the phase retardation that interacts with the linear polarizer angle. GNP plates made by judiciously stacking many GNPs perform as physical secret keys. Transmitters send both the intended symbol and artificial noise to exploit the channel variation effect by the GNP plates, which is highly effective when an eavesdropper is located close to the legitimate receiver. A new, to our knowledge, VLC channel model is first developed by representing the effect of GNP plates and linear polarizers in the circular polarization domain. Based on the new channel model, the angles of linear polarizers at the transmitters and legitimate receiver are optimized considering the effect of GNP plates to increase the secrecy rate in wiretapping scenarios. Simulations verify that, when the transmitters are equipped with GNP plates, even if the eavesdropper is located right next to the legitimate receiver, insightful results on the physical layer security metrics are gained as follows: (1) the secrecy rate is significantly improved, and (2) the symbol error rate gap between the legitimate receiver and eavesdropper becomes much larger due to the chiroptical properties of GNP plates.
{"title":"On the physical layer security of visible light communications empowered by gold nanoparticles","authors":"Geonho Han;Hyuckjin Choi;Ryeong Myeong Kim;Ki Tae Nam;Junil Choi;Theodoros A. Tsiftsis","doi":"10.1364/JOCN.520163","DOIUrl":"https://doi.org/10.1364/JOCN.520163","url":null,"abstract":"Visible light is a proper spectrum for secure wireless communications because of its high directivity and impermeability in indoor scenarios. However, if an eavesdropper is located very close to a legitimate receiver, secure communications become highly risky. In this paper, to further increase the level of security of visible light communication (VLC) and increase its resilience to malicious attacks, we propose to capitalize on the recently synthesized gold nanoparticles (GNPs) with chiroptical properties for circularly polarized light resulting in the phase retardation that interacts with the linear polarizer angle. GNP plates made by judiciously stacking many GNPs perform as physical secret keys. Transmitters send both the intended symbol and artificial noise to exploit the channel variation effect by the GNP plates, which is highly effective when an eavesdropper is located close to the legitimate receiver. A new, to our knowledge, VLC channel model is first developed by representing the effect of GNP plates and linear polarizers in the circular polarization domain. Based on the new channel model, the angles of linear polarizers at the transmitters and legitimate receiver are optimized considering the effect of GNP plates to increase the secrecy rate in wiretapping scenarios. Simulations verify that, when the transmitters are equipped with GNP plates, even if the eavesdropper is located right next to the legitimate receiver, insightful results on the physical layer security metrics are gained as follows: (1) the secrecy rate is significantly improved, and (2) the symbol error rate gap between the legitimate receiver and eavesdropper becomes much larger due to the chiroptical properties of GNP plates.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 7","pages":"750-763"},"PeriodicalIF":4.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141439377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ramon Casellas;Laia Nadal;Ricardo Martinez;Ricard Vilalta;Raul Munoz;Michela Svaluto Moreolo
The emergence and consolidation of increasingly programmable optical devices such as transceivers, amplifiers, multiplexers, or ROADMs—which allow their remote configuration and control by adopting software-defined networking principles such as model-driven development—is enabling the evolution toward gradually more autonomous networks. Such networks leverage device programmability and are able to adapt and react to traffic and network condition changes, e.g., changing modes of operation or reconfiguring the network state, paving the way for the increased adoption of AI/ML models in support of enhanced network operation. In this paper, after a short review of some key elements in the control and orchestration systems of optical networks in support of autonomous networking, we present in detail a proof-of-concept validation of autonomous, closed-loop dynamic adaptation of transceiver operational modes. This includes (i) the design and development of an SDN agent of a multi-band sliceable bandwidth variable transceiver, based on extended OpenConfig terminal device data models; (ii) an SDN controller that performs discovery and management of transceivers’ operational modes and maps to transport API (TAPI) profiles enabling efficient physical layer impairment-aware path computation; (iii) a dedicated externalized path computation element/digital twin that performs adaptation recommendations; and (iv) an MQTT-based telemetry platform for publisher/subscriber based state synchronization between the control plane functional entities to avoid systematic polling.
随着收发器、放大器、多路复用器或 ROADM 等可编程光设备的出现和整合,这些设备可通过采用软件定义网络原则(如模型驱动开发)进行远程配置和控制,从而使网络逐渐向更加自主的方向发展。这种网络利用设备的可编程性,能够适应流量和网络条件的变化并做出反应,例如改变运行模式或重新配置网络状态,为更多地采用人工智能/ML 模型支持增强型网络运行铺平了道路。在本文中,我们简要回顾了光网络控制和协调系统中支持自主组网的一些关键要素,然后详细介绍了收发器运行模式自主闭环动态适应的概念验证。这包括:(i) 基于扩展的 OpenConfig 终端设备数据模型,设计和开发多频段可切片带宽可变收发器的 SDN 代理;(ii) SDN 控制器,用于发现和管理收发器的运行模式,并映射到传输 API(TAPI)配置文件,从而实现高效的物理层损伤感知路径计算;(iv) 基于 MQTT 的遥测平台,用于控制平面功能实体之间基于发布者/订阅者的状态同步,以避免系统性轮询。
{"title":"Photonic device programmability in support of autonomous optical networks","authors":"Ramon Casellas;Laia Nadal;Ricardo Martinez;Ricard Vilalta;Raul Munoz;Michela Svaluto Moreolo","doi":"10.1364/JOCN.521947","DOIUrl":"10.1364/JOCN.521947","url":null,"abstract":"The emergence and consolidation of increasingly programmable optical devices such as transceivers, amplifiers, multiplexers, or ROADMs—which allow their remote configuration and control by adopting software-defined networking principles such as model-driven development—is enabling the evolution toward gradually more autonomous networks. Such networks leverage device programmability and are able to adapt and react to traffic and network condition changes, e.g., changing modes of operation or reconfiguring the network state, paving the way for the increased adoption of AI/ML models in support of enhanced network operation. In this paper, after a short review of some key elements in the control and orchestration systems of optical networks in support of autonomous networking, we present in detail a proof-of-concept validation of autonomous, closed-loop dynamic adaptation of transceiver operational modes. This includes (i) the design and development of an SDN agent of a multi-band sliceable bandwidth variable transceiver, based on extended OpenConfig terminal device data models; (ii) an SDN controller that performs discovery and management of transceivers’ operational modes and maps to transport API (TAPI) profiles enabling efficient physical layer impairment-aware path computation; (iii) a dedicated externalized path computation element/digital twin that performs adaptation recommendations; and (iv) an MQTT-based telemetry platform for publisher/subscriber based state synchronization between the control plane functional entities to avoid systematic polling.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 8","pages":"D53-D63"},"PeriodicalIF":5.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141265467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}