Titanium alloys are extensively utilized in the aerospace industry due to their exceptional strength and resistance to corrosion. However, litmited performance and high dispersion has always existed for the traditional manufacturing process. A novel Electroshock Treatment (EST) procedure proposed by author's team can synergistically improve the mechanical properties and its consistency of titanium alloys under limited temperature rise, but the relevant mechanism is not yet clear. In present work, the effects of various EST conditions on the mechanical characteristics were investigated by uniaxial tensile testing, and the effect mechanism was revealed using multi-scale microstructure characterization of titanium alloys, such as SEM, EBSD and TEM. The uniaxial tensile test results show that, compared with the sample without EST, the average elongation after fracture improved by 12.5%, the strength-plastic product improved by 16.1%, and the consistency of UTS and elongation after fracture improved by 63.4% and 57.1%, respectively, with a slight increase of tensile strength (30 MPa) after appropriate treatment (current density of 0.93 × 10A/m, and pulse duration of 300 ms). The multi-scale microscopic characterization reveals a more uniform distribution of stress concentration in TC11 titanium alloy following the appropriate EST process. Besides, the entanglement of dislocations is reduced with some dislocations being annihilated. Especially, the remaining dislocations undergoing orderly rearrangement at grain boundaries after EST. The homogenization of local lattice distortion distribution and orderly rearrangement of dislocations at grain boundaries are the primary factors contributing to the comprehensive improvement in the mechanical properties and consistency of TC11 Titanium alloy.
{"title":"Mechanical properties improvement of titanium alloy and its grain boundary dislocation evolution mechanism by novel electroshock treatment","authors":"Zhongmei Wang, Jue Lu, Yanli Song, Yongqing Yu, Yuhang Wu, Lechun Xie, Lin Hua","doi":"10.1016/j.jmrt.2024.07.234","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.07.234","url":null,"abstract":"Titanium alloys are extensively utilized in the aerospace industry due to their exceptional strength and resistance to corrosion. However, litmited performance and high dispersion has always existed for the traditional manufacturing process. A novel Electroshock Treatment (EST) procedure proposed by author's team can synergistically improve the mechanical properties and its consistency of titanium alloys under limited temperature rise, but the relevant mechanism is not yet clear. In present work, the effects of various EST conditions on the mechanical characteristics were investigated by uniaxial tensile testing, and the effect mechanism was revealed using multi-scale microstructure characterization of titanium alloys, such as SEM, EBSD and TEM. The uniaxial tensile test results show that, compared with the sample without EST, the average elongation after fracture improved by 12.5%, the strength-plastic product improved by 16.1%, and the consistency of UTS and elongation after fracture improved by 63.4% and 57.1%, respectively, with a slight increase of tensile strength (30 MPa) after appropriate treatment (current density of 0.93 × 10A/m, and pulse duration of 300 ms). The multi-scale microscopic characterization reveals a more uniform distribution of stress concentration in TC11 titanium alloy following the appropriate EST process. Besides, the entanglement of dislocations is reduced with some dislocations being annihilated. Especially, the remaining dislocations undergoing orderly rearrangement at grain boundaries after EST. The homogenization of local lattice distortion distribution and orderly rearrangement of dislocations at grain boundaries are the primary factors contributing to the comprehensive improvement in the mechanical properties and consistency of TC11 Titanium alloy.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"128 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141930495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.jmrt.2024.07.235
Wonjoo Lee, Yong-Taek Hyun, Jong Woo Won, Jonghun Yoon
This paper considers the beta/alpha transformation of Ti–6Al–4V alloy using a lattice Boltzmann method (LBM) – cellular automata (CA) coupled method in terms of microstructural evolution during phase transformation. Particularly, the effects of the cooling rate on microstructures such as beta grain size, alpha colony size, and alpha lath thickness were examined as well as the overall morphologies. The LBM and CA were used to implement the diffusion of alloy components and phase transformation, respectively. Additionally, the thermodynamic and kinetic data for simulating the ternary alloy system were obtained from CALPHAD software to utilize the equilibrium phase diagram calculations. The initial states of the beta grain and its composition fields affect the processing of beta/alpha phase transformation and the final alpha + beta phase morphologies. Validation of the proposed method was conducted to compare the simulation results with experimental trends for microstructures of Ti–6Al–4V from the literature. The error in prediction of microstructural morphologies were 20% in the average alpha thickness with deviation of up to 5 μm.
{"title":"Numerical simulation for β/α transformation of Ti–6Al–4V alloy using a lattice Boltzmann - Cellular automata method","authors":"Wonjoo Lee, Yong-Taek Hyun, Jong Woo Won, Jonghun Yoon","doi":"10.1016/j.jmrt.2024.07.235","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.07.235","url":null,"abstract":"This paper considers the beta/alpha transformation of Ti–6Al–4V alloy using a lattice Boltzmann method (LBM) – cellular automata (CA) coupled method in terms of microstructural evolution during phase transformation. Particularly, the effects of the cooling rate on microstructures such as beta grain size, alpha colony size, and alpha lath thickness were examined as well as the overall morphologies. The LBM and CA were used to implement the diffusion of alloy components and phase transformation, respectively. Additionally, the thermodynamic and kinetic data for simulating the ternary alloy system were obtained from CALPHAD software to utilize the equilibrium phase diagram calculations. The initial states of the beta grain and its composition fields affect the processing of beta/alpha phase transformation and the final alpha + beta phase morphologies. Validation of the proposed method was conducted to compare the simulation results with experimental trends for microstructures of Ti–6Al–4V from the literature. The error in prediction of microstructural morphologies were 20% in the average alpha thickness with deviation of up to 5 μm.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"75 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141930372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.jmrt.2024.07.232
Zhengyi Li, Yibo Ai, Lei Wen, Hongying Yu, Weidong Zhang, Dongbai Sun
To enhance the tribocorrosion resistance of 7075-T6 aluminum alloy in deep sea environments, TiB–Ni coatings with varying LaO content were deposited on 7075-T6 aluminum alloy substrates using plasma spray technology. The effects of different LaO contents on the organization, structure, and properties of the coatings were analyzed. The results indicated that LaO incorporation suppressed brittle phase formation such as NiB; 1.0 wt% LaO addition reduced NiB by 16.9%. The coating's corrosion resistance significantly improved with LaO doping - the self-corrosion current density of the 1.0 wt% LaO-doped coating decreased from 71.2 nA/cm to 30.2 nA/cm.
{"title":"Influence of added La2O3 on the microstructure, mechanical properties, and tribocorrosion resistance of TiB2–Ni plasma-sprayed coatings","authors":"Zhengyi Li, Yibo Ai, Lei Wen, Hongying Yu, Weidong Zhang, Dongbai Sun","doi":"10.1016/j.jmrt.2024.07.232","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.07.232","url":null,"abstract":"To enhance the tribocorrosion resistance of 7075-T6 aluminum alloy in deep sea environments, TiB–Ni coatings with varying LaO content were deposited on 7075-T6 aluminum alloy substrates using plasma spray technology. The effects of different LaO contents on the organization, structure, and properties of the coatings were analyzed. The results indicated that LaO incorporation suppressed brittle phase formation such as NiB; 1.0 wt% LaO addition reduced NiB by 16.9%. The coating's corrosion resistance significantly improved with LaO doping - the self-corrosion current density of the 1.0 wt% LaO-doped coating decreased from 71.2 nA/cm to 30.2 nA/cm.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"84 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141930373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.jmrt.2024.07.233
Jungwoong Kim, Hyung-Jun Cho, Sung-Joon Kim
The effects of austenitizing temperature and cooling rate on microstructure and subsequent tensile properties were investigated in 0.15C–5Mn martensitic steels. Tensile strength and elongation increased with decreasing austenitizing temperature (1000 °C to 800 °C) in both air-cooled and water-quenched steels. Improvement of tensile properties originated from the promoted transformation-induced plasticity (TRIP) effect, as lower austenitizing temperature limited Mn diffusion to make cementite preferred site for Mn partitioning, thereby increasing the fraction of retained austenite after heat treatment. Cooling rate also affected the mechanical properties, as air-cooled samples showed lower strength and higher elongation compared to water-quenched samples. During the air-cooling, supersaturated carbon in martensite is redistributed to form additional carbides by auto-tempering effect. The formation of carbides softened the martensite to decrease strength while increased tensile elongation. Fraction of retained austenite influenced by the austenitizing temperature and formation of carbide affected by the cooling rate acted as competing mechanisms affecting the tensile properties of the martensitic steels, indicating that heat treatment should be controlled carefully to obtain the desirable mechanical properties.
{"title":"Role of cementite on tensile properties in auto-tempered 0.15C–5Mn martensitic steel","authors":"Jungwoong Kim, Hyung-Jun Cho, Sung-Joon Kim","doi":"10.1016/j.jmrt.2024.07.233","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.07.233","url":null,"abstract":"The effects of austenitizing temperature and cooling rate on microstructure and subsequent tensile properties were investigated in 0.15C–5Mn martensitic steels. Tensile strength and elongation increased with decreasing austenitizing temperature (1000 °C to 800 °C) in both air-cooled and water-quenched steels. Improvement of tensile properties originated from the promoted transformation-induced plasticity (TRIP) effect, as lower austenitizing temperature limited Mn diffusion to make cementite preferred site for Mn partitioning, thereby increasing the fraction of retained austenite after heat treatment. Cooling rate also affected the mechanical properties, as air-cooled samples showed lower strength and higher elongation compared to water-quenched samples. During the air-cooling, supersaturated carbon in martensite is redistributed to form additional carbides by auto-tempering effect. The formation of carbides softened the martensite to decrease strength while increased tensile elongation. Fraction of retained austenite influenced by the austenitizing temperature and formation of carbide affected by the cooling rate acted as competing mechanisms affecting the tensile properties of the martensitic steels, indicating that heat treatment should be controlled carefully to obtain the desirable mechanical properties.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141930635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.jmrt.2024.07.236
Jiachen Zhou, Baoxian Su, Binbin Wang, Liangshun Luo, Tong Liu, Yanan Wang, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu
In general, the Ti–6.5Al–2Zr–1Mo–1V (TA15) components fabricated via laser powder bed fusion (L-PBF) exhibit high strength and low ductility. Herein, we report a novel approach to enhance the comprehensive mechanical properties of L-PBF TA15 alloy by adjusting the laser power. Samples processed using the optimal laser power exhibit a grid structure of alternating wide and narrow prior-β grains (PBGs), the inside of which is composed of a fully martensitic microstructure. The paper discusses in detail the alterations in the microstructure of samples processed at both low and high laser powers, clarifying the relationship between microstructure and mechanical properties. Thinner martensite contributes to higher strength, while a homogenous microstructure improves ductility. These findings provide valuable insights for controlling microstructure and achieving strength-ductility synergy in L-PBF additive manufacturing of titanium alloys.
{"title":"Achieving strength-ductility synergy of laser powder bed fusion Ti–6.5Al–2Zr–1Mo–1V alloy by regulating laser power","authors":"Jiachen Zhou, Baoxian Su, Binbin Wang, Liangshun Luo, Tong Liu, Yanan Wang, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu","doi":"10.1016/j.jmrt.2024.07.236","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.07.236","url":null,"abstract":"In general, the Ti–6.5Al–2Zr–1Mo–1V (TA15) components fabricated via laser powder bed fusion (L-PBF) exhibit high strength and low ductility. Herein, we report a novel approach to enhance the comprehensive mechanical properties of L-PBF TA15 alloy by adjusting the laser power. Samples processed using the optimal laser power exhibit a grid structure of alternating wide and narrow prior-β grains (PBGs), the inside of which is composed of a fully martensitic microstructure. The paper discusses in detail the alterations in the microstructure of samples processed at both low and high laser powers, clarifying the relationship between microstructure and mechanical properties. Thinner martensite contributes to higher strength, while a homogenous microstructure improves ductility. These findings provide valuable insights for controlling microstructure and achieving strength-ductility synergy in L-PBF additive manufacturing of titanium alloys.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141930371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1016/j.jmrt.2024.07.181
Yilin Jia, Kun Zhou, Wanting Sun, Min Ding, Yu Wang, Xiangqing Kong, Dongzhou Jia, Muhong Wu, Ying Fu
Carbon nanotubes (CNTs), as potent reinforcements in composites, have demonstrated excellent strengthening effects when combined with copper in numerous recent studies. Challenges remain in the application of these composites and in fully leveraging the reinforcing capabilities of CNTs to achieve comprehensive performance enhancement. The performance of CNTs/Cu composites can be flexibly regulated owing to the unique structure and properties of CNTs. To achieve the fabrication of high-performance and diverse CNTs/Cu composites, a profound understanding of the reinforcement mechanisms of CNTs in the composites is essential, along with the consideration of key influencing factors on performance. This article provides a comprehensive overview of the reinforcement mechanisms of CNTs on the mechanical, electrical, and thermal properties of CNTs/Cu composites. Factors influencing the effectiveness of CNT reinforcement in composites are discussed, including the attributes and dispersion of CNTs, the architectures of composites, and the interface between CNTs and Cu. Furthermore, this study explores the role of CNTs in addressing the trade-off between high strength and high conductivity as well as between high strength and high ductility in the copper matrix.
{"title":"Enhancement mechanisms of mechanical, electrical and thermal properties of carbon nanotube-copper composites: A review","authors":"Yilin Jia, Kun Zhou, Wanting Sun, Min Ding, Yu Wang, Xiangqing Kong, Dongzhou Jia, Muhong Wu, Ying Fu","doi":"10.1016/j.jmrt.2024.07.181","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.07.181","url":null,"abstract":"Carbon nanotubes (CNTs), as potent reinforcements in composites, have demonstrated excellent strengthening effects when combined with copper in numerous recent studies. Challenges remain in the application of these composites and in fully leveraging the reinforcing capabilities of CNTs to achieve comprehensive performance enhancement. The performance of CNTs/Cu composites can be flexibly regulated owing to the unique structure and properties of CNTs. To achieve the fabrication of high-performance and diverse CNTs/Cu composites, a profound understanding of the reinforcement mechanisms of CNTs in the composites is essential, along with the consideration of key influencing factors on performance. This article provides a comprehensive overview of the reinforcement mechanisms of CNTs on the mechanical, electrical, and thermal properties of CNTs/Cu composites. Factors influencing the effectiveness of CNT reinforcement in composites are discussed, including the attributes and dispersion of CNTs, the architectures of composites, and the interface between CNTs and Cu. Furthermore, this study explores the role of CNTs in addressing the trade-off between high strength and high conductivity as well as between high strength and high ductility in the copper matrix.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"101 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141930485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The high-density Fe-6.5 wt% Si soft magnetic alloy samples were prepared using selective laser melting (SLM) technology. Annealing treatments with different temperatures were employed to promote grain growth. The microstructure, texture and magnetic hysteresis loops were characterized, aiming to investigate the relationship between microstructure and magnetic properties. The as-printed Fe-6.5 wt% Si alloy had weak texture and low density of ordered phases, and was featured by coarse grains in the top-view section and columnar grains in the side-view section. After annealing at 800 °C–1000 °C, the textures were slightly weakened, while the grain growth was not significant. Increasing the annealing temperature to 1100 °C led to abnormal grain growth behaviors. The grains of the as-printed Fe-6.5 wt% Si alloy showed randomly abnormal growth behaviors rather than oriented growth, which may be related to the low stored energy and initial size advantage before annealing. After annealed at 1100 °C for 1 h, the abnormal grain growth and the formation of large Goss ({110}<001>) and Cube ({100}<001>) grains resulted in microstructure coarsening and texture optimization. Thus, the corresponding ring-shaped sample exhibited excellent magnetic performance. The magnetic induction B is 1.21 T, the maximum relative permeability is 14.71 × 10 and the core loss P is 11.69 W/kg.
利用选择性激光熔化(SLM)技术制备了高密度 Fe-6.5 wt% Si 软磁合金样品。采用不同温度的退火处理促进晶粒生长。对样品的微观结构、质地和磁滞回线进行了表征,旨在研究微观结构与磁性能之间的关系。压印后的 Fe-6.5 wt% Si 合金质地较弱,有序相密度较低,顶视图部分为粗大晶粒,侧视图部分为柱状晶粒。在 800 ℃-1000 ℃ 退火后,纹理略有减弱,晶粒生长不明显。将退火温度提高到 1100 ℃会导致异常的晶粒生长行为。原样印刷的 Fe-6.5 wt% Si 合金的晶粒表现出随机的异常生长行为,而不是取向生长,这可能与退火前的低储能和初始尺寸优势有关。在 1100 °C 下退火 1 小时后,晶粒异常生长,形成了大的 Goss({110})和 Cube({100})晶粒,导致了微观结构的粗化和纹理优化。因此,相应的环形样品表现出优异的磁性能。磁感应强度 B 为 1.21 T,最大相对磁导率为 14.71 × 10,磁芯损耗 P 为 11.69 W/kg。
{"title":"Influence of annealing treatment on grain growth, texture and magnetic properties of a selective laser melted Fe-6.5 wt% Si alloy","authors":"Lulan Jiang, Haijie Xu, Yuhan Zhan, Dewei Zhang, Xuedao Shu, Zixuan Li, Jinrong Zuo","doi":"10.1016/j.jmrt.2024.07.211","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.07.211","url":null,"abstract":"The high-density Fe-6.5 wt% Si soft magnetic alloy samples were prepared using selective laser melting (SLM) technology. Annealing treatments with different temperatures were employed to promote grain growth. The microstructure, texture and magnetic hysteresis loops were characterized, aiming to investigate the relationship between microstructure and magnetic properties. The as-printed Fe-6.5 wt% Si alloy had weak texture and low density of ordered phases, and was featured by coarse grains in the top-view section and columnar grains in the side-view section. After annealing at 800 °C–1000 °C, the textures were slightly weakened, while the grain growth was not significant. Increasing the annealing temperature to 1100 °C led to abnormal grain growth behaviors. The grains of the as-printed Fe-6.5 wt% Si alloy showed randomly abnormal growth behaviors rather than oriented growth, which may be related to the low stored energy and initial size advantage before annealing. After annealed at 1100 °C for 1 h, the abnormal grain growth and the formation of large Goss ({110}<001>) and Cube ({100}<001>) grains resulted in microstructure coarsening and texture optimization. Thus, the corresponding ring-shaped sample exhibited excellent magnetic performance. The magnetic induction B is 1.21 T, the maximum relative permeability is 14.71 × 10 and the core loss P is 11.69 W/kg.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"191 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141930376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1016/j.jmrt.2024.07.223
Abdul Hakeem, Thamraa Alshahrani, Ghulam Muhammad, M.H. Alhossainy, A. Laref, Abdul Rauf Khan, Irshad Ali, Hafiz Muhammad Tahir Farid, T. Ghrib, Syeda Rabia Ejaz, Rabia Yasmin Khosa
{"title":"Corrigendum to ‘Magnetic, dielectric and structural properties of spinel ferrites synthesized by sol-gel method’ [J. Mater. Res. Technol. Volume 11, March–April 2021, Pages 158-169]","authors":"Abdul Hakeem, Thamraa Alshahrani, Ghulam Muhammad, M.H. Alhossainy, A. Laref, Abdul Rauf Khan, Irshad Ali, Hafiz Muhammad Tahir Farid, T. Ghrib, Syeda Rabia Ejaz, Rabia Yasmin Khosa","doi":"10.1016/j.jmrt.2024.07.223","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.07.223","url":null,"abstract":"","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141930490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oxide-dispersion-strengthened (ODS) steels are candidate materials for application in advanced nuclear reactors. In this study, the low-cycle fatigue performances of 13Cr-ODS ferritic steel pipes were investigated at 600, 700, and 800 °C. Cyclic softening was observed at high strain amplitudes with an increase in the number of fatigue cycles. However, cyclic hardening appeared first, and then cyclic softening occurred at a low strain amplitude with the increase in the number of fatigue cycles. By comparing the cyclic stress–strain curves and the monotonic stress–strain curves, it was found that cyclic softening occurred regardless of the strain amplitude. The Coffin–Manson and Basquin equations were used to predict the fatigue of the pipes. Microstructure analysis indicated that cyclic softening was induced by the dynamic recovery and recrystallization, which reduced the number of low-angle grain boundaries in the deformed grains by promoting dislocation annihilation and reorganization. A complex multi-layer core–shell structure with a large size (∼500 nm) was observed.
{"title":"Low-cycle fatigue behavior and microstructure evolution of ODS steel pipes at high temperatures","authors":"Yuntao Zhong, Yongduo Sun, Yufeng Du, Zhenyu Zhao, Yong Chen, Huan Sheng Lai, Ruiqian Zhang","doi":"10.1016/j.jmrt.2024.07.213","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.07.213","url":null,"abstract":"Oxide-dispersion-strengthened (ODS) steels are candidate materials for application in advanced nuclear reactors. In this study, the low-cycle fatigue performances of 13Cr-ODS ferritic steel pipes were investigated at 600, 700, and 800 °C. Cyclic softening was observed at high strain amplitudes with an increase in the number of fatigue cycles. However, cyclic hardening appeared first, and then cyclic softening occurred at a low strain amplitude with the increase in the number of fatigue cycles. By comparing the cyclic stress–strain curves and the monotonic stress–strain curves, it was found that cyclic softening occurred regardless of the strain amplitude. The Coffin–Manson and Basquin equations were used to predict the fatigue of the pipes. Microstructure analysis indicated that cyclic softening was induced by the dynamic recovery and recrystallization, which reduced the number of low-angle grain boundaries in the deformed grains by promoting dislocation annihilation and reorganization. A complex multi-layer core–shell structure with a large size (∼500 nm) was observed.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"85 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141930551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1016/j.jmrt.2024.07.111
Gao Lei, Ma Huaijin, Wang Pengyu, Cheng Juan, Zhang Yingde, Yun Huiqin, Guo Fei, Zhang Pengchao, Song Boyu, Huang Jiaohong, Jin Xiang
High entropy amorphous alloys (HE AMs) have attracted extensive interest lately due to their superior magnetocaloric properties. However, the critical behavior and mechanical properties have received less research, which restricts their applications. This work presented a comprehensive investigation of the magnetocaloric effect (MCE), critical behavior, and mechanical performance of quinary GdDyErAlM (M = Fe, Co, Ni) HE AMs. All samples exhibited distinct spin glass-like behavior below and competitive MCE around hydrogen liquefaction temperature range. Excellent MCE was achieved by the HE AMs through a second-order phase transition from paramagnetic state to ferromagnetic state at 79 K for Fe, 41 K for Co, and 36 K for Ni. Among them, the maximum magnetic entropy change (-Δ) of GdDyErAlCo amorphous alloys was 9.59 J kg K under 0–5 T. Furthermore, and of GdDyErAlFe amorphous alloys were respectively 519 J kg and 613 J kg, larger than that of most RE-based amorphous alloys. For all samples, the critical behavior of the phase transition approached the mean field model, and this responded to the long-range ordering of the magnetic interaction. The bending plasticity of GdDyErAlM (M = Fe, Co, Ni) HE AMs were 0.78, 1.03, 0.89, respectively. The adjustable , large (-Δ), high , and outstanding mechanical properties suggested GdDyErAlM (M = Fe, Co, Ni) HE AMs may find utility as magnetic refrigerants in low-temperature applications.
{"title":"Cryogenic temperature magnetocaloric effect and critical behavior of GdDyErAlM (M=Fe, Co, Ni) high entropy amorphous alloys","authors":"Gao Lei, Ma Huaijin, Wang Pengyu, Cheng Juan, Zhang Yingde, Yun Huiqin, Guo Fei, Zhang Pengchao, Song Boyu, Huang Jiaohong, Jin Xiang","doi":"10.1016/j.jmrt.2024.07.111","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.07.111","url":null,"abstract":"High entropy amorphous alloys (HE AMs) have attracted extensive interest lately due to their superior magnetocaloric properties. However, the critical behavior and mechanical properties have received less research, which restricts their applications. This work presented a comprehensive investigation of the magnetocaloric effect (MCE), critical behavior, and mechanical performance of quinary GdDyErAlM (M = Fe, Co, Ni) HE AMs. All samples exhibited distinct spin glass-like behavior below and competitive MCE around hydrogen liquefaction temperature range. Excellent MCE was achieved by the HE AMs through a second-order phase transition from paramagnetic state to ferromagnetic state at 79 K for Fe, 41 K for Co, and 36 K for Ni. Among them, the maximum magnetic entropy change (-Δ) of GdDyErAlCo amorphous alloys was 9.59 J kg K under 0–5 T. Furthermore, and of GdDyErAlFe amorphous alloys were respectively 519 J kg and 613 J kg, larger than that of most RE-based amorphous alloys. For all samples, the critical behavior of the phase transition approached the mean field model, and this responded to the long-range ordering of the magnetic interaction. The bending plasticity of GdDyErAlM (M = Fe, Co, Ni) HE AMs were 0.78, 1.03, 0.89, respectively. The adjustable , large (-Δ), high , and outstanding mechanical properties suggested GdDyErAlM (M = Fe, Co, Ni) HE AMs may find utility as magnetic refrigerants in low-temperature applications.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141930489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}